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Abstract 

	  

 Given the potential impacts of climate change and the recent decline in 

household water consumption across the Southwest, the importance of accurate 

water demand forecasting is evident. Using household-level panel data from 

Tucson, AZ, and a unique set of control variables, we estimate demand via a 

Stone-Geary specification. The Stone-Geary functional form advantageously 

allows price elasticity of demand to vary with quantity consumed and enables 

estimation of a threshold level of consumption below which demand is 

considered perfectly price inelastic. Our results indicate that not all outdoor water 

use is price elastic. We also assess the sensitivity of water consumption to 

potential climate change using downscaled projections from the Coupled Model 

Intercomparison Project (CMIP5). We find that, without substantial 

socioeconomic or technological change, climate change could result in significant 

increases in water consumption year-round, including an average annual 

increase in peak demand of up to 15% above study period levels.	   	  
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1. Introduction 
 

1.1 Study Context 
 

In an environment such as the American Southwest, the importance of 

water resource management cannot be underestimated. Water utilities are 

tasked with the responsibility of providing this critical resource to consumers in a 

way that both satisfies current demand and ensures the viability of the resource 

in the long run. In the city of Tucson, Arizona, the public utility Tucson Water fills 

this role for roughly 712,700 people through approximately 227,000 metered 

connections in its service area (Tucson Water 2015). 

In the sun-belt state of Arizona, rapid population growth has historically 

increased demand for water and put pressure on utilities to ensure sufficient, 

reliable water supplies. Between 1980 and 2000, the population of Arizona grew 

by 88%, while the total U.S. population grew by 24.2% over the same period. 

Between 2000 and 2009, the total population of Arizona increased again by 

28.6% (McConnell 2013). Much of this population growth has been concentrated 

in the major metropolitan areas of Phoenix and Tucson, and these cities continue 

to expand even today. For utilities like Tucson Water, meeting the demands of 

these ever-increasing urban populations has required substantial investment in 

new infrastructure and reliable forecasts of future demand levels. 

Using demand-forecasting models that take into account major 

determinants of water demand including population growth and weather 

variability, Tucson Water projected total water demand in their service area to 

rise from about 136,000 acre-feet (AF) in 2007 to 175,000 AF by 2020 – an 

increase in water consumption of almost 29% (Tucson Water 2009). However, 

despite continued growth in the number of households served, water utilities 

across the Southwest have observed a declining trend in total household water 

consumption over the past several decades that may render these projections 

inaccurate. As shown in Figure 1, aggregate (total) water use among single-
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family residential (SFR) customers in Tucson Waterʼs service area has been 

declining since about 2006, and per household SFR water use has been on the 

decline since at least 2002, if not before. (Note: These consumption data were 

taken from our final dataset, which does not include all SFR households serviced 

by Tucson Water. Actual levels of total consumption are higher, but the trends 

are similar.) Since SFR customers make up about 80% of Tucson Waterʼs 

customer base and consume 56% of the potable water supplied by the utility, 

these trends have nontrivial impacts on the utilityʼs revenue stream and 

corresponding financial stability (Klawitter 2014). A better understanding of 

household decision-making in regard to water consumption behavior is needed to 

ensure that future demand for water can be met. 

 
Figure 1: Tucson SFR Water Consumption Over Time 

 

a) Aggregate SFR Consumption 
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b) SFR Consumption per Household 

 
 

At the same time, increasing uncertainty regarding the reliability of water 

supplies in this region presents challenges for water management going forward. 

In Arizona, the Colorado River represents the primary renewable water supply 

source for the major metropolitan areas of Phoenix and Tucson. Colorado River 

water is delivered to these urban areas via a massive aqueduct system called the 

Central Arizona Project (CAP). In an effort to ensure more sustainable water 

supplies, in recent years Tucson Water has moved away from its use of local 

groundwater and toward reliance on CAP supplies (Tucson Water 2009). While 

severing dependence on non-renewable groundwater resources is certainly a 

step toward more sustainable water supplies, threats of shortage along the 

Colorado River make even this supposedly renewable source of water less 

reliable. Colorado River flows could be reduced by 10 to 20% in coming decades 

(Gammage, et al. 2011). Because of the “junior” status of Arizonaʼs water rights, 

the CAPʼs allocation of Colorado River flows could be reduced in a shortage 

situation. And while a reduction in the CAPʼs allocation would only affect 

recharge and agricultural rights holders at first, more extreme shortage situations 

could lead to reductions in Tucson Waterʼs annual allocation (CAP 2014). 
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Additionally, climate models from the International Panel on Climate 

Change (IPCC) are predicting increasing temperatures and higher variability in 

rainfall in Arizona (Gammage, et al. 2011). This increases the likelihood of a 

shortage situation on the Colorado River, compounding the uncertainty 

associated with future supplies. It also affects future demand. Since water 

demand already tends to be highly seasonal, increased weather variability 

associated with future climate could increase the variation in intra-annual water 

demand as well. 

 

1.2 Purpose of Study 
 

 The purpose of this analysis is to examine the household-level decision-

making process regarding water consumption and its relationship with aggregate 

water demand in Tucson, AZ. It is impossible to assess whether available water 

supplies will be sufficient or reliable enough to meet future demands if current 

demand patterns are not well understood. Given that declining levels of total and 

average household water demand in many Southwestern cities have not been 

adequately explained by current demand forecasting models, we would expect 

the accuracy of future projections to depend on our ability to better account for 

the data generating process at work. 

In this study, we emphasize the fact that the price elasticity of water 

demand for a given household increases in magnitude with quantity consumed. 

While this fact has long been discussed in the literature, there has been little 

emphasis on the use of demand models that account for it. To put the concept 

more simply, a household is more likely to respond to price increases by cutting 

back consumption when they are already consuming a sizable amount of water. 

Likewise, households will respond less to price increases at lower levels of water 

consumption, all else constant. Extending this logic, the implication is that each 

household has some minimum level of water consumption below which changes 

in price will not influence their consumption choices – a “perfectly inelastic” 
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portion of their demand function. A practical definition of this minimum level of 

consumption in the literature proves elusive. Typically, the term “subsistence” 

level of water consumption is used, but since American households typically do 

not lack access to water for basic biological needs this term is not applicable in 

our context. Some have assumed that this minimum level corresponds to water 

consumption for indoor use, while water for outdoor use represents a more 

discretionary or luxury level of consumption (Howe and Linaweaver 1967). 

However, given that each household is unique and may have different 

preferences regarding what the water they purchase is used for, this assumption 

may be too strong. Others have considered the difference between “base” and 

“seasonal” use, taking consumption in the winter months to reflect the 

“necessary” portion of household consumption (Maidment, Miaou and Crawford 

1985; Miaou 1990). This is a more realistic assumption, so long as it allows for 

the possibility that “base” use may vary between households or over time. We 

prefer to use the term developed by Gaudin, Griffin, and Sickles (2001), after 

whose work much of our analysis is patterned. They refer to this minimum level 

of water consumption as the “conditional water use threshold” to emphasize that 

its level is dependent on the household and time period considered. Regardless 

of the nomenclature, however, the significance of this fact is clear. Failure to 

account for this aspect of household decision-making in a water demand model 

could lead to erroneous conclusions about the responsiveness of water demand 

to changes in price, and therefore bias projections regarding future water 

consumption levels.  

We utilize a Stone-Geary demand specification to allow the estimation of 

this conditional water use threshold empirically. Unlike many reduced form 

models, this demand specification is consistent with utility theory, which assumes 

the maximization of utility subject to a budget constraint. The Stone-Geary model 

is also advantageous in that it requires the estimation of only a few parameters. 

One of these parameters is the “subsistence level” of consumption, which 

specifies the amount below which consumption is unresponsive to price 



	   17 

(inelastic). A practical simplification suggested by Gaudin, Griffin, and Sickles 

(2001) allows us to abstract away from the concept of “subsistence” in the 

context of water demand to focus on the conditional water use threshold. 

 In our empirical analyses, we utilize panel data on SFR consumption at 

the household level for the period July 1998 – June 2012. To the best of our 

knowledge, no study has been conducted to date using panel data at the 

household level to estimate a Stone-Geary demand function. Since SFR 

households, unlike most other customer classes, tend to be primarily owner-

occupied, these consumers have the greatest latitude in appliance and 

landscape choice (Klawitter 2014). These two types of choices tend to have a 

substantial impact on the amount of household water consumption for indoor and 

outdoor use, respectively. As mentioned earlier, SFR users also represent the 

largest proportion of consumers and total consumption among Tucson Water 

customer classes. Thus, they represent the best subset of customers to examine 

in order to understand consumer decision-making behavior related to water 

consumption. 

 We also recognize that our understanding of household water 

consumption behavior today must be conditioned on our expectations regarding 

the future in order to provide valuable information for future projection efforts. The 

potential impacts of future climate will need to be taken into account, since 

weather patterns represent a major source of seasonal variation in urban water 

consumption. We evaluate the impact of alternative climate scenarios on 

aggregate water consumption in Tucson using climate projections from global 

climate models (GCMs) utilized in the Coupled Model Intercomparison Project 

(CMIP5). 

 The remainder of this thesis is organized as follows. Chapter 2 presents a 

review of the literature surrounding municipal water demand, with an emphasis 

on studies that attempt to examine the issue of variable price elasticity of 

demand. Chapter 3 details our theoretical demand model, which is a Stone-

Geary specification adopted from Gaudin, Griffin, and Sickles (2001). Chapter 4 
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describes the data collected for empirical demand estimation. Chapter 5 details 

the empirical demand estimation process and summarizes the results we obtain, 

including the results of our analysis of the sensitivity of water consumption to 

potential climate change. Finally, Chapter 6 concludes and discusses the policy 

implications of our research.  
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2. Literature Review 
 
 

 This literature review places our analysis of residential water demand in 

Tucson, AZ, in its appropriate historical, theoretical, and methodological context. 

The review attempts to show how the literature surrounding municipal water 

demand has evolved, demonstrate the value of such studies for informing water 

policy decisions, and lay the foundation for our analysis of residential water 

demand in Tucson, AZ, and its potential contributions to the literature and to 

water policy in the Southwest. 

 The literature on municipal water demand is rich and goes back more than 

half a century. As early as 1967, Howe and Linaweaver compared the price 

elasticities of indoor and outdoor or “sprinkling” uses of water in municipalities in 

the western and eastern United States. Studies of water demand began to 

proliferate after the publication of Taylorʼs 1975 article on estimating electricity 

demand under multi-step block rate structures. His work, modified by Nordin 

(1976), provided the foundation for a continuing debate over the appropriate 

specification of the price variable in estimating water demand under increasing 

block rate structures. Due to data and computing constraints, most of these 

models examined changes in aggregate, municipal water demand over time or 

focused on differences in water consumption across households or multiple 

municipalities at fixed points in time. Then, with Danielsonʼs 1979 analysis of 

trends in indoor and outdoor water consumption at the household level in 

Raleigh, NC, empiricists began to examine water demand both over time and 

among disaggregated user groups to account for user heterogeneity. As 

statistical software has become more advanced and data collection and 

maintenance has grown in priority, the number of water demand studies has 

grown dramatically, as has the size, scope, and resolution of the datasets used. 

However, despite the growing diversity in the design and application of municipal 

water demand studies, trends in the explanatory variables and statistical models 
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used in previous studies are apparent. A summary of these trends is attempted 

here. Additionally, a review of the subset of water demand studies aimed at 

distinguishing between specific types of water consumption is included. 

 

2.1 Explanatory Variables 
 

 In empirical models of water demand, price is almost always a key 

explanatory variable. This is one of the few factors influencing water consumption 

behaviors that a utility has control over. Most economic studies of water demand 

focus on estimating a price elasticity of demand for water, which is inherently 

complicated by the price structures and billing procedures utilities use. 

 Particularly in the southwestern United States, utilities commonly 

implement increasing block rate (IBR) structures, which raise the per-unit price of 

water with consumption at specified intervals, called blocks (Griffin 2006). 

Increasing block rates eliminate the possibility of setting a single, optimal 

marginal price for all users, making elasticity calculations difficult (Klawitter 

2014). The other confounding factor in any analysis of water demand is the lack 

of information that consumers have regarding their marginal price or their 

consumption level at any given moment (Nataraj and Hanemann 2011). For one, 

consumers are also typically only informed of their usage when their bill is 

mailed, since water meters are typically located outside and out of sight. Second, 

IBRs impose non-constant marginal prices, which, aside from being difficult for 

most consumers to readily grasp, require consumers to have information about 

their consumption level in order to know what price they are currently facing. This 

presents a problem of simultaneity when modeling demand for water as a 

function of price. Finally, many utilities use billing cycle lengths as well as start 

and end dates that are asynchronous – that is, they vary across consumers and 

over successive billing periods. During longer billing cycles, consumers may face 

higher marginal prices if their additional consumption in extra days causes them 

to move into a higher tier in their utilityʼs IBR structure. This sends conflicting 
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price signals to consumers (Foster and Beattie 1979; Nataraj and Hanemann 

2011; Klawitter 2014). Thus, consumers are typically ill-equipped to make water 

consumption decisions at the margin. 

 In light of these challenges, the literature reflects much debate regarding 

the appropriate specification of the price variable in water demand studies. 

Traditional practice was to use either the pure marginal price for the last units 

consumed or the average price on all units consumed (Young 1973). However, 

with the advent of IBR structures, these methods have been shown to be 

inadequate. Taylor (1975) argues that models using average price present 

instances of simultaneity, while models using marginal price fail to account for the 

different price paid by the consumer for inframarginal units (those not at-the-

margin). Nordin (1976), building on Taylorʼs argument, proposes a price 

specification that includes both the marginal price and an expenditure differential 

variable. This differential variable, which hereafter will be referred to as the 

Taylor-Nordin difference, is equal to the difference between what a given 

consumer would have paid had all units of water been charged at the marginal 

price and the amount that customer would actually pay given the imposed rate 

structure. This price specification satisfies the theoretical requirements related to 

IBR structures to incorporate information about consumption thus far and specify 

the price the consumer faces on the last units of water consumed. Many water 

demand studies over the years have continued to use the Taylor-Nordin method 

of estimating marginal price (Agthe and Billings 1980; Coleman 2009; Martinez-

Espiñeira and Nauges 2004; Dharmaratna and Harris 2012). 

 However, the Taylor-Nordin marginal price specification has been 

criticized for being too theoretical in its assumption that consumers have perfect 

information about the marginal price they face at the time of consumption (Foster 

and Beattie 1979,1981). Arguing that the traditional economic theory of utility 

maximization using marginal prices to make consumption decisions is not 

applicable given the lack of clarity consumers have regarding their marginal price 

for water they face, Foster and Beattie (1981) suggest that consumers will 
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respond to changes in average price. They also argue that the lack of 

substantively different elasticity estimates in the literature between studies using 

Taylor-Nordin marginal price specifications and average price specifications 

makes the decision of which price specification to use an empirical rather than a 

theoretical problem. Charney and Woodard (1985) agree that the average price 

specification best represents consumer behavior, but only when lagged average 

price – the average price per unit from the previous billing period – is considered. 

Since consumers have little information about the price they face during a given 

billing cycle, they are likely to rely on their last bill for information about price in 

the current billing period. An added benefit to this price measure is that, because 

it is not determined within the current billing period, simultaneity is no longer an 

issue. 

 Several studies have attempted to empirically assess which measure of 

price is more appropriate for demand estimation in the case of IBR structures. 

Billings and Day (1989) find that demand models using average price have 

strong explanatory power when consumersʼ incomes are high relative to the price 

of water, but that as water prices increase relative to incomes, marginal price 

becomes the more useful variable for estimating demand. More recent studies 

using sophisticated regression discontinuity techniques have provided evidence 

that consumers do in fact correspond to marginal price, or even to the marginal 

price they expect to face (Olmstead, Hanemann, and Stavins 2007; Nataraj and 

Hanemann 2011). Ray (2012) compares lagged average price to the Taylor-

Nordin marginal price specification and finds no clear empirical evidence for the 

superiority of either measure. 

 Despite the debate over the appropriate price specification for water 

demand estimation, the literature strongly supports the notion that urban water 

demand is price inelastic, regardless of the price specification. A meta-analysis of 

the residential water demand literature by Espey, Espey, and Shaw (1997) 

indicates that the average price elasticity estimate is -0.5. A more recent meta-

analysis by Worthington and Hoffman (2008) similarly finds that price elasticity 
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estimates from water demand studies tend to range from 0 to -0.5 in the short-

run, and from -0.5 to unity in the long-run. Consumersʼ lack of clear price 

information at the time of consumption and the low proportion of income 

represented by the cost of water consumption are frequently cited as the main 

reasons for such low price responsiveness (Klawitter 2014). 

 Other than price, the only other tools at utilitiesʼ disposal to influence water 

consumption patterns are demand management strategies. In recent years, 

several studies have been directed at assessing the effectiveness of various 

demand management strategies, such as water use restrictions, water quantity 

allocations, water-saving practices and technology, and public education 

campaigns, in encouraging water conservation (Renwick and Archibald 1998; 

Michelsen, McGuckin, and Stumpf 1999; Martinez-Espiñeira and Nauges 2004; 

Coleman 2009; Mansur and Olmstead 2012; Garcia-Valiñas, et al. 2014). Due to 

the low price elasticity of demand for water, these studies typically find non-price 

demand management strategies to be more effective at reducing water 

consumption than price-related strategies, though their associated costs can 

potentially outweigh the conservation benefits. Notably, Coleman (2009) focuses 

on the price elasticity of demand for water in summer, when much of residential 

water use tends to be discretionary, such as for landscaping. He finds summer 

water demand to be relatively elastic and concludes that price-related demand 

management is more effective than the cityʼs public information campaigns, 

particularly in the summer when reduced consumption is most desirable. 

 All other factors of water demand are outside of the control of water 

utilities. Non-price independent variables in water demand models can include 

demographic data about the consumer base, structural information about the 

characteristics of houses or properties, and weather and climate patterns. 

 Relevant demographic characteristics include household income, number 

of persons per household, household age distribution, household ethnic or 

cultural background, and levels of educational attainment among household 

members. 
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 Virtually all water demand studies include some sort of income variable, 

whether a direct estimate or some proxy such as assessed home value, due to 

the emphasis of economic theory on the notion of utility maximization subject to a 

budget constraint (Foster and Beattie 1979; Billings and Agthe 1980; Harlan, et 

al. 2009; Mansur and Olmstead 2012; Ray 2012). Klawitter (2014) uses a novel 

transformation of Census tract median household income estimates to more 

closely approximate this variable. He weights the median household income for 

each census tract in each year by a home value index to get a unique estimate of 

household income for each customer. His home value index is constructed as the 

ratio of each individual householdʼs assessed home value to the average 

assessed home value in the corresponding census tract. 

 Household size, age distribution, and educational attainment have also 

been found to influence household water consumption. Harlan, et al. (2009) 

create individual dummy variables for each number of persons per household in 

their self-reported household size data and find the expected positive and 

significant effect for each dummy. Ray (2012) uses Census estimates of 

household size and generally finds the expected positive effect, though it varies 

in sign and significance across municipalities in the Phoenix metro area. He finds 

similar positive relationships between the proportion of the population of non-

working age or with a Bachelorʼs degree in certain Phoenix suburbs. Most studies 

that include such variables do so in an attempt to control for cross-sectional user 

heterogeneity. 

 Cultural norms or other unobservables may distinguish the water 

consumption behaviors of certain cultural or ethnic groups as well. Several 

studies have found water use among Hispanic or Latino households to be 

different from that of other groups (Gaudin, Griffin, and Sickles 2001; Balling, 

Gober, and Jones 2008; Ray 2012). 

 In addition to demographic variables, heterogeneity in physical house or 

property characteristics can contribute to differences in water consumption 

between households. The size of a house as well as whether the house has an 
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evaporative cooling system have been found to be positively related with water 

consumption (Balling, Gober and Jones 2008; Coleman 2009; Harlan, et al. 

2009; Ray 2012; Wang 2014; Klawitter 2014; Yoo, et al 2014; Halper, et al. 

2015). Measures of the age of a house based on its construction year have been 

used to explain household water use as well (Harlan, et al. 2009; Ray 2012; 

Halper, et al. 2015). However, expectations as well as findings about its sign are 

unclear. Harlan, et al. (2009) hypothesize a negative relationship, while Ray 

(2012) includes a squared term to account for a possible parabolic relationship. 

Unlike Harlan, et al. (2009), Ray (2012) does find significance with his parabolic 

relationship; however, the signs alternate depending on the municipality within 

the Phoenix metro area that he examines. 

 Since much residential water consumption is aimed at maintaining outdoor 

landscapes, variables such as lot size and the presence or size of a pool have 

been included in models of water demand (Wentz and Gober 2007; Balling, 

Gober, and Jones 2008; Harlan, et al. 2009; Halper, et al. 2015). More recently, 

remotely-sensed (satellite or aerial) imagery has been used been used to explain 

outdoor irrigation behavior by approximating parcel greenness via vegetation 

indices such as the normalized difference vegetation index (NDVI) and the soil-

adjusted vegetation index (SAVI) (Harlan, et al. 2009; Halper, et al. 2015). Both 

NDVI and SAVI have been shown to have  a positive, significant, and substantial 

influence on household water consumption. It is expected that the use of 

remotely-sensed data will continue to increase in the literature and could 

represent a valuable new source of information for water managers. 

 Particularly in terms of water consumption for outdoor use, it is important 

to consider the effects of weather and climate patterns in models of water 

demand. The literature consistently supports the notion that water consumption 

increases as the environment becomes hotter and drier (Agthe and Billings 1980; 

Balling, Gober, and Jones 2008; Coleman 2009; Harlan, et al. 2009; Ray 2012; 

Klawitter 2014; Yoo, et al. 2014). However, the variables used to capture these 

weather phenomena are not uniform across studies. 
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 Mean maximum daily temperature has been used to compare trends in 

weather at the hottest part of the day across months (Harlan, et al. 2009; 

Klawitter 2014), and has been found to have the expected positive and significant 

relationship with water use. Mean monthly temperature (Balling, Gober, and 

Jones 2008; Yoo, et al. 2014) and minimum monthly temperature (Klaiber, et al. 

2014) have also been used, but only Yoo, et al. econometrically demonstrate a 

significant and positive relationship with water consumption, as expected. 

 Evapotranspiration (ET) has also been used as a comprehensive measure 

of weather conditions in urban water demand studies, since it includes 

information regarding temperature, solar radiation, vapor pressure, and wind 

speed. ET approximates the evaporative demand of the landscape for a 

particular reference crop, typically cool-season grass or alfalfa (Brown 2005). 

(See Appendix 7 for a more complete description of the ET calculation.) Agthe 

and Billings (1980) find a positive relationship between water consumption and 

evapotranspiration for Bermuda grass minus rainfall in Tucson, AZ. Likewise, 

Coleman (2009) found ET measured by the Blaney-Criddle method to have the 

expected positive and significant relationship with water consumption in Salt Lake 

City. In a novel application, Ray (2012) and Wang (2014) interacted potential ET 

with yard size and pool size in the Phoenix area and found a statistically 

significant and positive relationship with water consumption. 

 Precipitation has been shown to have a negative relationship with water 

use (Balling, Gober, and Jones 2008; Harlan, et al. 2009; Klaiber, et al. 2014). 

Harlan, et al. 2009 demonstrate a nonlinear relationship using a squared term. In 

addition to total monthly precipitation, mean monthly precipitation (Coleman 

2009; Yoo, et al. 2014) and mean daily precipitation (Klawitter 2014) have been 

used, and the negative relationship has been confirmed. The impact of rainfall 

events, rather than levels of rainfall, on water consumption has also been 

examined (Maidment, Miaou, and Crawford 1985; Miaou 1990; Ray 2012; 

Klaiber, et al. 2014; Wang 2014). Some studies have even attempted to account 

for seasonal variation in response to precipitation (Billings and Day 1989; 



	   27 

Maidment, Miaou, and Crawford 1985; Miaou 1990; Klawitter 2014). This proves 

especially useful in the Southwest, where summer monsoonal rainfall tends to be 

more scattered, brief, and intense than winter rainfall. 

 The effects of broader climate trends on water consumption behaviors 

have also been explored (Balling and Gober 2007; Balling, Gober and Jones 

2008; Balling and Cubaque 2009). Higher water consumption has been linked to 

drought as well as increases in urban heat island effects. 

 

2.2 Model Choice 
 

 The choice of statistical model to use in an analysis of water demand 

depends on the level of data aggregation, the temporal scale of the analysis, and 

the hypotheses to be tested. 

 Many water demand studies have been conducted at both the aggregate, 

municipal level and the user (often household) level. Interestingly, despite the 

increased precision of studies using disaggregated data, Worthington and 

Hoffmanʼs (2008) meta-analysis of water demand studies finds little difference 

between price elasticity estimates from studies using either aggregated or 

disaggregated data. Nonetheless, data disaggregated to the user level is typically 

preferred since it can be used to account for user heterogeneity in models. 

Advancements in statistical software in recent years have facilitated the 

proliferation of water demand studies using disaggregated data. Aggregated data 

is typically analyzed using time-series models, but can be used in panel models 

to compare water consumption behaviors across multiple municipalities. 

Disaggregated data, on the other hand, can be used in cross-sectional models or 

panel models depending on the time frame of data collection. 

 Time series models are useful in that they can explain variation in water 

consumption over time and can be used to forecast such behavior. However, as 

mentioned above, they are limited in their ability to capture user heterogeneity. 

Cross-sectional models, on the other hand, can explain well how user attributes 
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influence their water consumption, but cannot predict how this behavior will 

change over time. Panel models can both account for user heterogeneity and 

forecast trends in user water consumption. As such, panel models are typically 

favored by water managers and policymakers. However, they have much higher 

data requirements than either time-series or cross-sectional models and require 

more sophisticated statistical techniques to run. 

 The econometric models typically used to estimate demand from time-

series data include ordinary least-squares (OLS) and feasible generalized least-

squares (FGLS) regression (Young 1973; Agthe and Billings 1980; Martinez-

Espiñeira and Nauges 2004). These techniques have been used to forecast 

water consumption behavior in the short-run, examine the impact of changes in 

weather and demographics on water consumption, and compare the 

effectiveness of price and non-price demand management strategies. 

 When cross-sectional data are involved, OLS is still one of the most 

common regression frameworks used (Foster and Beattie 1981; Schefter and 

David 1985; Nieswiadomy 1992). These cross-sectional models have been used 

to test whether consumers respond to average or the marginal price as specified 

by Taylor (1975) and Nordin (1976), as well as to compare price elasticities 

across user classes in various municipalities. Also, since cross-sectional data are 

often spatial in nature, geocoded data have been used within spatially-explicit 

OLS or geographically-weighted regression (GWR) models to identify clusters of 

high and low water consumption while correcting for spatial autocorrelation 

(Wentz and Gober 2007; Balling, Gober, and Jones 2008). Recently, Hewitt and 

Hanemann (1995) and Olmstead, Hanemann, and Stavins (2007) have used 

cross-sectional data within the discrete-continuous choice (DCC) maximum-

likelihood (ML) framework to account for the piecewise-linear budget constraint 

created by the non-constant marginal price water consumers face under IBR 

structures. Despite the fact that the DCC model offers the most theoretically 

sound approach to approximating the marginal price faced by consumers under 

IBRs, it has not produced price elasticity estimates that are significantly different 
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from those of prior studies using simpler techniques, such as multiple stage-least 

squares (2SLS or 3SLS) or instrumental variables (IV). 

 Panel regression techniques have also been used more and more 

frequently in the literature, as the use of disaggregated data has become more 

common. Many of the econometric techniques described above, such as OLS 

FGLS, 2SLS, and IV models, have been adapted to the panel context. Two types 

of panel regression techniques have been effectively coupled with such models 

to account for the effects of time-invariant data: fixed effects (FE) panel models 

and random effects (RE) panel models. FE panel models average out time-

invariant unobserved effects. In the water demand literature, FE techniques have 

been combined with IV models (FE-IV) to account for simultaneity of price 

(Arbués, Barberán, and Villanúa 2004; Kenney, et al. 2008; Coleman 2009). RE 

techniques allow parameters to be estimated for time-invariant effects. RE 

techniques have also been implemented in the context of IV models (RE-IV), as 

well as in GLS estimation (RE-GLS) of Tobit demand models and Generalized 

Cobb-Douglas and Stone-Geary demand functions (Gaudin 2001; Coleman 

2009; Mansur and Olmstead 2012). 

 Ultimately, the choice of model for a water demand study depends on the 

research question being asked. For testing different types of hypotheses, the 

literature highlights two types of model structure: structural form models and 

reduced form models. Structural form models are based on deductive theories of 

the economy and are typically selected to address research questions regarding 

price response and user consumption decision behavior. (It should be noted that 

much of the variation in the type of model used in water demand studies comes 

from different structural approaches to addressing the problem of the simultaneity 

of price and quantity under IBR structures and not from issues of data 

aggregation or temporal scope. This simultaneity problem renders OLS 

estimation less than ideal in most water demand studies.) Examples of structural 

form models include those using a Taylor-Nordin marginal price specification 

(Agthe and Billings 1980; Foster and Beattie 1981; Coleman 2009; Martinez-
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Espiñeira and Nauges 2004; Dharmaratna and Harris 2012), DCC models 

(Hewitt and Hanemann 1995; Olmstead, Hanemann, and Stavins 2007), 

regression discontinuity (RD) models (Nataraj and Hanemann 2011), and models 

specified by Stone-Geary and Generalized Cobb-Douglas demand functions (Al-

Qunaibet and Johnston 1985; Gaudin, Griffin, and Sickles 2001; Martinez-

Espiñeira and Nauges 2004; Monteiro and Roseta-Palma 2011; Dharmaratna 

and Harris 2012; Garcia-Valiñas, et al. 2014). On the other hand, research 

questions regarding the effects of exogenous shocks on water consumption 

behavior, such as weather and climate or demographics, are generally 

addressed via reduced form models (Wentz and Gober 2007; Balling, Gober, and 

Jones 2008; Ray 2012). 

 

2.3 Discriminating Between Types of Water Consumption 
 

 Within the body of literature surrounding municipal water demand, a select 

group of studies has focused on discriminating between different types of 

residential water use. Essentially, these studies have attempted to examine how 

price elasticity of demand for water varies with quantity consumed. Despite 

consensus in the literature that demand for water is, on the whole, inelastic to 

price, researchers and water managers alike have noted that water demand is 

highly seasonal. Thus, there is a portion of total water consumption that is 

considerably more price responsive. Since residential water demand generally 

peaks in the summer months when temperatures are higher and rainfall is 

scarcer, many have correlated the seasonal component of water consumption 

with additional irrigation water used to maintain outdoor landscaping. However, 

because water providers measure only total water consumption, distinguishing 

between “base” and “seasonal” or “indoor” and “outdoor” water use is inherently 

challenging. Yet for water managers interested in reducing water consumption or 

promoting water conservation, such information could be very valuable. 
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 Several water demand studies model indoor and outdoor or base and 

seasonal water use in a reduced form manner as separate functions of unique 

exogenous variables (Howe and Linaweaver 1967; Maidment, Miaou, and 

Crawford 1985; Miaou 1990; Mansur and Olmstead 2012). Mansur and Olmstead 

(2012) exploit data from flow sensors installed in sample householdsʼ meters that 

distinguish “flow signatures” of various household appliances and fixtures. In this 

way, they are able to distinguish between indoor and outdoor uses of water. They 

then model indoor and outdoor water demand separately, constructing outdoor 

demand as a Tobit model censored from below at zero to account for periods of 

no outdoor use. In most water demand studies, however, indoor and outdoor 

water use cannot be measured directly. In such cases, indoor or base use is 

typically assumed to be equal to some measure of average use in the winter 

months (December-February), since these months often see the lowest water 

consumption. Then, only outdoor use is modeled as a function of weather 

variables (Howe and Linaweaver 1967; Maidment, Miaou, and Crawford 1985; 

Miaou 1990). 

 Other studies have taken a more structural approach, using the Stone-

Geary functional form to identify the portion of total water consumption that is not 

responsive to price (Al-Qunaibet and Johnston 1985; Gaudin, Griffin, and Sickles 

2001; Martinez-Espiñeira and Nauges 2004; Monteiro and Roseta-Palma 2011; 

Dharmaratna and Harris 2012; Garcia-Valiñas, et al. 2014). Al-Qunaibet and 

Johnston (1985) conduct one of the earliest studies of water demand using the 

Stone-Geary demand specification. Per the structure of the Stone-Geary demand 

function, the model includes as parameters 1) an intercept, which represents the 

subsistence level of water consumption, 2) a coefficient for the ratio of income to 

the price of water, which indicates the share of total income spent on water and 

3) a coefficient for the ratio of the “cost of living” to the price of water, which 

indicates the relative consumption levels of water and all other essential goods. 

The authors also add to their structural model a term to control for the effects of 

relative humidity on water consumption. Using national data from Kuwait, Al-
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Qunaibet and Johnston (1985) compare the Stone-Geary model to 5 other 

demand specifications used in the literature and find that, unlike most other 

demand specifications, the Stone-Geary function predicts subsistence levels of 

consumption high enough to actually sustain life. 

 Subsequent water demand studies using the Stone-Geary demand 

specification have abstracted away from subsistence levels of water consumption 

and expenditures on all other goods essential to life (Gaudin, Griffin, and Sickles 

2001; Martinez-Espiñeira and Nauges 2004; Monteiro and Roseta-Palma 2011; 

Dharmaratna and Harris 2012; Garcia-Valiñas, et al. 2014). Following the 

example of Gaudin, Griffin, and Sickles (2001), later studies consider only the 

share of supernumerary income – income in excess of necessary living expenses 

– spent on water and the level of water consumption below which short-run water 

use is not responsive to price: the “conditional water use threshold.” Thus, 

instead of having three necessary parameters, as in Al-Qunaibet and Johnston 

(1985), these modified Stone-Geary water demand models require only two. 

Moreover, the conditional water use threshold can be seen as a proxy for indoor 

or base use. While some studies have held this parameter fixed (Dharmaratna 

and Harris 2012), most have allowed it to vary over time by modeling it as a 

function of control variables (Gaudin, Griffin, and Sickles 2001; Martinez-

Espiñeira and Nauges 2004; Garcia-Valiñas, et al. 2014). 

 Martinez-Espiñeira and Nauges (2004) and Dharmaratna and Harris 

(2012) note that modification of the Stone-Geary function for water demand as 

implemented by Gaudin, Griffin, and Sickles (2001) restricts price and income 

elasticities to be of the same magnitude and opposite sign. This implies that price 

and income affect consumption through their relative levels only. Martinez-

Espiñeira and Nauges (2004) argue that this restriction should not be too strong 

due to similar results found in the water demand literature with demand 

specifications other than the Stone-Geary. Nonetheless, studies that have 

compared this modified Stone-Geary functional form to other demand models 

have generally found that the Stone-Geary model predicts a smaller absolute 
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value of price elasticity, or in other words, more inelastic demand (Gaudin, Griffin, 

and Sickles 2001; Monteiro and Roseta-Palma 2011). 

 

 This review of the literature on water demand estimation was used to 

inform the selection of variables and model specification for our analysis of 

residential water use in Tucson, AZ. The final model specifications will be 

discussed in subsequent chapters. 
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3. Theoretical Model 
 
 

 This chapter discusses the economic theory pertaining to consumption 

behavior that underpins the econometric analysis of this thesis. It provides the 

conceptual context to estimate demand for water based on the decision-making 

process of consumers facing an increasing block rate (IBR) structure. The 

theoretical model described here provides the basic functional form for our 

empirical model specification discussed in Chapter 5. 

 
Figure 2: Traditional Utility Maximization and Demand Derivation 
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 In a conceptual sense, consumer decision-making with regard to 

municipally-supplied water is generally similar to that of other normal goods. 

Consumers attempt to maximize their utility by consuming combinations of water 

and all other goods (represented collectively by z) subject to a budget (or 

income) constraint, as shown in Figure 2. However, pricing water according to an 

IBR structure, such as the one maintained by Tucson Water, presents challenges 

for demand estimation. The first is that IBRs cause the budget constraint faced 

by consumers of municipally-supplied water to be piecewise-linear, as opposed 

to the linear form presupposed by most demand specifications commonly used in 

empirical work (Taylor 1975). However, Klawitter (2014) has shown that 

piecewise-linear budget constraints derived from IBRs nonetheless satisfy the 

convexity requirement for utility maximization (see Figure 3a). The more 

significant challenge presented by IBR structures is the issue of simultaneity. The 

whole premise of demand estimation is to explain quantity consumed of a 

particular good as a function of exogenous factors – in particular the goodʼs own 

price. Yet, because an IBR by definition allows a utility to charge higher per-unit 

prices as consumption of water increases, customers facing IBRs select the 

marginal price of water they face and the quantity of water they consume 

simultaneously. In other words, marginal price is no longer exogenous to quantity 

consumed. The simultaneous determination of marginal price and quantity under 

IBR structures is shown in Figure 3b. 
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Figure 3: Utility Maximization and Demand Derivation under IBR 

 
 To account for these two issues related to the non-constant marginal 

prices imposed by IBRs, the utility-maximization process for water consumption 

has been conceptualized as a two-step process, wherein the consumer first 

selects a block in which to consume and then selects a level of consumption 

within that block. This process has been modeled using discrete-continuous 

choice (DCC) models (Hewitt and Hanemann 1995; Olmstead, Hanemann, and 

Stavins 2007). For the sake of brevity and focus, a detailed description of the 

consumption decision-making process and demand derivation in a DCC 

framework is avoided here. For a thorough review of these issues, see Klawitter 

(2014). Though the DCC approach addresses the issue of non-constant marginal 
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prices under IBR structures in the manner most consistent with the traditional 

economic theory of utility maximization, the DCC model has limited empirical 

application. Its complex structure restricts its analytical capacity to small, cross-

sectional datasets. Additionally, critics have questioned whether the assumptions 

of traditional economic theory regarding perfect information and response to 

marginal price are valid in the case of water demand under IBR structures 

(Foster and Beattie 1981). 

 As mentioned in the previous chapter, critics of water demand models 

using marginal price specifications, such as the DCC model, have typically 

favored average price demand specifications for practical reasons. Under IBR 

structures, consumers have to know how much water they are consuming before 

they can know the price they face. Yet since most utilities install water meters 

outside dwellings and under a metal plate, most customers never know how 

much water they are consuming until they receive their bill (Klawitter 2014). On 

top of that, many utilities, including Tucson Water, still use human meter readers 

for most of their customer base, which means that billing cycle length and start 

and end dates vary from billing cycle to billing cycle. This makes it almost 

impossible for consumers to know how much water they are using during their 

current billing cycle, even if they make an effort to do so. And since water costs 

typically do not constitute a significant portion of household income, most 

consumers do not bother to seek any information about their water consumption 

not provided in their water bill. Thus, it is expected that consumers will respond to 

the more tractable average price per unit of water consumed. 

 For the demand model in this analysis, we select an average price 

specification. This practical simplification eliminates the problem of accounting for 

the piecewise linear budget constraint IBR structures create. However, average 

price specifications do not address the issue of simultaneity per se. In studies 

that have not utilized a DCC model to separate the utility maximization decision 

process into two steps, the issue of simultaneity has been addressed using a 

myriad of empirical methods, such as two- or three-stage least-squares (2SLS or 
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3SLS) and instrumental variables (IV) estimation. An alternative to these 

empirical methods is to consider average price from a consumerʼs previous bill, 

also called the lagged average price (Charney and Woodard 1984). Since 

consumers do not receive their water bills until after they have already chosen 

how much to consume, most consumers likely refer to the average price they 

faced from their last bill in order to determine how much to consume in the 

current billing cycle. While there may be substantial autocorrelation between 

lagged average price and current period consumption, the problem of 

simultaneous price and quantity determination is avoided. For this analysis, we 

utilize a lagged average price to account for simultaneity since this approach 

appears to best mirror the actual decision-making process of water consumers. 

 Addressing the issue of price specification under IBR structures 

establishes the budget constraint portion of our consumption model. However, to 

estimate a demand function for municipally-supplied water, we must also specify 

a utility function that reflects the decision-making process involved in the 

consumption of water. Utility functions reflect consumersʼ preferences, which are 

slightly more complicated in the case of water than many other normal goods. 

Because water is necessary for life and because municipally-supplied water has 

few effective substitutes, there is a certain portion of water consumption that 

consumers will not be willing to forgo, even if the price of water skyrockets or the 

prices of all other goods fall dramatically. This portion of water consumption can 

be said to be perfectly inelastic to price (see Figure 4). Most scholars that have 

attempted to address this issue have referred to this portion of water use as 

“base” or “indoor” use, while “seasonal” or “outdoor” use is seen as much more 

responsive to price. To estimate demand in our analysis, we select a utility 

function that accommodates this peculiarity of water consumption: the Stone-

Geary model. As discussed in the previous chapter, several econometric studies 

of water demand have utilized the Stone-Geary model because of its ability to 

incorporate the perfectly inelastic portion of municipal water consumption. (Al-

Qunaibet and Johnston 1985; Gaudin, Griffin, and Sickles 2001; Martinez-
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Espiñeira and Nauges 2004; Monteiro and Roseta-Palma 2011; Dharmaratna 

and Harris 2012; Garcia-Valiñas, et al. 2014). The remainder of this discussion 

will focus on demand estimation within the Stone-Geary framework for water 

demand, as adapted from Gaudin, Griffin, and Sickles (2001). 

 According to Gaudin, Griffin, and Sickles (2001), the Stone-Geary utility 

function assumes additive utilities, but does not require homotheticity. It is a 

generalization of the simple Cobb-Douglas model, taking the following form: 

lnU = !i ln(qi !" i )
i=1

n

" , 

Where !i =1
i=1

n

! , and: 

   U : Utility 

qi : Quantity of good i 

   ! i : Subsistence level of consumption of good i 

   !i : Marginal budget share allocated to good i 

 

A compelling feature of this functional specification is its elegant simplicity. The 

model requires only two parameters: the marginal budget share devoted to each 
good (!i ), and the subsistence level of consumption of each good (! i ). 

Conveniently for this analysis, this subsistence level parameter (! i ) represents 

the level of consumption of each good that is necessary for survival and therefore 

unresponsive to price. This model suggests a consumption process in which a 

consumer first purchases a minimum level of each good, and then allocates his 

or her remaining income, called their “supernumerary income,” between each 

good in fixed proportions denoted by the marginal budget share associated with 

each good. These marginal budget shares are determined by consumersʼ 

preferences, while the purchase of subsistence levels of each good is needs-

based. 
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 Since this analysis is aimed solely at water consumption, we simplify to a 

two-good world; that is, we assume that consumers allocate their income 
between municipally-supplied water and some aggregate of all other goods ( z ). 

Maximization of such a utility function subject to a budget constraint yields the 

following ordinary demand function: 

Qw = !w +"
I !Pw!w !! z

Pw
 

Where: 
Qw : Quantity of water consumed 

   Pw : Price of water 

   I : Income 
   !w : Subsistence level of water consumption 

   ! z : Expenditure on subsistence level of all other goods 

   ! : Marginal budget share allocated to water 

  

Based on this demand function, own-price elasticity of demand and income 

elasticity of demand can be calculated as: 

!w
p = !"

(I !# z )
PwQw

 

!w
I = "

I
PwQw

 

According to Gaudin, Griffin, and Sickles (2001), the Stone-Geary model only 

allows for inelastic demand, and can only be used to analyze normal goods. 

However, neither of these restrictions appears inappropriate in the case of water. 

Additionally, unlike its parent function, the Cobb-Douglas, the Stone-Geary model 

does not impose constant price elasticity of demand but instead allows price 

elasticity of demand to vary with price – a distinct advantage for modeling water 

demand. 

 There is one practical drawback to the Stone-Geary water demand model, 
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however. The fact that information is required about expenditures on the 

subsistence level of consumption of some aggregation of all goods other than 

water is theoretically plausible, but finding data to approximate this in empirical 

work is difficult. Al-Qunaibet and Johnston (1985) use a cost of living index for 

Kuwait to address this issue, but in most cases no acceptable metric exists. To 

overcome this limitation, Gaudin, Griffin, and Sickles (2001) abstract away from 

expenditures on all other goods by considering supernumerary income as income 
over and above total expenditures on all such goods. Since ! z  is not pertinent to 

this analysis, this abstraction is not only simpler, but also more focused. The 

simplified demand function is as follows: 

Q = ! +"
I *
P

 

   Where: 
    Q : Quantity of water consumed 

    P : Price of water 

    I *: Supernumerary income 
    ! : Conditional water use threshold 

    ! : Marginal budget share allocated to water 

 

Price and income elasticities are also simplified accordingly: 

!p = !"
I *
PQ

 

!I = "
I *
PQ

 

 This simplification has many advantages. First, Gaudin, Griffin, and 
Sickles (2001) rename !  as the “conditional water use threshold” to emphasize 

that the amount of water referred to here is not what is needed to survive, but 

rather the amount below which consumption is perfectly inelastic to price. This 
interpretation of !  is more appropriate in the case of municipally supplied water 

in developed countries such as the United States. Additionally, abstracting away 
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from the consumption of all other goods allows both !  and !  to be modeled as 

linear functions of exogenous control variables. 

 
Figure 4: Stone-Geary Demand Model 

 
 One limitation of this simplified Stone-Geary model is that price and 

income elasticities are equal in magnitude and opposite in sign (Martinez-

Espiñeira and Nauges 2004). Though Martinez-Espiñeira and Nauges (2004) 

argue that this restriction should not be too strong due to similar results found in 

the water demand literature with demand specifications other than the Stone-

Geary, it is worth noting the implication that price and income affect consumption 

through their relative levels only. In other words, we do not expect household 

water consumption to change in response to a price increase if their income rises 

proportionally to the change in prices. Only when prices increase such that a 

given household is forced to allocate more of its supernumerary income to water 

expenditures than before in order to consume the same amount of water as 

before do we expect to see total household water consumption decline. 
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 This simplified Stone-Geary demand model provides the functional form 

for our empirical estimation of water demand in Tucson, AZ, discussed in 

Chapter 5. 
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4. Description of Data 
 

4.1 Single Family Residential Water Consumption Data 
 

 Water consumption data for this analysis were provided by Tucson Water 

under a confidentiality agreement with the Department of Agricultural and 

Resource Economics at the University of Arizona. These data consist of single-

family residential (SFR) billing records for individually metered households over 

the 16 years from 1997 to 2012. Based on these data, we conduct a panel 

analysis of household water consumption over time as well as a time-series 

analysis of aggregated SFR water use. (Please note that, from this point forward, 

the terms “household”, “user”, “customer”, and “consumer” are all meant to refer 

to the individual entity billed by Tucson Water, regardless of the number of 

people who may live in a single SFR household. Additionally, water 

“consumption”, water “use”, and water “usage” are all used interchangeably.) 

 Due to our interest in changes in consumption behaviors over time, we 

attempt to preserve as long of a time-series as possible for the final analyses. 

For our household analysis, data availability forced us to limit our study to the 10-

year period from July 2001 to June 2011. For our aggregate analysis, which 

involves fewer control variables, we are able to examine the 13-year period 

spanning July 1998 to June 2011. In both cases, we limit our analyses to 

consecutive fiscal years because Tucson Water adjusts its rate structure at the 

beginning of the fiscal year (July). 

  Because Tucson Water uses human meter readers that must visit each 

meter every billing cycle, billing cycle lengths as well as start and end dates are 

asynchronous – that is, they vary across households. Tucson Water does not 

account for discrepancies in billing cycle length when billing customers; 

customers who have longer billing cycles may face higher marginal prices if their 

additional consumption in extra days causes them to move into a higher tier in 

Tucson Waterʼs increasing block rate structure. For this reason, in our household 
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analysis, an effort is made to measure all variables over the exact length of each 

householdʼs billing cycle whenever possible. On the other hand, in our aggregate 

analysis, potable water deliveries across customers in the SFR rate class are 

aggregated into monthly totals based on the “period-ending month” of each billing 

cycle. The period-ending month is the month to which Tucson Water assigns 

each householdʼs billing cycle to ensure that only one bill is recorded per month. 

For our aggregate analysis, all independent variables are matched to 

consumption data by period-ending month. Since billing cycles have 

asynchronous lengths and dates, it is important to note that aggregate monthly 

totals do not reflect the exact billing cycle lengths or dates of the individual 

households whose consumption is being aggregated. 

 In order to match household water consumption data from Tucson Water 

to data from other sources, Tucson Water provided a database linking their 

internal customer identifier codes with unique parcel identifiers in the Pima 

County Geographic Information System (Pima GIS) database. These parcel 

identifiers are used by the Pima County Assessorʼs office to record housing 

characteristics, which we make use of in our analysis. Via a geodatabase 

developed by the Advanced Resource Technologies (ART) GIS Lab at the 

University of Arizona, these parcel identifiers were also associated with the zip 

codes and census geographies that correspond to the location of each parcel. 

 The initial Tucson Water dataset contained water consumption data for 

284,993 SFR customers that could be matched to 259,646 unique Pima GIS 

parcel identifiers (25,347 parcels had more than one metered SFR connection). 

Before conducting our analysis, we eliminate households with insufficient or 

nonsensical data, reducing the number of SFR customers to 127,644 and the 

number of unique parcels to 127,291. The process of and rationale for eliminating 

households from our dataset is described in detail in Appendix 1. Figure 5 shows 

the geographical distribution of the 127,291 parcels in our final dataset by zip 

code. In our aggregate analysis, we use consumption records of this subset of 

SFR households to generate our aggregate monthly usage and average price 
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estimates. However, in our household analysis, the computational burden of 

estimating panel regression models on a dataset of such considerable cross-

sectional and temporal breadth prompts us to take a representative sample of 

manageable size. To avoid biasing our results by altering the geographic 

distribution present in our dataset, we draw a random sample of 2,000 

households without replacement from the final set of 127,644 metered SFR 

connections with complete data, stratifying by zip code in a manner that 

preserves the proportion of households in each of the 31 zip codes in our study 

area. These sample households are then linked back to their monthly usage 

records for analysis, producing a dataset with 246,049 records. If each household 

has a single usage record for each of the months in our study period, which is not 

the case because of gaps in meter reads and new construction, the final number 

should be 264,000. However, even within this dataset, a few issues remain 

regarding period-ending months with multiple bills. For a description of how these 

data are cleaned, see Appendix 2. The final number of observations in our 

household dataset for the period July 2001 to June 2012 is 240,224, and after 

removing July 2011 to June 2012 this number drops to 216,456 observations of 

1,994 households. 
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Figure 5: Distribution of Studied SFR Households by Zip Code 

 

4.2 Rate Structure Data 
 

 Along with the SFR billing records, Tucson Water also provided 

information about its pricing structure over the entire period from 1997 to 2012. 

Tucson Water uses a four-tiered increasing block rate (IBR) structure to 

determine the volumetric component of its charges for potable water deliveries. 

The tier breakpoints over the period of our analyses remained constant at 15 

hundred cubic feet (CCF), 30 CCF, and 45 CCF (1 CCF = 748 gal). Over the 
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period from July 1998 to June 2011, the price levels of the 3 highest tiers were 

adjusted 10 times, and the price of the lowest tier was adjusted 9 times. The 

price levels (in real Dec. 2011 dollars) of each of the four tiers (blocks) over the 

study period are shown in Figure 6 below. 
 

Figure 6: Tucson Water's Increasing Block Rate Structure 

 

a) Increasing Block Rate Schedule (July 1998 – June 2011) 
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b) Increasing Block Rate Prices by Block (July 1998 – June 2011) 

 
 

 While Tucson Waterʼs per-unit or volumetric charges for potable water 

deliveries are determined by their IBR structure, Tucson Water also bills 

customers for four other types of water-related charges. The first is the meter 

surcharge, which is determined by the size of each customerʼs meter. SFR 

customers have meters of 5 distinct sizes, measured in inches: 5/8, 3/4, 1, 3/2, 

and 2. Meter surcharges for the each of the meter sizes (except 3/4 inches) were 

raised 5 times between July 1998 and June 2011. (The 3/4-inch meter size was 

not available to Tucson Water SFR customers until July 2011.) In July 2010, 

Tucson Water also implemented a groundwater protection fee associated with 

meter size. 

 The other two water-related charges in a Tucson Water bill are per-unit 

surcharges. The first is the CAP charge, which is intended to offset the costs to 

Tucson Water of purchasing water from the Central Arizona Project (CAP). This 

charge increased 3 times over the study period. The second is the conservation 
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surcharge, which was implemented in July 2008 to encourage customers to 

consume less water. This charge increased twice over the study period. 

 In addition to water-related charges, Tucson Water bills contain Pima 

County sewer fees and, since August 2004, have contained City of Tucson waste 

disposal (garbage) fees. Sewer fees are charged to all Tucson Water customers 

who live within the city limits. Two sewer charges exist: a flat service charge for 

all users within the city limits and a commodity charge based on average water 

use in the most recent winter quarter (December-February). The commodity 

charge was increased 16 times over the study period, while the flat service 

charge was instituted in January 2000 and subsequently raised 11 times over the 

study period. The garbage charge also applies to all customers who live within 

the Tucson city limits; it is a flat fee that has been raised once since 2004. 

 In both the aggregate and household analyses, these various charges are 

incorporated into a single price variable for econometric modeling. The 

specification of this price variable will be discussed in Chapter 5. These prices 

are inflated to December 2011 real dollars using the seasonally-adjusted, U.S. 

city average monthly consumer price index (CPI) for sewer, water, and trash 

services obtained from the U.S. Bureau of Labor Statistics (BLS) to facilitate 

comparison of monetary amounts over time. 

 

4.3 Income Data 
 

 Economic theory emphasizes the importance of income and budget 

constraints in influencing utility-maximizing consumption decisions. For both of 

our analyses, we attempt to collect estimates of income that most closely 

correspond to our temporal and spatial units of analysis. 
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4.3.1 Household-Level Income Data 
 

 Approximating individual household incomes is not as straightforward as it 

might sound. Past studies have often used either assessed home value or 

Census Bureau income estimates at the census block or census tract level, since 

these data are typically available. They make reasonable proxies, but neither is 

ideal. Assessed home values fluctuate with the market and probably better 

approximate a householdʼs wealth than their monthly income. Census income 

estimates, on the other hand, probably better approximate actual income, but 

only vary decennially and do not account for income heterogeneity within census 

tracts or blocks. 

 Klawitter (2014), who used the same Tucson Water household billing data 

as in this analysis, attempts to circumvent these drawbacks by combining the two 

measures of income. He first interpolates annual census tract median household 

income estimates over his study period 2007-2011. To do so, he uses 2011 

median household income estimates at the census tract level from the 2011 5-

year American Community Survey (ACS) and applies the Census Bureauʼs 

estimate of the real median income growth rate for the state of Arizona over that 

period. In this way, he is able to utilize the best measure of income at the census 

tract level. Then, in order to capture the heterogeneity in income within each 

census block, he weights the median household income by a home value index 

calculated for each household using data from the Pima County Assessorʼs 

office. The home value index is calculated simply as the ratio of an individual 

homeʼs actual assessed value to the average assessed value of all homes within 

the same census tract in a given year. In this way, the census tract income 

estimates are scaled to the household level. 

 For our household-level analysis, we likewise collect data on annual 

assessed home values from the Pima County Assessorʼs office for the years 

2002-2012. However, instead of using Census tract median household income 

estimates, we procure annual Internal Revenue Service (IRS) tax return data on 
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adjusted gross income (AGI) by zip code for the years 1998, 2001, and 2004-

2012. While census tract income estimates are more spatially specific than IRS 

zip code data, they are not available annually as IRS income estimates are (with 

the exception of the years 1999-2000 and 2002-2003). Using the seasonally-

adjusted, U.S. city average monthly CPI for water, sewer, and trash services, 

assessed home values and IRS AGI estimates are inflated to December 2011 

real dollars. 

 We use Klawitterʼs (2014) method of approximating annual household 

income, substituting IRS AGI estimates for Census tract median household 

income estimates. To do so, we first interpolate linearly the missing IRS average 

AGI estimates for the years 2002-2003 for each zip code in our dataset. Then, 

we calculate a home value index for each household by dividing each 

householdʼs annual assessed home value by the average annual assessed home 

value in its corresponding zip code. The home value index calculation is shown 

below: 

HomeValueIndexi,y =
ActualAssessedValuei,y
AvgAssessedValuez,y

 

Where: 
i : 1,…, n 

y : Year 

z : Zip code 

 

 We then weight the average monthly income estimates for each zip code 

by a unique home value index for each household to capture income 

heterogeneity within zip codes, as shown below: 
RealHouseholdInci,y = RealAvgAGIz,y !HomeValueIndexi,y  

Finally, we divide the annual real income estimates by 12 in order to 

approximate available household income in each period-ending month. It is 

important to note that these downscaled monthly estimates still do not 

correspond exactly to each householdʼs relevant billing cycle, but since data even 
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at a monthly time-step are not available, they represent the closest available 

proxy. 

 

	   4.3.2 Aggregate Income Data 
 

 In our analysis of aggregate SFR water consumption, we collect annual 

income estimates for the years 1998-2012 from the Bureau of Economic Analysis 

for the Tucson Metropolitan Statistical Area (MSA), since the MSA corresponds 

closely to the Tucson Water service area. However, since our analysis is 

conducted at a monthly time-step, we downscale these annual estimates to 

correspond to the period-ending months of our consumption data. This is 

accomplished by assuming a constant growth rate of income between annual 

estimates. Each observation of monthly income is calculated as the previous 

monthʼs income plus the difference in current and prior yearsʼ annual income 

estimates weighted by the annual growth rate. This calculation is shown below: 

 

Incm = Incm!1 + (BEAIncy+1 !BEAIncy )"
(BEAIncy+1 !BEAIncy )

12
 

Where: 
y : Year 

m : Month 

 

 All income and per capita income estimates for the aggregate analysis are 

inflated to December 2011 real dollars using the seasonally-adjusted, U.S. city 

average monthly CPI for sewer, water, and trash services. The monthly trend of 

per capita income is shown below in Figure 7. With the exception of the 2008 

recession, per capita income increased over the study period. 
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Figure 7: Per Capita Income over the Study Period 

 

 
 

4.4 Demographic Data 
 

 Another set of factors expected to influence SFR water consumption in 

Tucson is the number and type of people living in households in the Tucson 

Water service area. Both annual and seasonal variation in demographic 

characteristics of the studied households can significantly affect the amount of 

water demanded. 

  

4.4.1 Household Demographic Data 
 

 All demographic data for the household analysis described below are 

obtained from the U.S. Census Bureau at the tract level. Since tracts tend to 

correspond roughly to neighborhoods, they do not represent household-specific 

characteristics precisely. Nonetheless, they represent the best available proxy 

and can still be considered reliable in most cases since neighborhoods tend to be 

relatively homogeneous in terms of their demographic composition. 
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 As previously mentioned, even though Tucson Water only bills individual 

meters, the number of people living in a SFR household varies across the 

Tucson area. Naturally, larger households will consume more water, ceteris 

paribus. We use Census estimates of average household size by Census tract to 

attempt to capture some of this heterogeneity. Such estimates were available 

from the 2000 and 2010 decennial Census. Since average household size is not 

expected to vary significantly within census tracts from year to year, values for 

intermediate years (2001-2009) are interpolated linearly, whereas values for 

2011 and 2012 are assumed to be equivalent to 2010. Average household size is 

assumed to be constant throughout each year. 

 Not only do we expect the number of people in a household to affect 

household water use, but we also anticipate that the type of people in each 

household will affect consumption behavior. Previous studies have shown that 

differing age distributions, levels of education, and ethnic/cultural norms across 

households can lead to different water consumption behavior (Gaudin, et al. 

2001; Balling, Gober, and Jones 2008; Ray 2012). The age of household 

occupants is expected to influence water consumption in terms of the efficiency 

of water use. Working age adults are expected to use less water since they tend 

to be around the house less and have less time for bathing or swimming. On the 

other hand, households with young children may use more water to bathe with, or 

may require additional pool water to compensate for their childrenʼs splashing, 

households with teenagers may use more water for the “15 minute showers” their 

adolescents take, and retirees may use more water for leisure activities such as 

swimming or landscaping. For our analysis, household age distribution is 

approximated by the percentage of people in each Census tract in various age 

brackets, including under the age of 5, 5 to 9, 10 to 14, 15 to 19, under 18, and 

over 65. These data are obtained from the 2000 and 2010 decennial Census. 

 Differences in educational attainment across households are expected to 

influence water consumption in terms of differing views or levels of knowledge 

regarding water conservation as well as differing amounts of time spent at home. 
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The higher the education level, the lower the expected level of water 

consumption. To account for educational differences across households, we use 

estimates of the percentage of the over-25 population in each Census tract with a 

Bachelorʼs as well as the proportion with a graduate or professional degree. 

These data are available from the 2000 decennial Census, but not from the 2010 

decennial Census. Therefore, 5-year estimates from the 2010 American 

Community Survey (ACS) conducted by the U.S. Census Bureau are obtained 

instead. 

 Finally, because of the significant Hispanic population in Tucson, we use 

2000 and 2010 decennial Census estimates of the percentage of Hispanic or 

Latino residents (of any race) in each census tract to account for ethnic or 

cultural differences that could influence water consumption behavior. Previous 

studies have shown that the proportion of Hispanic or Latino residents in an area 

tends to be inversely related to water consumption (Gaudin, Griffin, and Sickles 

2001; Balling, Gober, and Jones 2008; Ray 2012). The rationale for such 

behavior may be that Hispanic residents who have emigrated from Mexico tend 

to consume bottled water for many potable uses rather than tap water, since the 

quality of municipal water in Mexico is often highly suspect. Ethnicity may thus 

represent a proxy for immigrant status. 

 Values for age, education, and percent Hispanic variables in years for 

which data are not available (2001-2009, 2011-2012) are assigned in the same 

manner as that used for household size estimates. It is also important to note 

that, as in the case of the household-level income data, these demographic 

variables are not measured over the exact billing cycle dates of each household. 

Instead, they are downscaled to the closest available proxy: the period-ending 

month of each billing cycle. 
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4.4.2 Aggregate Population Data 
 

 In terms of water consumption across the Tucson Water service area, the 

variation in total population living in the area will significantly influence the 

amount of water consumed. Tucson Water did provide data on the number of 

metered connections in the SFR rate class; however, the number of people living 

in a SFR household varies across the Tucson Water service area. To account for 

this variation, annual population estimates for the Tucson MSA are obtained from 

the Census Bureau. These estimates provide a reasonably clear picture of how 

the number of people in the Tucson Water service area is growing over time. 

However, such estimates do not capture seasonal variation in population. This 

variation can be substantial in Tucson, since the mild winter climate attracts a 

considerable number of snowbirds who live in Tucson for only a few winter 

months out of the year. The presence of the University of Arizona also creates 

seasonal population trends; college students tend to leave for breaks during the 

summer and on specific holidays. Annual census estimates are thus downscaled 

to the monthly level to correspond to the period-ending months of Tucson 

Waterʼs billing cycles in a manner designed to account for seasonal population 

trends. This process, which was adapted from Chandrasekharan and Colby 

(2013), is described below. 

 Since Census annual population estimates are calculated in July of each 

year, the value of each annual Census population estimate is assigned to July of 

each year. For every other month, the population value is interpolated. The 

difference between each annual estimate is calculated to determine the annual 

growth or decline in population. Then, for every year, the population in each 

month after July is calculated as the prior monthʼs population plus the amount of 

annual growth or decline attributable to that month. In other words, the annual 

population difference is weighted for each month and then added to the previous 

monthʼs estimate, as shown below: 
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Popm,y = Popm!1,y + (CensusPopy+1 !CensusPopy )"PopWeightm,y  

Where: 
y : Year 

m : Month 

 

 Appropriate weights for each month are determined using monthly 5-day 

average traffic count data for 6 major roadways throughout Tucson provided by 

the Pima County Department of Transportation (DOT). For each month of each 

year, the appropriate population weight is calculated by dividing the monthly 

average traffic count for all 6 roadways by the annual sum of the monthly 

average traffic counts for all 6 roadways, as shown below: 

AvgTrafficCountm,y =
(TrafficCountn )

n=1

6

!
m,y

6
 

PopWeightm,y =
AvgTrafficCountm,y

AvgTrafficCountm,y
m=1

12

!
 

Where: 
y : Year 

m : Month 

n : Region of Tucson represented by DOT traffic counters 

 

 24 percent of the traffic counter data for the years 1998-2012 are missing; 

these values are filled using averages. Traffic counts reflect the number of people 

actually present in an area at a time, rather than simply estimating how many live 

there. Nevertheless, traffic counts provide an indication of seasonal population 

ebbs and flows. 
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4.5 Weather Data 
 

	   4.5.1 Current Period Data  
 

Weather and climate patterns may also affect water consumption, 

particularly outdoor uses of water such as landscape irrigation. All weather data 

for the period 1998-2012 are collected at a daily time step. Data on potential 

evapotranspiration (ET) are obtained from the Arizona Meteorological Network 

(AZMET), and data on total precipitation are obtained from both AZMET and the 

Pima County Regional Flood Control District (RFCD). AZMET data are collected 

at a single weather station in central Tucson, whereas RFCD maintains a 

network of rainfall and streamflow gauges across Pima County. For reference, 

AZMET records of total precipitation, number of rainy days, total ET, and mean 

temperature are tabulated by month and year in Appendix 3. Since variation in 

ET across a municipal area tends to be very little, we deem AZMET data for 

potential ET to be appropriate for both the aggregate and household analyses. 

AZMET precipitation data are also used in the aggregate analysis. However, 

because precipitation in Tucson tends to be highly localized, particularly during 

the summer monsoon, AZMET precipitation data will not accurately reflect rainfall 

conditions at all households in our study area. Instead, 11 RFCD precipitation 

gauges spatially distributed across the Tucson metropolitan area are selected for 

use in the household analysis. Households are matched to the nearest gauge 

using a geodatabase developed by the University of Arizonaʼs ART GIS Lab. 

Figure 8 shows the distribution of the studied SFR households in relation to each 

rain gauge, as well as the areas of the city assigned to each rain gauge. 
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Figure 8: Assigning SFR Households to the Nearest Rain Gauge 

 
 For the aggregate analysis, total monthly precipitation and total monthly 

ET, as well as the number of rainy days in each calendar month, are calculated 

so as to correspond to the period-ending months of Tucson Waterʼs billing cycles. 

Number of rainy days is calculated because studies by Maidment, Miaou, and 

Crawford (1985) and Miaou (1990) suggest that the occurrence of rainfall may 

have a more substantial effect on household irrigation decisions than the level of 

rainfall. For the household analysis, the same variables are calculated over the 

exact dates of each householdʼs billing cycle. This is possible because, as 
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opposed to the cases of the household-level income and demographic variables, 

our weather data are measured at a daily time step. 

  

	   4.5.2 Counterfactual Climate Scenarios 
 

 In our aggregate analysis, we attempt to evaluate the sensitivity of water 

consumption behavior among SFR customers in Tucson to potential climate 

change. While making long-term projections regarding Tucsonʼs socioeconomic 

conditions is beyond the scope of this thesis, we are able to investigate how 

water consumption patterns over our study period might have differed under 

alternate weather conditions. To do so, we construct counterfactual climate 

scenarios using regionally downscaled projections from the global climate models 

(GCMs) in the Coupled Model Intercomparison Projectʼs phase 5 (CMIP5) multi-

model ensemble. CMIP5 was developed by the World Climate Research 

Programme's Working Group on Coupled Modelling and was used to inform the 

Intergovernmental Panel on Climate Changeʼs Fifth Annual Report (IPCC AR5). 

Substituting these projections for our weather variables from AZMET and Pima 

County RFCD, we examine how differently our model suggests water 

consumption patterns would look if the weather from July 1998 to June 2011 had 

actually resembled what CMIP5 models project Tucson weather conditions will 

be from July 2085 to June 2099. We also compare these projections-based 

scenarios to a hypothetical scenario in which historical weather data from the 

study period is altered to reflect somewhat hotter and drier summer conditions. 

This scenario, which we call the More Intense Summer Scenario (MISS), is 

adapted from Chandrasekharan and Colby (2013) and assumes an increase in 

daily minimum, mean, and maximum temperatures of 4ºC (7.2ºF) from May to 

September of each year, and a 2.5ºC (4.5ºF) increase in minimum, mean, and 

maximum temperatures in the remaining months of each year. Additionally, the 

number of rainy days occurring in the months of May to September throughout 
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the study period is reduced by 50%. The values of these weather variables under 

the MISS scenario are tabulated in Appendix 6. 

 To obtain projections data for our counterfactual climate scenarios, we first 

determine the most appropriate CMIP5 GCM to use as well as which IPCC-

defined emissions scenarios, or “representative concentration pathways” (RCPs), 

to consider. In selecting a GCM, we want to ensure that the projections we use 

will closely reflect the climate phenomena relevant to Tucson. In particular, we 

focus on the GCMsʼ ability to model the North American Monsoon, since this 

phenomenon has a substantial impact on outdoor water use patterns in the 

American Southwest. According to Sheffield, et al. (2013), three GCMs have 

been shown to perform most effectively in modeling both the timing and the 

duration of North American monsoon. The first, the Hadley Centre Coupled 

Model, version 3 (HadCM3) model, produced by the U.K. Meteorological Office, 

was part of the Coupled Model Intercomparison Projectʼs phase 3 (CMIP3) 

ensemble. The other two are from CMIP5: the second generation Canadian Earth 

System Model (CanESM2), developed by the Canadian Centre for Climate 

Modelling and Analysis (CCCma), and the Hadley Centre Global Environment 

Model 2 - Earth System (HadGEM2-ES), also developed by the U.K. Met Office. 

Of the 17 CMIP5 GCMs evaluated by Sheffield, et al. (2013), these three models 

are also shown to have minimal bias in projecting both winter and summer 

precipitation in Western North America. However, despite their reliability in 

representing precipitation patterns, it should be noted that these models do not 

necessarily outperform the others in representing all aspects of climate in 

Western North America. According to Sheffield, et al. (2013), these models 

demonstrate more bias than most of the evaluated GCMs in terms of projecting 

winter and summer temperature. For our analysis, we utilize projections from 

CCCmaʼs CanESM2 since downscaled daily projections are not available for the 

two Hadley Centre models. 

 Although CMIP5 projections were developed under 4 alternative emissions 

scenarios or RCPs, we select data from runs under only 2 of these emissions 
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pathways: RCP 2.6 and RCP 8.5. According to Moss, et al. (2010), these two 

pathways represent the most extreme cases. Although under all RCPs emissions 

levels are projected to increase into the middle of the century, RCP 2.6 projects 

emissions levels less than current ones by 2100, while RCP 8.5 projects 

increases in emissions up to five times current levels over the same period. Since 

our goal is to assess the sensitivity of water consumption behavior in Tucson to 

climate change, examination of the most extreme cases should be most 

informative. 

Regionally downscaled projections of daily minimum and maximum 

temperature and daily total precipitation generated by the first run of the 

CanESM2 model under RCP 2.6 and RCP 8.5 are collected from the Downscaled 

CMIP3 and CMIP5 Climate and Hydrology Projections archive for the period July 

2085 to June 2099. These projections are calculated as a spatial mean over the 

gridded region from latitude 31.9375 to 32.4375 N and longitude -111.1875 to -

110.6875 E to approximate weather conditions over the Tucson metro area. Daily 

precipitation projections are aggregated to the monthly level, calculating both 

total monthly precipitation and number of rainy days per month, to replace the 

variables in our model for the period July 1998 to June 2011. In addition to these 

two precipitation variables, our model includes total monthly ET. Presently, ET 

projections are not part of the standard output requirements of CMIP5 GCM runs. 

However, according the equation for standardized reference ET used by AZMET 

(shown in Appendix 4), which is a slight simplification of the Penman-Monteith 

equation, we know that ET is a function of several weather variables (Brown 

2005). And while approximations for many of these variables, such as net 

radiation, vapor pressure, wind speed, and mean daily temperature, could be 

obtained from CMIP5 GCM output, only temperature projections have been 

regionally downscaled for the Tucson area. Fortunately, temperature is likely to 

be a major source of long-term temporal variation in ET. Additionally, various 

formulas have been developed to approximate ET in ways that better fit specific 

regional contexts and are less data-intensive than the Penman-Monteith equation 
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(McKenney and Rosenberg 1993; Droogers and Allen 2002; McKellar and 

Crimmins 2015). Recent work by McKellar and Crimmins (2015) suggests that 

the formula developed by Hargreaves (1994) is particularly well-suited to 

estimating ET in southern Arizona. The advantage of the Hargreaves (1994) 

formula is that daily ET can be reliably approximated using data on simply daily 

minimum and maximum temperature and the arithmetic mean thereof (see 

Appendix 4). As shown in Appendix 5, we use the Hargreaves approach to 

determine the relationship between ET and temperature in the current period. 

Then, assuming the same relationship in the future, we use temperature 

projections from downscaled GCM output to project ET for the period July 2085 – 

June 2099 (see Appendix 5). We also use this Hargreaves ET formula to 

approximate ET under the MISS scenario. 

Once we obtain daily values for ET under the MISS scenario as well as 

the CanESM2 projections, we calculate total monthly ET to replace the historical 

weather data in our model. Likewise, using daily total precipitation projections 

from the CanESM2 model, we approximate the number of rainy days per month 

from July 2085 – June 2099 for both RCPs. Values of these weather variables 

calculated from CanESM2 projections under both RCPs are tabulated by month 

and year in Appendix 7. Once we have number of rainy days per month and total 

monthly ET for all 3 counterfactual climate scenarios, we multiply the coefficients 

estimated in our original SGF and SGV model runs by these alternative weather 

data, assuming that prices and incomes do not change. This procedure allows us 

to project what water consumption would have looked like during our study period 

under these alternative weather conditions. The results of this sensitivity analysis 

are described in Chapter 5, while a comparison of weather variables in the 

current period with those in each of the 3 counterfactual climate scenarios is 

presented in Appendix 8. 
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4.6 Housing and Property Characteristics 
 

 For our household analysis, we also consider the impact that variation in 

housing and property characteristics may have on water consumption. Of 

particular interest is the amount of yard for which households must make 

landscaping (and therefore irrigation) decisions, which we will refer to as 

“landscapable area.” We obtain records of parcel area (lot size) from the Pima 

County GIS database, while housing characteristics are collected from the Pima 

County Assessorʼs housing characteristics (MAS) database. In addition to 

assessed home value, MAS data include house square footage, number of 

stories, number of garage or carport parking spaces, and pool area, recorded 

annually from 2002 to 2012. Since our household analysis begins in 2001 and 

housing characteristics are not expected to change much year-to-year, we use 

2002 values to approximate relevant housing characteristics for 2001 as well. 

These data are used to calculate an estimate of landscapable area (in sq. ft.) 

using the same method as in Klawitter (2014). The equation below summarizes 

this calculation: 

LandscapableAreai,y = Li,y !
Ai,y
Si,y

! (Gi,y "200)!Pi,y  

Where: 
i : 1,…, n 

y : Year 

L : Lot size in sq. ft. 

A : Livable square footage of the house 
S : Number of stories of the house 

(G!200) : Approximate garage or carport area in sq. ft. 

(Number of garage parking spaces times square footage 

required to park an average car) 

P : Approximate pool surface area 
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4.7 Remotely-Sensed Data 
 

 Given our interest in explaining outdoor consumption trends, our 

household analysis includes estimates of the greenness of individual parcels. We 

expect that lots with more vegetative cover will typically require more water for 

irrigation than other lots. Previous studies have used remotely-sensed data to 

demonstrate a significant, positive relationship between vegetation indices 

representing parcel greenness and water consumption (Harlan, et al. 2009; 

Halper, et al. 2015). In this case, we model our approach after that of Halper, et 

al. 2015, who examine variations in water use patterns among households in the 

Tucson Water service area based on proximity to irrigated parks and public 

pools. They use 1 m. orthophotography from the National Agricultural Imagery 

Program (NAIP) of the U.S. Department of Agriculture to calculate a mean 

normalized difference vegetation index (NDVI) across the Tucson Water service 

area. NDVI provides an approximation of the greenness of a pixel; it is calculated 

as the ratio between the difference in infrared and red reflectance in a pixel and 

the sum of the infrared and red reflectance in a pixel, as shown below: 

NDVI = (InfraredReflectance! RedReflectance)
(InfraredReflectance+ RedReflectance)

 

Halper, et al. (2015) then average NDVI over each parcel to help explain outdoor 

water consumption. Similarly, Harlan, et al. (2009) calculate a neighborhood-level 

soil-adjusted vegetation index (SAVI) to explain water consumption in 

metropolitan Phoenix, AZ. SAVI is similar to NDVI but adjusts for terrain in which 

reflectance can occur because of the presence of exposed rock rather than 

vegetation. Since a majority of Tucson Water customers live in the central urban 

area of Tucson, we chose to use NDVI for our analysis. 

 With the support of the Arizona Remote Sensing Center at the University 

of Arizona, we calculate NDVI from remotely-sensed imagery of Tucson in the 

pre-monsoon summer months (May-June) – months which correspond to peak 

outdoor irrigation. Landsat satellite imagery at 30 m. resolution available from the 
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United States Geological Survey (USGS) for the years 2001-2011 is used. Based 

on our selection of one May-June image per year, NDVI is calculated for each 30 

m. pixel in the Tucson Water service area in each year. The 30 m. pixels are then 

resampled to 1 m. resolution. By overlaying parcel boundaries on Landsat pixels 

in a geodatabase, a zonal mean NDVI value is calculated over the extent of each 

parcel. In this way, we obtain an average measure of parcel greenness in peak 

irrigation season for each parcel in each year. 

 

 The variables discussed in this chapter are used in the next chapter to 

empirically estimate demand for water. 
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5. Econometric Methods and Demand Estimation 
 
 

 This chapter details the econometric methods used to estimate a demand 

function for SFR water consumption in Tucson, AZ, and presents the results of 

our demand analysis. First, the construction of an appropriate price variable is 

discussed in light of the problem of simultaneity posed in Chapter 3. Then, the 

structure of the household and aggregate demand models are described, and the 

results of our estimation procedures summarized. Finally, the results of our 

analysis of the sensitivity of household water consumption to potential climate 

change are presented. 

 

5.1 Constructing the Price Variable 
 

As discussed in Chapter 3, we select an average price specification for our 

analysis in order to accurately model the data generating process involved in 

SFR household water consumption decisions. In both models, we choose to lag 

our price variable by one period-ending month, since consumers can only see 

their bill from the prior billing cycle when making decisions about their 

consumption in the current billing period. Theoretically, at least, this should 

overcome the simultaneity issue traditionally posed by the use of average price 

specifications in demand estimation; quantity in the current billing period is being 

explained by the average per unit price in the prior billing period. However, in 

practice the values of average price in the prior billing period may still be 

correlated with model errors since average price per unit tends not to vary much 

between billing cycles. Therefore, to avoid issues related to such correlation, we 

instrument lagged average price before including the price variable in our 

models. The process of calculating and estimating this instrumented price 

variable differs between our aggregate and household analyses, so these two 

procedures are discussed separately below. 
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5.1.1 Calculating Instrumented Price for Household Analysis 
 

 Calculating the average per-unit price faced by each household in each 

billing cycle is a straightforward procedure. The total bill for household i in a given 

billing cycle t is divided by the quantity consumed in t: 

, 

    Where: 
     : 1,…,2,000 

     : 1,…,156 

 

Lagged average price is calculated similarly, with the exception that the total bill 

and quantity consumed from the prior period are used: 

 

Our preference would have been that this value for lagged average price 

enter the model directly. However, after performing a Durbin-Wu-Hausman test 

on a preliminary pooled OLS panel model containing this price variable, we reject 

the null hypothesis of the exogeneity of price at the 99% confidence level. 

Opaluch (1984) explains that the persistence of endogeneity here indicates a 

strong correlation between lagged average price and current period average 

price that results from the habitual nature of water usage. Therefore, we address 

this remaining endogeneity by using an instrumental variables (IV) approach to 

estimate lagged average price before including the price variable in our final 

model. This IV procedure involves regressing lagged average price on a series of 

explanatory (instrumental) variables and incorporating the predicted values into 

our final model as an instrument for lagged average price. The explanatory 

variables used in the IV regression resemble those used by Klawitter (2014). The 

IV model estimated is as follows: 

 

APi,t =
TotalBilli,t

Qi,t

i

t

APi,t!1 =
TotalBilli,t!1

Qi,t!1
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  Where: 
 : Total annual cost of water for each household 

 : Block 1 price in real Dec. 2011 dollars 

 : Difference in real price between Block 2 and Block 1 

: Difference in real price between Block 3 and Block 2 

: Difference in real price between Block 4 and Block 3 

: Conservation charge in real Dec. 2011 dollars 

: CAP charge in real Dec. 2011 dollars 

: Sewer commodity charge in real Dec. 2011 dollars 

: Sewer administrative fee in real Dec. 2011 dollars 

: Garbage fee in real Dec. 2011 dollars 

: Individual-specific model error 

: Model error resulting from measurement error 

 

 According to Wooldridge (2010), a strong instrumental variable is one that 

is highly correlated with the independent variable causing the endogeneity 

problem and uncorrelated with the error term of the final regression model. For 

this reason, the explanatory variables used in the IV regression resemble those 

used by Klawitter (2014). Klawitter argues that each of these variables except for 
 is determined by the utility and thus should not be correlated with quantity 

consumed in a given billing period. And while  is correlated with total annual 

consumption, it should not be highly correlated with consumption in any given 

billing cycle. 

 Using the equation above, a pooled ordinary least-squares (OLS) panel 

model is estimated to explain lagged average price. The results of this IV 

regression are shown below in Table 1. Despite the low R2 value, the overall F-

statistic indicates that the model has explanatory power at the 99% confidence 

APi,t!1 = !0 +!1IV1 +!2IV2 +!3IV3 +!4IV4 +!5IV5 +!6IV6 +!7IV7 +!8IV8 +!9IV9 +!10IV10 +ui +"i,t

IV1

IV2

IV3

IV4

IV5

IV6

IV7

IV8

IV9

IV10

ui

!i,t

IV1

IV1



	   71 

level. Of the individual variables, all except  are shown to be significant at the 

99% confidence level. However, since Klawitter (2014) estimates that the 

probability of any user consuming in Block 4 in a given billing cycle to be less 

than 2%, this result is not surprising. The overall significance of the model and 

the included regressors indicates that the IV estimates of lagged average price 

should be suitable for use in our final demand model. 

 

Table 1: IV Panel OLS Regression Results, Dependent Variable: Lagged 
Average Price 

 
Variable Parameter Estimate 

(p-value) 
Intercept 7.3022 

(0.000) 
IV1 -0.0009 

(0.000) 
IV2 -1.3256 

(0.000) 
IV3 -3.0952 

(0.000) 
IV4 4.1884 

(0.263) 
IV5 -0.2902 

(0.001) 
IV6 -5.4671 

(0.000) 
IV7 -13.3899 

(0.000) 
IV8 2.6823 

(0.000) 
IV9 0.0691 

(0.000) 
IV10 0.0727 

(0.000) 
R2 0.1321 
F-test 3657.19 

(0.000) 
 

IV5
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5.1.2 Calculating Instrumented Price for Aggregate Analysis 
 

 Determining the appropriate price metric for an analysis of aggregated 

water use is less straightforward than in the household-specific case. Since 

Tucson SFR water consumers do not make consumption decisions collectively, it 

is useful to conceptualize the behavior of a “representative” SFR consumer, 

whose behavior reflects the average level of consumption of SFR households. 

For the same reasons given in the case of individual households, this 

representative consumer can be expected to respond to the average per-unit 

price faced by all SFR households. We calculate this average price as the total 

expenditure of all SFR consumers in our dataset in a given period-ending month 

divided by the total usage among all SFR customers in the same period ending 

month, shown below: 

APt =
TotalBilli

i=1

n

!
"

#
$

%

&
'
t

Qi
i=1

n

!
"

#
$

%

&
'
t

 

    Where: 
: 1,…,127,644     

: 1,…,156 

 

Just as in the household analysis, we expect that the representative SFR 

consumer will respond to the price they paid in their last billing period, so we lag 

our average price metric as follows: 

 
 Once again, we run a preliminary OLS regression utilizing a Durbin-Wu-

Hausman test to determine whether lagged average price is correlated with the 

model errors. We reject the null hypothesis that lagged average price is 

i

t
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exogenous at the 99% confidence level, and therefore turn to IV estimation 

methods to circumvent this issue. We use a simplified version of the IV model 

used to predict lagged average price for individual households. The only 

difference is that we ignore the variation in the fixed charges of the water bill, 

since we are not concerned with individual household differences and these 

charges tend to vary little over time. The model used to predict values of lagged 

average price for the aggregate analysis is shown below: 

 

  Where: 
 : Total annual cost of water for each household 

 : Block 1 price in real Dec. 2011 dollars 

 : Difference in real price between Block 2 and Block 1 

: Difference in real price between Block 3 and Block 2 

: Difference in real price between Block 4 and Block 3 

: Random error 

 

 We estimate this model using OLS. Results are summarized in Table 2. 
Three of the variables are significant at the 99% confidence level, while  is 

significant at the 95% confidence level. Only  is not significant at any 

commonly accepted level of confidence. Nonetheless, the high R2 value and the 

significance of the overall F-statistic at the 99% confidence level assure us that 

the predicted values of lagged average price will be sufficient to estimate water 

demand. 

 
Table 2: IV OLS Regression, Dependent Variable: Lagged Average Price 

 
Variable Parameter Estimate 

(p-value) 
Intercept -1.076173 

(0.170) 

APt!1 = !0 +!1IV1 +!2IV2 +!3IV3 +!4IV4 +!5IV5 +"t

IV1

IV2

IV3

IV4

IV5

!t

IV1

IV4
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IV1 0.0000000626 
(0.032) 

IV2 77.7878 
(0.001) 

IV3 358.9279 
(0.001) 

IV4 -258.3305 
(0.113) 

IV5 -92.76932 
(0.000) 

R2 0.7093 

F-test 79.04 
(0.000) 

 

5.2 Demand Estimation 
 

 Once we constructed appropriate price variables for both analyses, we 

proceeded to specify our model structures. As discussed in Chapter 3, we 

estimate demand functions of the Stone-Geary functional form, following closely 

the model of Gaudin, Griffin, and Sickles (2001). They show that while the Stone-

Geary function is always nonlinear in the variables, it can be written as either 

linear or nonlinear in the parameters. While they argue that the linear model is 

likely to produce parameter estimates that are inefficient, they find little difference 

between the results of their linear and nonlinear estimation procedures. We 

estimate only linear demand models in this analysis and address the issue of 

efficiency ex post. 

 Gaudin, Griffin, and Sickles (2001) present two alternative formulations of 

the Stone-Geary demand function. The first, which we will refer to as the Stone-

Geary Fixed (SGF) model assumes that the conditional water use threshold 
parameter ( ) is a linear function of the exogenous variables, while the marginal 

budget share ( ) is fixed. This model takes the form: 

 

!

!
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Q = (1!!)("0 + "iCi )+!
I *
Pi=1

k

"  

Where: 

: Control variable i 

k : Number of control variables 

! ="0 + "iCi
i=1

k

!  

 

To estimate this model linearly using OLS, the estimable function is:  

Q =! '0+ ! 'i Ci +"
I *
Pi=1

k

!  

Where: 

! 'i =
!i

(1!")
 

! = (1!")(# '0+ # 'i Ci )
i=1

k

"  

The SGF model requires post-estimation calculation of , as shown above. The 

delta method is used to determine the standard error and assess the significance 

of this parameter. This process is detailed in Appendix 9. 

The second formulation of the Stone-Geary model allows both  and  to 

vary with the exogenous regressors. We refer to this model as the Stone-Geary 

Variable (SGV) model. 

Q = [1! (!0 + !iCi )]("0 + "iCi )+ (!0 + !iCi )
I *
Pi=1

k

"
i=1

k

"
i=1

k

"  

Where: 

: Control variable i 

k : Number of control variables 

! ="0 + "iCi
i=1

k

!  

Ci

!

! !

Ci
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! = !0 + !iCi
i=1

k

!  

For linear estimation, the estimable equation becomes: 

Q =! '0+ ! 'i Ci + ("0 + "iCi )
I *
Pi=1

k

!
i=1

k

!   

Where: 

! 'i =
!i

(1!")
  

! = !0 + !iCi
i=1

k

!  

! = (1!")(# '0+ # 'i Ci )
i=1

k

"  

In the SGV case, both and  must be calculated outside of the linear 

estimation procedure, as well as their respective standard errors and significance 

levels. Appendix 9 details the procedure for calculating the standard errors of 

these parameters in order to determine their significance. 

Both the SGF and SGV model formulations are estimated linearly in the 

aggregate and household analyses. In the sections that follow, we discuss 

demand estimation and results for the household and aggregate models. 

 

5.2.1 Models of Household Water Demand 
 

 Aside from price and income, our household model includes several 

control variables. Because we have access to panel data, we are able to account 

for heterogeneity among SFR households within as well as between time 

periods. Weather variables are included primarily to control for seasonal and 

inter-annual variation in water consumption behavior, although spatially 

disaggregated precipitation measurements allow us to capture some cross-

sectional heterogeneity. And while none of the variables in our household 

analysis can be considered strictly time-invariant, many of the remaining control 

! !
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variables, such as demographic, housing, and parcel characteristics, are included 

primarily to capture cross-sectional heterogeneity. The variables included in our 

household analysis are listed below in Table 3, along with their descriptive 

statistics. 

 
Table 3: Household Variable Descriptive Statistics 

 
Variable Min Mean Max 
Usage 0 12.22 288 
Realinc 361.25 5,847.87 75,458.34 
IV_price 1.91 6.60 8.97 
IVinc_price 50.64633 957.20 16053.73 
Tot_ET 0.7 6.66 20.28 
LArea 0 17,148.27 646,685.4 
IVNDVI 0.13 0.16 0.43 
PoolArea 0 128.43 9999 
ET_LArea_IVNDVI 0 19,829.67 2,206,306 
PoolET 0 855.09 123,887.6 
N_Rainy_Days 0 2.98 16 
Daysinread 7 30.39 75 
Hispanic 3 30.24 93.26 
HHsize_avg 1.675 2.52 3.864 
Per_under5 0.54 6.10 13.84 
Per_65andover 0.8 14.40 65.86 
IVinc_price_ 
ET_LArea_IVNDVI 
(millions) 

0 38.9 33,500 

IVinc_price_PoolET 
(millions) 0 1.36 399 

IVinc_price 
_NRainyDays 0 2,929.156 138,580.2 

IVinc_price_Days 1,441.89 29,094.88 520,884.3 
IVinc_price_Hispanic 2,546.63 20,972.48 230,973.6 
IVinc_price_HHsize 160.04 2,334.96 36,955.69 
IVinc_price_under5 144.15 5,118.78 60,636.34 
IVinc_price_65andover 164.74 15,497.65 383,438.2 

 

Usage represents a particular householdʼs total water consumption in a 

given billing cycle. This is the dependent variable in our household analysis. 



	   78 

Realinc is a particular householdʼs monthly income in real Dec. 2011 

dollars, calculated as described in Chapter 4, while IV_price represents the 

instrumented lagged average price we calculate in Section 5.1.1. It is worth 

noting that income and instrumented lagged average price are included in our 

model as a ratio ( Ii,t
APi,t!1

, denoted as IVinc_price) with a single coefficient rather 

than as two separate terms. This is characteristic of the Stone-Geary function 

and implies that price and income affect consumption through their relative levels 

only. We expect that, as income rises relative to price, water consumption will 

increase. 

ET represents the total evapotranspiration measured over each billing 

period. We expect the effect of ET on water consumption to be positive; however, 

we expect the magnitude of this effect to vary with certain household 

characteristics. Since evapotranspiration measures the combined moisture 

evaporating from standing water bodies as well as transpiring from vegetation, 

we attempt to account for household-level differences in both of these processes 

by considering water use for both filling pools and irrigating landscapes. 

Evaporation from pools is a major contributor to household-level ET, so we 

interact ET with pool size (PoolET) to account for household-level differences in 

evaporation. To capture the effect of transpiration on household water demand, 

we consider both how much vegetation each yard contains – as measured by the 

greenness index NDVI in peak irrigation season (May-June) – and the size of the 

portion of each parcel that is available for landscaping. LArea corresponds to the 

landscapable area of a given parcel, while NDVI represents the average 

greenness of a given parcel in May or June of each year. During the 

development of our model, we received feedback that NDVI is likely to be 

dependent on the amount of water consumed for irrigation as well as the price of 

water. To test this, we conduct a Durbin-Wu-Hausman test for endogeneity and 

reject the null hypothesis of exogeneity with 99% confidence. Therefore, we 

instrument NDVI using house construction year, house assessed value, and 
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parcel area (see Appendix 10). Once this endogeneity is accounted for, ET, 

LArea, and IVNDVI – the instrumented values of NDVI – enter our model as a 

triple interaction variable (ET_LArea_IVNDVI). We expect the signs of both 

PoolET and ET_LArea_IVNDVI to be positive. 

 N_Rainy_Days corresponds to the number of days in a given billing cycle 

for which some level of precipitation was measured at the nearest PCFCD rain 

gauge to a given household. We expect that households will cut back on outdoor 

irrigation on or around days with rainfall events, and thus anticipate that this 

variable will have a negative impact on total water consumption. 

Daysinread represents the number of days in a given householdʼs billing 

cycle in a particular period-ending month. Recall that, while billing periods are 

matched to unique period-ending months by Tucson Water, the length of each 

billing period may not necessarily correspond to the dates of its period-ending 

month, and in fact rarely does. We expect the length of a billing period to have a 

positive effect on the level of total consumption per household in a particular 

billing period. 

Hispanic represents the percentage of the population in a given Census 

tract of Hispanic or Latino origin of any race. Previous studies have shown that a 

higher proportion of people of Hispanic or Latino origin in a given area can have 

a negative impact on water consumption (Gaudin, Griffin, and Sickles 2001; 

Balling, Gober, and Jones 2008; Ray 2012), possibly due to the correlation of 

ethnicity and immigrant status. 

HHsize_avg is the average household size in a given Census tract. 

Households with more members are expected to consume more water. 

Per_under5 and Per_65andover correspond to the percentage of the 

population in a given Census tract below the age of 5 and above the age of 65, 

respectively. These age brackets represent groups that typically spend more time 

at home and may consume more water there. Very young children are often not 

in school and typically take baths rather than showers, which may lead to higher 

water use. Likewise, we expect retirees to use more water than most working-
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age adults as they probably spend more time at home and may be more likely to 

have vegetation-intensive landscaping, such as gardens. We expect the sign on 

both of these variables to be positive. 

The last set of variables in Table 3 – IVinc_price_ET_LArea_IVNDVI, 

IVinc_price_PoolET, IVinc_price_NRainyDays, IVinc_price_Days, 

IVinc_price_Hispanic, IVinc_price_HHsize, IVinc_price_under5, and 

IVinc_price_65andover – represent interaction variables in which the ratio of real 

household monthly income to instrumented lagged average price is multiplied by 

each of the control variables. They are included in the SGV model specification to 
allow  to vary with the control variables in the model as well as . In the SGV 

model formulation, the effect of each control variable on total water consumption 

is really a net of the relationship between each control variable and the levels of 
 and . In this case, the sign of individual coefficients on the control variables 

or their interactions with price are of little interest per se, but the net effect of 

each control variable on total water consumption should be roughly the same as 

that in the SGF model formulation. 

Our household sample dataset is an unbalanced panel with observations 

from 1,994 households over the period July 2001 – June 2011, which 

corresponds to 10 years or a maximum of 120 monthly observations per 

household. The total number of observations in this dataset is 216,564. Table 4 

summarizes this information. The panel is unbalanced for two reasons: 1) many 

households received bills at a less-than-monthly frequency, and 2) several 

households were added to the dataset throughout the study period due to new 

construction. We choose not to restrict our sample to households with billing 

cycles in each month of our study period since newly-constructed households 

tend to have more water-efficient fixtures, and we want to account for the effect 

of such fixtures on water consumption. 

 

! !

! !
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Table 4: Household Unbalanced Panel Dataset Summary 

 
 Number of Observations 216,546 
 Number of Households 1,994 

Observations 
Per 

Household 

Minimum 5 
Mean 108.6 

Maximum 120 
 

The structure of our two household models is as follows. The SGF model 

takes the following form: 
Usagei,t =! '0+! '1(ET _ LArea_ IVNDVI )i,t +! '2 (PoolET )i,t +! '3(N _Rainy_Days)i,t
+! '4 (DaysinRead)i,t +! '5(Hispanic)i,y +! '6 (HHsize_ avg)i,y +! '7 (Per _under5)i,y
+! '8(Per _65andover)i,y +"(IVinc_ price)i,t +ui +#i,t

 

  Where: 
: 1,…,1994    

: 1,…,120 

: 2001,…,2011 

: Individual-specific model error 

: Idiosyncratic error 

 

The SGV model has a similar structure, except that terms for the interaction 

between IVinc_price and each of the control variables are included as well: 
Usagei,t =! '0+! '1(ET _ LArea_ IVNDVI )i,t +! '2 (PoolET )i,t +! '3(N _Rainy_Days)i,t
+! '4 (DaysinRead)i,t +! '5(Hispanic)i,y +! '6 (HHsize_ avg)i,y +! '7 (Per _under5)i,y
+! '8(Per _65andover)i,y +"0 (IVinc_ price)i,t +"1(IVinc_ price_ET _ LArea_NDVI )i,t
+"2 (IVinc_ price_PoolET )i,t +"3(IVinc_ price_NRainyDays)i,t +"4 (IVinc_ price_Days)i,t
+"5(IVinc_ price_Hispanic)i,t +"6 (IVinc_ price_HHsize)i,t +"7(IVinc_ price_under5)i,t
+"8(IVinc_ price_65andover)i,t +ui +#i,t
 

Where: 
: 1,…,1994    

i

t

y

ui

!i,t

i
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: 1,…,120 

: 2001,…,2011 

: Individual-specific model error 

: Idiosyncratic error 

 

 Diagnostic tests are performed to determine the appropriate estimation 

procedure for each model formulation. Breusch-Pagan tests reveal the presence 

of heteroskedasticity in both of the model formulations. Likewise, we find 

evidence of autocorrelation in both models, using a STATA program developed 

by Drukker (2003) to implement Wooldridgeʼs test for first-order serial correlation 

in panel data models (2010). Finally, a Hausman test is used to compare 

random-effects (RE) estimation to fixed effects (FE) estimation and test for the 

presence of household-specific fixed effects. However, the traditional formulation 

of the Hausman test has been shown to lead to invalid statistical inference in the 

presence of heteroskedasticity. Wooldridge (2010) details the implementation of 

a Hausman test via an auxiliary OLS regression procedure with panel-robust 

standard errors to correct for heteroskedasticity. We use a STATA program 

developed by Hoechle (2007) to implement this version of the Hausman test. In 

both the SGF and SGV models, the test favors FE specifications. Table 5 

presents the results of these diagnostic tests. 

 
Table 5: Household Model Diagnostics 

 
 SGF SGV 

Test Test Statistic Value 
(p-value) Test Statistic Value 

(p-value) 

Breusch-Pagan χ2(9) 5858.76 
(0.000) χ2(25) 6075.58 

(0.000) 

Wooldridge F(1,1993) 729.19 
(0.000) F(1,1993) 737.86 

(0.000) 

t

y

ui

!i,t
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Hausman F(9, 216527) 20.62 
(0.000) F(17, 216511) 11.81 

(0.000) 
 

 Both the SGF and SGV model formulations are estimated as fixed-effects 

(FE) unbalanced panel models via a feasible generalized least-squares (FGLS) 

procedure, and significance is determined using Huber/White/sandwich standard 

errors to account for heteroskedasticity. It should be noted that the 

Huber/White/sandwich approximation of the variance-covariance matrix does not 

account for the presence of autocorrelation in the estimated models, and we do 

not attempt to explicitly account for it. The most likely explanation for the 

occurrence of autocorrelation in these models is model misspecification, which 

we believe reflects more the limited availability of precise and complete 

household data than a lack of thorough consideration of the determinants of 

water demand on our part. Nonetheless, we do not expect the presence of 

autocorrelation to significantly alter inference from the model results given the 

adjustments already made for fixed effects and heteroskedasticity. The results of 

our estimation procedures are summarized in Table 6 below. 

 
Table 6: Household Model Results 

	  
  SGF SGV 

Variable Parameter Estimate 
(p-value) 

Estimate 
(p-value) 

Intercept αʼ0 -6.4521 
(0.147) 

-1.7294 
(0.686) 

ET_LArea_IVNDVI αʼ1 0.0001 
(0.000) 

0.0001 
(0.000) 

PoolET αʼ2 0.0003 
(0.000) 

0.0002 
(0.020) 

N_Rainy_Days αʼ3 -0.0819 
(0.000) 

-0.1027 
(0.000) 

Daysinread αʼ4 0.3080 
(0.000) 

0.1965 
(0.000) 
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Hispanic αʼ5 -0.1162 
(0.001) 

-0.1128 
(0.004) 

HHsize_avg αʼ6 2.9254 
(0.036) 

0.7106 
(0.649) 

Per_under5 αʼ7 0.1713 
(0.307) 

0.6247 
(0.013) 

Per_65andover αʼ8 0.0682 
(0.313) 

0.1285 
(0.127) 

IVinc_price β 0.0023 
(0.000)  

IVinc_price β0  -0.0021 
(0.378) 

IVinc_price_ET_LArea_NDVI β1  2.43 x 10-9 
(0.000) 

IVinc_price_PoolET β2  0.0000 
(0.222) 

IVinc_price_NRainyDays β3  0.0000 
(0.132) 

IVinc_price_Days β4  0.0001 
(0.000) 

IVinc_price_Hispanic β5  0.0001 
(0.001) 

IVinc_price_HHsize β6  0.0012 
(0.276) 

IVinc_price_under5 β7  -0.0005 
(0.005) 

IVinc_price_65andover β8  0.0000 
(0.295) 

 β 0.0023 
(0.000) 

0.0029 
(0.000) 

 γ 10.0163 
(0.000) 

9.6138 
(0.000) 

 F-test 244.01 
(0.000) 

Not 
Reported 

 

 From these results, we can see that many of our expectations regarding 

the relationships between the control variables and the dependent variable are 

confirmed. In both models, the coefficient on ET_LArea_IVNDVI is positive and 

highly significant. Consumers with larger, greener yards tend to use more water 

than other households when the evaporative demand of their landscaping is high. 
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Likewise, the sign of the PoolET coefficient indicates that consumers with larger 

pools tend to use more water when weather conditions result in substantial 

evaporation. Although these results are expected, they are particularly notable 

since their inclusion in a model of water demand is relatively novel. 

 Both models also suggest a highly significant negative relationship 

between the number of rainy days per month and total water consumption. It 

appears that households respond to the occurrence of rainfall, of any amount, by 

reducing water consumption, presumably for irrigation purposes. We did attempt 

to substitute total monthly precipitation for number of rainy days in both models, 

but number of rainy days outperformed this more precise metric in both cases. 

This is intuitively satisfying because it suggests that consumers rely more on 

simple heuristics than precise weather metrics when making their irrigation 

decisions. Since most households do not maintain their own precipitation gauges, 

they are more likely to rely on a glance out their window to see if it is raining than 

a precise measurement of rainfall when determining whether to reduce their 

irrigation demand. 

 Daysinread also has a highly significant impact on total household water 

consumption, according to both models, as we expect. Longer billing cycles 

result in significantly higher household consumption. This may seem obvious, but 

without controlling for the impact of billing cycle length, comparisons of price 

response across billing cycles would be biased. 

 The remaining control variables in both models represent demographic 

characteristics taken from the 2000 and 2010 Census. These variables are 

measured by Census tract rather than by household, so cross-sectional variation 

in observations is limited. Also, Census data are measured at 2 points in time 

and are interpolated annually for the remaining years, so temporal variation is 

minimal. Nonetheless, some significant results are found. 

The SGF model suggests that the proportion of Hispanic or Latino 

residents in a given Census tract has a negative impact on household water 

consumption. This result is significant at the 99% confidence level in both 
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models. Thus, the models provide support for the notion that cultural 

characteristics specific to Hispanic and Latino households, such as a potentially 

higher reliance on bottled water, may influence municipal water consumption. 

The coefficient estimated for HHsize_avg is positive in both models, but is 

only significant at the 95% confidence level in the SGF model. This indicates that 

larger households tend to consume more water, as we would expect. Had the 

scale of data collection been improved, the significance of this coefficient may 

have been stronger in both models. 

With regard to household age distribution, our model results are much 

weaker. The SGV model indicates that water consumption is higher in Census 

tracts with a higher proportion of children under age 5. However, this result is not 

significant in the SGF model. We expect that this discrepancy might disappear if 

the variables could be measured at a finer spatial and temporal scale. Similarly, 

while the coefficients on Per_65andover are positive in both models, neither 

model indicates a significantly higher level of water use in Census tracts with a 

higher proportion of elderly (age 65+) residents. 

 Despite all the discussion about the relationship between the control 
variables and total water consumption both here and in the literature,  and  

remain the parameters of primary interest in our study. In both models, these 

parameters are found to be significant at the 99% confidence level. As expected, 
 is positive, implying that an increase in household income relative to price 

should lead to higher household water consumption. Likewise, is positive and 

represents the level of consumption below which households will not respond to 

price. 
 Based on the estimated values of  and , the SGF demand model takes 

the form: 

Q =10.0163+ 0.0023 I *
P

 

! !

!

!

! !
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The SGV demand model looks very similar, with a slightly higher estimated 
conditional water use threshold ( ) and a slightly larger marginal budget share (

) allocated to water: 

Q = 9.6138+ 0.0029 I *
P

 

Since these two demand curves are so similar, we plot only the SGV demand 

function at mean income in Figure 9 below. Note the asymptotic behavior of the 

demand curve as it approaches the conditional water use threshold from the 

right. 

 
Figure 9: Household Water Demand (SGV Model) 

 

 
 

Like the values of the two Stone-Geary parameters, price and income 

elasticity of demand must also be calculated ex post. As described in Chapter 3, 
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the Stone-Geary demand function restricts price and income elasticity of demand 
to be equal in magnitude and opposite in sign ( ). These calculations 

depend on the level of income, the quantity consumed, and the price faced by a 

given household. We calculate price and income elasticity at mean values for the 

control variables as well as mean values of household income, quantity 

consumed, and price. These estimates are displayed in Table 7. In every case, 

the SGV model provides elasticity values of slightly greater magnitude than the 

SGF model. Regardless, these elasticity estimates are similar to those typically 

found in the literature. 

 
Table 7: Household Model Price and Income Elasticity Calculations 

 

!p =
!"I *
PQ

 and !I =
"I *
PQ

 

 SGF SGV 
εp -0.165 -0.212 
ε I 0.165 0.212 

 

Perhaps more interesting than examining elasticity at a single average 
value of  and  is to look at the variation in these two parameters and the 

corresponding price elasticity of demand over the study period. Although it would 

be too much to display the temporal variation in these parameters for each 

household in our sample, we can examine how the average values of the 

parameter and elasticity estimates change over time. Using sample values of 
each variable in each period-ending month, , , and  are calculated for each 

household. These values are then averaged across all households and plotted by 

period-ending month to show how they typically vary throughout the study period. 

Figure 10 shows the temporal variation in these parameter and price elasticity 

estimates for both models. 

!!p = !I

! !

! ! !p
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Figure 10: Temporal Variation in Mean β, γ , and εp 

	  
a) Temporal Variation in Mean  by Model Type 

 
 

b) Temporal Variation in Mean  by Model Type 
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c) Temporal Variation in Mean  by Model Type 

 
 
Note that  does not vary in the SGF calculations since the SGF model 

assumes is fixed over time. Compare this to the SGV model, in which  

absorbs some of the variation in . In the SGV model, variation in mean  is 

high and demonstrates an upward trend. In other words, the marginal budget 

share allocated to water appears to have increased over time for the typical 

Tucson SFR household. 

And as the portion of monthly household income dedicated to water has 

increased, the level of water consumption the typical Tucson SFR household will 

not go without ( ) appears to have declined slightly. This level appears to 

fluctuate between roughly 8 and 12 CCF in a highly seasonal manner, owing to 

the significant influence of the weather control variables. Yet, if this seasonal 
variation is ignored, mean levels appear to trend slightly downward over time. 

The variation in  in the early years of the study period appears to center roughly 

around 10 CCF, while in the latter years of the study period this variation centers 

closer to 9 CCF. Such trends would imply that, as water costs have taken up a 

larger portion of household income over time, households may have begun to 

question their assumptions about the amount of water they absolutely must 
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consume. We test the significance of these temporal trends by regressing each 

Stone-Geary parameter (with the exception of β in the SGF model) on a 120-

month time trend. The results, which are presented in Table 8, show that the 

upward trend in the marginal budget share in the SGV model is statistically 

significant at the 99% confidence level. However, the downward trend in the 

conditional water use appears more illusory than real; it is found to be significant 

only in the SGF model at the 90% confidence level. 

 
Table 8: Significance of Household Stone-Geary Parameter Trends 

 

Dependent Variable Explanatory Variable Coefficient 
(p-value) 

β SGV 
Intercept -0.0002 

(0.594) 

Date 0.0000001 
(0.000) 

γ SGF 
Intercept 13.0937 

(0.000) 

Date -0.0001 
(0.081) 

γ SGV 
Intercept 11.9889 

(0.000) 

Date -0.0001 
(0.225) 

εp SGF 
Intercept -2.3275 

(0.000) 

Date 0.0001 
(0.000) 

εp SGV 
Intercept -2.4775 

(0.000) 

Date 0.0001 
(0.000) 

 

Lastly, we present the temporal variation in price elasticity for the typical 

Tucson SFR household in our sample over time. This value demonstrates a 

much more obvious trend in both models, which is significant at the 99% 
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confidence level in both cases. Over the course of the study period, mean 

household price elasticity of demand declines in magnitude and its variability is 

dampened, implying that household demand is becoming less responsive to price 

over time. This is probably the result of the decline in per household water 

consumption shown in Figure 1. As households consume less, they move toward 

the more inelastic portions of their respective demand curves.  

It should also be noted that the trend in mean price elasticity indicates that 

water consumption is most inelastic in summer. At face value, this may appear to 

contradict the findings of studies conducted by Howe and Linaweaver (1967) and 

Mansur and Olmstead (2012), which suggest that water consumption for outdoor 

use is price elastic while consumption for indoor use is not. However, we caution 

the reader to remember that the Stone-Geary function does not make a priori 

distinctions between water consumption for different uses explicitly, but rather 

accounts for changes in price elasticity at different levels of water consumption. 

This study is also not the only case in which a pattern of water consumption with 

more inelastic summer consumption has been identified. Thompson (2012) finds 

a similar pattern in his analysis of water demand in the Phoenix metro area. 

Mathematically, this can be explained by the fact that β, mean income, and mean 

price change very little throughout the year relative to mean quantity consumed. 

Behaviorally, however, this phenomenon is more difficult to explain. It appears 

that the proportional change in Tucson householdsʼ conditional water use 

threshold in summer is greater, on average, than the proportional change in 

mean use. In other words, while Tucson households consume more water overall 

in summer, they consider a larger percentage of this summer consumption to be 

necessary than they do in winter. Apparently, for many Tucsonans, irrigation is 

still a highly-valued use of water. 
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5.2.2 Models of Aggregate Water Demand 
 

 Next, we construct models of water demand for the representative Tucson 

SFR household using aggregated water consumption data for the 127,644 

households in our dataset. Because Census data collected in 2000 and 2010 

offer little temporal variation, we do not include demographic characteristics in 

this model. Neither do we include household-specific characteristics such as 

parcel size and house square footage, since we attempt to examine trends in 

Tucson SFR consumption as a whole. Rather, we focus on the control variables 

that provide the primary source of temporal variation: weather variables. The 

variables included in our analysis are listed in Table 9 below, along with their 

descriptive statistics. Because weather data are available from AZMET over the 

entire study period July 1998 – June 2011, we are able to estimate demand over 

this entire 156-month period as opposed to the shorter time span considered in 

the household model. 

 
Table 9: Aggregate Variable Descriptive Statistics 

 
Variable Min Mean   Max 

StUsage_perHH 7.83 13.01  19.64 
Realpcinc 37,465.24 44,338.29  48,037.84 
IV_price 4.09 5.59  7.64 
IVpcinc_price 5,010.01 8,149.32  11,049.57 
N_Rainy_Days 0 4.54  15 
ET 2.23 6.50  11.32 
IVpcinc_price_NRainyDays 0 36,368.48  157,132.8 
IVpcinc_price_ET 14,030.71 52,672.95  110,171.3 

 

 StUsage_perHH refers to the total SFR usage divided by the number of 

SFR households present in our dataset in each period-ending month, 

standardized to 30-day increments. Since we cannot match aggregated usage to 

actual billing dates, we cannot control for number of days in each billing cycle as 
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in the household model. As a next-best alternative, we standardize usage to 30-

day monthly observations in the following way: 

 

  Where: 
   : 1,…,n 

   : 1,…,156 

   : Number of households in a given month 

   : Number of days in a given month 

 

This is the dependent variable in our analysis. 

 Realpcinc and IV_price represent the real per capita income of the Tucson 

MSA and the value of our instrumented lagged average price. Neither of these 

variables is incorporated directly into our aggregate models, but the ratio of these 

two variables is used to develop the variable IVpcinc_price. We expect that, as 

the level of per capita income in the Tucson MSA increases relative to price, the 

water consumption of the representative Tucson SFR household will increase. 

 N_Rainy_Days corresponds to the number of rainy days per month as 

measured by AZMET. We expect this variable to be negatively related to the 

level of water consumption of the representative Tucson household. 

 ET is total monthly evapotranspiration for the Tucson area as measured 

by AZMET. We expect this variable to be positively related to representative 

household water consumption. 

 IVpcinc_price_nrainydays and IVpcinc_price_ET represent interactions 

between IVpcinc_price and the weather control variables N_Rainy_Days and ET, 
respectively. They are included in the SGV model formulation to allow  to vary 

with the values of the control variables, as in the household model. 

 As in the household analysis, we compare the SGF and SGV model 

formulations. The aggregate SGF model is specified as: 

StUsage_ perHHt =

Sum(Usagei )t
nt
d

!30

i

t

n

d

!
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StUsage_ perHHt =! '0+! '1(N _Rainy_Days)+! '2 (ET )+"(IVpcinc_ price)+#t  

 

  Where: 
   : 1,…,156 

 

Likewise, the SGV model takes the form: 
StUsage_ perHHt =! '0+! '1(N _Rainy_Days)+! '2 (ET )+"0 (IVpcinc_ price)
+"1(IVpcinc_ price_NRainyDays)+"2 (IVpcinc_ price_ET )+#t

 

 

Where: 
   : 1,…,156 

 

 We again conduct diagnostic tests to determine the appropriate estimation 

procedure for each model formulation. The results of these diagnostic tests are 

presented in Table 10. Because the aggregated data are only time-series and not 

panel, we do not need to perform a Hausman test. However, we still test for the 

presence of heteroskedasticity and autocorrelation. In the SGF model, the 

Breusch-Pagan test suggests that heteroskedasticity is present, but only at the 

90% confidence level, whereas we do not find evidence of heteroskedasticity in 

the SGV case. To test for autocorrelation, we calculate a Durbin-Watson d 

statistic for both models. The resulting d value is significantly less than 2 in both 

cases, indicating that there is positive autocorrelation at 1 lag in both models. 
	  
Table 10: Aggregate Model Diagnostics 

 
 SGF SGV 

Test Test Statistic Value 
(p-value) Test Statistic Value 

(p-value) 

Breusch-Pagan χ2(3) 6.44 
(0.092) χ2(5) 7.30 

(0.199) 

t

t
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Durbin-Watson d(4, 156) 0.7258 
(0.000) d(6, 156) 0.7489 

(0.000) 

 

Both the SGF and SGV model formulations are estimated using OLS, and 

significance is determined using Newey-West standard errors. Newey-West 

standard errors are an extension of Huber/White/sandwich standard errors that 

also correct for autocorrelation at a specified lag – in this case, 1 time period 

(Wooldridge 2013). Since Huber/White/sandwich standard errors are robust to 

any form of heteroskedasticity, including homoskedasticity, the use of Newey-

West standard errors should not present a problem even in the SGV case 

(Wooldridge 2010). The results of our estimation procedures are summarized in 

Table 11 below. 

 
Table 11: Aggregate Model Results 

  SGF SGV 

Variable Parameter Estimate 
(p-value) 

Estimate 
(p-value) 

Intercept αʼ0 5.4482 
(0.000) 

9.6730 
(0.000) 

N_Rainy_Days αʼ1 0.1751 
(0.000) 

0.142 
(0.401) 

ET αʼ2 0.6428 
(0.000) 

0.0185 
(0.950) 

IVpcinc_price β 0.0003 
(0.013)  

IVpcinc_price β0  -0.0002 
(0.390) 

IVpcinc_price_NRainyDays β1  0.0000 
(0.813) 

IVpcinc_price_ET β2  0.0001 
(0.028) 

 β 0.0003 
(0.013) 

0.0003 
(0.008) 

 γ 10.4154 
(0.000) 

10.4361 
(0.000) 
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 F-test 40.72 
(0.000)	  

26.69 
(0.000)	  

 

 From these results, we can see that the control variable N_Rainy_Days 

does not behave as expected. It is only shown to be significant in the SGF model, 

but there its coefficient has a positive sign. This implies that the representative 

Tucson SFR household consumes more water during months with more rainy 

days, which directly contradicts the result we find in the household analysis. We 

expect that this result has to do with the fact that weather data for the 

“representative” Tucson consumer come from a single weather station, while 

weather data in the household analysis are more spatially disaggregated. 

Because of this counterintuitive result, we also run three alternative versions of 

both aggregate model specifications, but none proves superior to the version 

presented above. In the first, we interact number of rainy days with dummy 

variables for the months May-June and July-September to differentiate between 

the effects of rainfall in the dry summer months and the wetter monsoon summer 

months, respectively, on water consumption. In the second, we drop the number 

of rainy days variable entirely. In the third, we include the more traditional total 

monthly precipitation metric in place of number of rainy days per month. The 

results from these alternative model runs are discussed in Appendix 12. 

 The ET variable does perform as expected. Its sign is positive and 

significant at the 99% confidence level in the SGF model, implying that 

consumers use more water (presumably for irrigation) when the evaporative 

demand of the landscape is higher. In the SGV model, this variable is not 

significant, but its interaction with IVpcinc_price is, suggesting that higher ET 

levels may lead to more income being allocated to water consumption at the 

expense of other goods. 

 After estimation, we calculate the values of the Stone-Geary parameters 

for the marginal budget share allocated to water and the conditional water use 

threshold. Both parameter estimates are positive and significant at the 99% 
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confidence level in each model, as we would expect. Comparing the SGF and 
SGV model results, we find almost no difference between the levels of  or . 

This is not surprising given the level of aggregation of this dataset. According to 

these models, the typical Tucson Water SFR consumer will not consume less 

than about 10.5 CCF per month on average. 

 The estimated SGF model takes the form: 

Q =10.4154+ 0.0003 I *
P

 

Similarly, we estimate the SGV model as: 

Q =10.4361+ 0.0003 I *
P

 

Because these two models are almost identical, we present only the graph 

of the SGV model in Figure 11 below. 

 
Figure 11: Aggregate Water Demand at Mean Income (SGV Model) 
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 We also calculate price and income elasticity of demand estimates ex 

post. Elasticity estimates are again calculated at mean levels for all variables, 

including weather controls as well as standardized monthly quantity consumed, 

instrumented lagged average price, and per capita income. Mean elasticity 

estimates do not differ between the SGF and SGV model specifications. 

Nonetheless, they are well within the range typically found in the literature as well 

as the range defined by the two household models. 

 

Table 12: Aggregate Model Price and Income Elasticity of Demand 
Calculations 

 

!p =
!"I *
PQ

 and !I =
"I *
PQ

 

 SGF SGV 
εp -0.194 -0.194 
ε I 0.194 0.194 

 
As in the household analysis, we also examine the variation in , , and 

over time. For both the SGF and SGV models, we calculate each parameter 

and elasticity at sample values for all variables in each period-ending month and 
plot the time series below in Figure 12. Note that allowing  to vary once again 

results in significantly less seasonality in . While does still tend to increase 

during the summer, variation in  in the SGV model appears to be more volatile 

throughout the rest of the year, owing to variations in the occurrence of rainfall. 
Also note also the stability of the range of  over time. In the household model, 

there appears to be a slight downward trend in the conditional water use 

threshold, but here the temporal trend is almost perfectly horizontal. Price 

elasticity, on the other hand, appears highly volatile and highly seasonal in both 

models. Notably, like the household models, the SGF model suggests that water 

consumption is more inelastic in summer. However, the SGV model implies just 

! !

!p

!

! !

!
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the opposite – that water consumption is more elastic in summer than during the 

rest of the year. As in the household analysis, demand appears to become more 

inelastic over time, though this trend is less obvious here. 

 

Figure 12: Temporal Variation in β, γ , and εp 

 
a) Temporal Variation in  

 
 

b) Temporal Variation in  
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c) Temporal Variation in Mean  

 
 

 We regress these parameter and elasticity values on 156-month time 

trends to assess the significance of any temporal trends that might be present. 

Unlike in the household analysis, we find significance in only two cases. There 
appears to be a slight upward trend in  in the SGV model, significant at the 90% 

confidence level. Also, the trend toward a more inelastic price elasticity of 

demand is found to be significant at the 99% confidence level, but only in the 

SGF model. 

 
Table 13: Significance of Aggregate Stone-Geary Parameter Trends 

	  
	  

Dependent Variable Explanatory Variable Coefficient 
(p-value) 

β SGV 

Intercept 0.0000 
(0.988) 

Date 0.0000 
(0.416) 

SGF 

Intercept 5.6958 
(0.116) 

Date 0.0001 
(0.186) 
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SGV 
Intercept 8.2296 

(0.000) 
Date 0.0001 

(0.060) 

SGF 
Intercept -0.7483 

(0.000) 
Date 0.00001 

(0.000) 

SGV 
Intercept -0.4237 

(0.065) 

Date 0.0000 
(0.306) 

 

 Finally, in Figure 13, we compare predicted values of per household 

consumption – representative household consumption – from both model 

specifications with actual per household consumption over the study period. The 

two models appear almost identical here, and while they do capture some of the 

general downward trend in per household usage, they fail to account for high 

peak summer use in the years 2000 – 2006 as well as unusually low winter use 

in the years 2008 – 2010. We expect that the reason the model under-predicts so 

drastically in the summer season from 2000 to 2006 is the counterintuitive 

positive coefficient on N_Rainy_Days. According to Mike Crimmins, a 

climatologist at the University of Arizona, these years, particularly 2002 and 

2003, represent anomalies in the historical record in terms of their somewhat 

higher temperatures and extremely low levels of precipitation. Indeed, AZMET 

total precipitation over the study period averages 2.71 inches in July, but from 

2000 to 2006, July precipitation levels range from as low as 0.4 inches to a 

maximum of 1.88 inches. On the other hand, July precipitation levels in the 

remaining years of the study period total 2.4 inches or more. This translates into 

a lower number of rainy days in the summer months from 2000 to 2006. Since 

our estimated coefficient on number of rainy days is positive, the model 

necessarily predicts lower than actual consumption in low rainfall years. The 

converse is true in high rainfall years. 

!

!p

!p
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Figure 13: Actual vs. Predicted Consumption Per Household 

 

 
 

5.3 Counterfactual Climate Scenarios 
 

 Finally, we present the results of our analysis of the sensitivity of water 

consumption to potential climate change. We conduct this sensitivity analysis 

using our aggregate models, since climate change is a phenomenon that occurs 

at a large spatial scale. Even the downscaled GCM projections provided by the 

Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections archive, 

which allow us to focus on changes in weather patterns for as small a locale as a 

metropolitan area, should not be expected provide reliable estimates of weather 

variation on a household scale. 

We attempt to assess the impact of alternative weather conditions 

throughout the study period, or counterfactual climate scenarios, on aggregate 

water demand. We substitute the projected values of number of rainy days per 

month and total monthly ET obtained from the MISS scenario and CanESM2 
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model output under emissions scenarios RCP 2.6 and RCP 8.5 for the current 

period data and use the estimated coefficients from our aggregate model runs to 

project average household water use over the study period. These projections, 

calculated for both the SGF and SGV model formulations, are plotted below in 

Figure 14. In this case, AZMET refers to the predicted values of per household 

water consumption obtained from our original aggregate model runs. 

 

Figure 14: Counterfactual Climate Scenario Projected Per Household 
Consumption Comparison 
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b) SGV Model 

 
 

 Immediately evident is the discrepancy between the CanESM2 scenarios 

and the results we obtain from our original model runs using AZMET historical 

data. Per household water consumption projections using CanESM2 data tend to 

vary between 15 and 20 CCF seasonally over most of the study period, while the 

model predictions relying on AZMET data tend to vary between 10 and 15 CCF 

over the study period. This suggests a 4 to 5 CCF increase in average use 

regardless of the season. 

 Also notable is the dampened seasonal variation in the MISS scenario. 

Despite the higher temperatures and decreased rainfall, peak summer use in this 

scenario is never as high as when the model is run using actual historical data. 

This result differs from that found by Chandrasekharan and Colby (2013) in their 

application of the MISS scenario to electricity demand. Under the MISS scenario, 

they find a general increase in electricity use year-round, with a more 

pronounced increase in summer electricity – just as we would expect to see in 
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the case of municipal water demand. Our strange result is most likely due to the 

counterintuitive positive coefficient we estimate for number of rainy days. Since, 

in the MISS scenario, we reduce the number of rainy days in the months of May-

September by 50%, this has the effect of predicting lower, not higher, water 

consumption when entered into our model. Apparently, the positive effect on 

water consumption of the higher summer temperatures and ET levels that we 

assume in the MISS scenario is overwhelmed by this precipitation decrease. 

 Finally, unlike in our original model runs using historic weather data, we do 

see much more variation in water use when projecting using the SGV model 

formulation as opposed to the SGF model. Peak summer use appears to be 

significantly higher when this model formulation is used. In the CanESM2 

scenarios, peak summer use exceeds 20 CCF per household in most years, 

which does not occur when the SGF model is used. Also, when using the SGV 

model formulation, differences between RCP 2.6 scenario and the RCP 8.5 

scenario are accentuated, particularly in the winter months, since the marginal 

budget share allocated to water is allowed to vary with the control variables. 

While differences in patterns of water consumption throughout the entire 

study period are substantial and interesting, water utilitiesʼ infrastructure 

investments and capital costs are driven primarily by peak summer demand. 

Therefore, we drill down to compare monthly means of projected per household 

water consumption across our original model runs and each of the counterfactual 

climate scenarios, with particular interest in changes in water consumption in the 

peak demand months of June and July. Since the SGV model allows us to 

capture more seasonal variation in demand, we present only results from this 

model here. 

Table 14 displays monthly mean water consumption per household under 

each of the counterfactual climate scenarios, as well as the predicted values from 

our original model runs and actual per household consumption during the study 

period. Below, Table 15 presents the percent difference in monthly mean water 

use in the representative Tucson household between each of the scenarios and 
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between each of the scenarios and our original model runs. T-tests for 

differences in means are performed, and significant differences, at the 90% 

confidence level or higher, are bolded. Only the most relevant comparisons are 

presented here. More extensive comparisons, including those from the SGF 

model formulations, and p-values from the t-tests performed, are reported in 

Appendix 11. 

 
Table 14: Monthly Mean Water Consumption Comparison (SGV) 

 

 Actual AZMET MISS CanESM2 
RCP 2.6 

CanESM2 
RCP 8.5 

Jan 10.2 10.8 12.4 15.1 15.8 
Feb 10.4 11.2 12.1 14.9 15.6 
Mar 10.1 12.6 12.7 15.9 16.2 
Apr 11.8 13.7 12.9 15.4 16.0 
May 13.5 14.8 13.6 16.0 16.4 
Jun 16.6 15.1 13.9 18.3 19.0 
Jul 17.1 15.5 14.4 19.8 20.6 
Aug 14.4 14.8 14.2 19.7 20.2 
Sep 14.8 13.6 13.7 18.7 19.8 
Oct 13.6 12.5 13.7 17.0 17.8 
Nov 12.6 10.9 12.5 15.2 16.2 
Dec 11.2 10.6 12.3 14.8 15.8 

 

 
Table 15: Percent Difference in Monthly Mean Water Consumption (SGV) 

 

 Percent Difference in Monthly Mean 

 

MISS 
vs. 

AZMET 

RCP 2.6 
vs. 

AZMET 

RCP 8.5 
vs. 

AZMET 

RCP 2.6 
vs. 

MISS 

RCP 8.5 
vs. 

MISS 

RCP 8.5 
vs. 

RCP 2.6 
Jan 14.62 39.66 45.62 21.84 27.04 4.26 
Feb 8.49 33.88 39.84 23.40 28.90 4.46 
Mar 0.38 25.38 27.94 24.91 27.46 2.04 
Apr -5.78 12.05 16.60 18.91 23.74 4.06 
May -8.07 7.63 10.78 17.08 20.51 2.93 
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Jun -7.72 21.22 25.55 31.37 36.06 3.57 
Jul -7.33 27.52 32.41 37.60 42.87 3.83 
Aug -3.78 33.33 36.47 38.56 41.83 2.36 
Sep 1.19 37.78 46.03 36.17 44.31 5.98 
Oct 9.13 35.71 42.20 24.36 30.31 4.78 
Nov 14.84 40.16 49.13 22.05 29.86 6.40 
Dec 16.31 39.96 49.14 20.33 28.23 6.56 

 

According to Table 15, both CanESM2 scenarios project significantly 

higher per household use on average in the months of June and July than our 

original model runs (21-26% in June, 27-32% in July). And while RCP 8.5 

suggests higher consumption levels in these months than RCP 2.6, these 

differences are not statistically significant. On the other hand, the MISS scenario 

suggests on average 7-8% less consumption per household in the months of 

June and July than do our original model runs. Once again, we expect that this is 

due to the fact that the number of rainy days in the MISS scenario is reduced and 

the coefficient we estimate for number of rainy days is positive. Also notable is 

that, in all 3 counterfactual climate scenarios, water consumption is expected to 

increase most dramatically in the winter months. This is probably due to the fact 

that the CanESM2 scenarios predict the most dramatic increase in the number of 

rainy days in the winter months compared to the historic period. Since our 

estimated coefficient on number of rainy days is positive, our water consumption 

projections are most dramatically affected in winter as well. 
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6. Conclusions and Policy Implications 
 
 

 Despite continual population growth, Southwestern water utilities have 

recently been experiencing declining levels of water consumption per household, 

which has had negative impacts on their revenue stream and their ability to cover 

costs in the short-run. Demand forecasting models need to more accurately 

reflect household decision-making behavior regarding water consumption, 

particularly in the face of research that suggests higher regional temperatures 

and increasing variability in precipitation may be in store. 

This analysis leverages the Stone-Geary demand specification to better 

account for household decision-making behavior with regard to water 

consumption. In doing so, we attempt to clarify the relationship between 

household behavior and trends in urban water consumption. We also utilize a 

substantial suite of control variables, including a novel combination of satellite 

imagery, weather data, and parcel characteristics, to control for variability in 

consumption among households and over time. Finally, we examine the degree 

to which potential climate change may influence consumption behavior. 

 

6.1 Pricing Implications 
 

 Our results indicate that price elasticity of demand among SFR 

households in Tucson is roughly -0.2 at mean values of all variables in our 

household model and tends to range between 0 and -0.6 over the study period, 

with a clear trend toward 0 over the study period. This result is consistent with the 

larger body of literature surrounding municipal water demand; according to 

Worthington and Hoffman (2008), most studies estimate the price elasticity of 

demand for water to be between 0 and -0.5 in the short run and between -0.5 and 

1 in the long run. 
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However, an important feature of the Stone-Geary demand function is that 

it allows the price elasticity of demand to vary with quantity consumed, implying 

that consumers respond less to price increases if they are not consuming much 

water to begin with. Related to this, Stone-Geary function assumes a minimum 

level of consumption below which households will not respond to price – the 

conditional water use threshold. The notion that households will automatically 

consume a given amount before taking price into consideration seems to fit the 

case of residential water consumption well. 

In Tucson, we estimate that an average SFR household will consume 

roughly 10 CCF per billing period before considering price, though this minimum 

level may vary between 8 and 12 CCF depending on the time of year. The fact 

that this threshold varies seasonally implies that some portion of household water 

consumption for outdoor use is inelastic to price. This is important for utility 

managers to understand, since only at levels above a given householdʼs 

conditional water use threshold can a marginal price increase be expected to 

have any influence on water consumption. Over the course of the study period 

Tucson Water set the first tier of its IBR structure at 15 CCF. Given SFR usersʼ 

generally low price responsiveness at levels of consumption below 15 CCF, this 

appears to be a reasonable level at which to impose a price increase if the goal is 

to restrict consumers from using much more water than 15 CCF. However, we 

suspect that the imposition of a block price increase at 15 CCF may have had 

some influence on the average level of the household conditional water use 

threshold in Tucson in the first place, given our examination of trends in the 

marginal budget share allocated to water as well as the conditional water use 

threshold itself. 

 

6.2 Household Decision-Making and Urban Water Consumption 
 

 The results of our household analysis suggest that water prices rose 

relative to income levels throughout the study period, causing households to 
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allocate a larger share of their monthly income to water. In response, we notice a 

slight decline in the average household conditional water over the study period in 

the SGF model. While this difference is only a small fraction of a CCF over the 

entire period, this trend is statistically significant. There is also a slight downward 

trend in the conditional water use threshold in the SGV model, but this trend is 

not significant. 

Initially, it may seem contradictory that the portion of water use that is 

supposedly perfectly inelastic to price may actually be responsive to price over 

time. However, the words “over time” are critically important. While price 

increases are not expected to influence water consumption below the conditional 

water use threshold within the same billing cycle, it is possible that a rising trend 

in water prices over time may cause households to revise their assumptions 

about their baseline monthly water needs. In essence, this reflects a sort of 

Bayesian process by which consumers may be induced to adopt more 

conservative water use habits as a result of longer-term price increases. 

It is important to note that these trends in the conditional water use 

threshold and the marginal budget share allocated to water are not evident in the 

results of our aggregate analyses. For the sake of comparison, we ran our 

household model using only controls for weather and the number of days in a 

billing cycle (see Appendix 13). From this, we see that more disaggregated 

precipitation measurements lead to more reasonable results (a negative and 

significant coefficient on number of rainy days). We also note that the upward 

trend in the marginal budget share allocated to water and the downward trend in 

the conditional water use threshold are not found when household heterogeneity 

is not accounted for. And while the weak evidence that we find for a decline in the 

conditional water use threshold in our original household analysis – a small but 

significant negative trend in the SGF model, and a small, insignificant decline in 

the SGV model – may not account for much of the declining trend in household 

water use shown in Figure 1b, it does represent a step forward in our 

understanding of the way in which household decision-making affects aggregate 
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water consumption trends. Our results appear to point to the value of examining 

behavior at the household level in order to understand trends in urban water 

consumption. By controlling for household heterogeneity via a panel model, we 

can account for more of the variation in aggregate demand trends than we could 

by treating all Tucson SFR consumers as one. 

 It is likely that factors such as new appliances or water-saving household 

technologies – factors for which we do not have data – may contribute to the 

decline in water consumption over the study period as well. Future research may 

need to be conducted to incorporate technological change explicitly in the model, 

with care taken to account for potential endogeneity where water prices may 

influence appliance choice. Nonetheless, since the conditional water use 

threshold is a function of the control variables included in the model, the Stone-

Geary model should be flexible enough to accommodate such changes. 

 In short, our analysis suggests that the Stone-Geary functional form is a 

relatively straightforward yet powerful method that can be used to account for the 

subtleties of household-level decision-making processes related to municipal 

water demand. 

 

6.3 Control Variable Impacts 
 

 The control variables included in our household analysis are particularly 

valuable. The number and scope of the control variables in our analysis, 

including parcel and housing attributes, demographic characteristics, and 

weather observations, is rivaled by few studies in the water demand literature. 

And our results indicate that these variables are strong determinants of water 

demand. In our household model, only the significance of the demographic 

variables related to household size and age distribution is weak, and we expect 

that this is more a factor of the available data than the phenomena these 

variables represent. In most other cases, the scale of data collection corresponds 

closely to the actual data generating process. 
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 Notably, our triple interaction variable – the product of ET, parcel 

landscapable area, and instrumented NDVI – and our interaction of pool size and 

ET have significant positive impacts on household water consumption. Both of 

these variables, as well as the use of ET in our aggregate model instead of 

temperature, attempt to represent the relationship between summer weather 

conditions and outdoor water use in a much more complex manner than has 

been traditionally undertaken. Each of these variables – ET, NDVI, landscapable 

area, and even pool size – has received scant attention in the literature thus far in 

isolation, let alone their interrelationship. Even in our aggregate analysis, ET is 

shown to have a significant, positive effect on water consumption. Our results 

suggest that water managers should consider using ET as a more 

comprehensive measure of weather conditions when attempting to explain 

consumption behavior related to outdoor water use. On the other hand, our 

finding that NDVI is endogenous may indicate that, for water managers in Tucson 

and elsewhere, investing in the time, technological capacity, and expertise 

necessary to utilize publicly available satellite imagery to inform water demand 

analysis may not be worthwhile. Instead, it may be more beneficial to rely on 

more readily available parcel characteristics such as house age and value to 

indicate parcel vegetative cover. 

 Additionally, the fact that we find Hispanic ethnicity to have a highly 

significant effect on water consumption despite the lack of precision in the 

available data indicates that understanding the relationship between cultural 

norms and water consumption is an area for future research as well. The notion 

that a difference in bottled water and tap water dependence exists between 

foreign-born individuals and American nationals is one potential explanation, but 

this analysis is not well-suited to address the causal mechanisms behind this 

relationship. 
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6.4 Potential Impacts of Climate Change 
 

 The results of our counterfactual climate analysis indicate that household 

water consumption behavior is responsive to changes in weather patterns, all 

else constant. An important caveat to our counterfactual climate scenario 

analysis is that we do not make any effort to anticipate changes in the economic 

or social state of the Tucson region in the future. We simply analyze how water 

consumption behavior may have differed in the study period under alternative 

weather regimes. As economic or demographic conditions change, however, the 

manner in which aggregate water consumption behavior in Tucson is affected by 

climate may change as well. 

Nonetheless, we find significant differences in water consumption behavior 

under each of our counterfactual climate scenarios. This indicates that, in the 

absence of substantial technological or socioeconomic change, climate change 

along the lines of current GCM projections could lead to significant increases in 

water consumption in Tucson. In the months of June and July, these increases 

could be as high as 32% in the CanESM2 scenarios, which could have significant 

ramifications for Tucson Water in terms of their investment in infrastructure to 

meet peak demand. However, in all three counterfactual climate scenarios, the 

trend in water consumption is expected to be upward year-round, not just in the 

months that are hottest and driest. In fact, in the CanESM2 scenarios, per 

household water consumption is expected to increase by at least 10 percent in 

every month of the year relative to actual consumption levels over the study 

period. To satisfy this demand would require obtaining even more water supplies 

from an already water-stressed environment. Given the pending shortage 

situation along the Colorado River, this could be a significant challenge for a 

Southwestern water utility going forward. 
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Appendices 
 

Appendix 1: Removing Households Prior to Sampling 
 

 The original SFR household dataset provided by Tucson Water contains 

usage data pertaining to 284,993 unique metered connections that can be 

matched to 259,646 unique Pima GIS parcel identifiers. However, because many 

households have insufficient or nonsensical data, we are not able to draw our 

sample for the household analysis from this entire set of households. Households 

are removed from the dataset as necessary at various stages in the development 

of the household database. 

 First, households with insufficient data are removed. To be clear, 

insufficient data does not refer to all missing data, but rather to missing data for 

which no reasonable method of approximation exists. In total, 122,633 

households (43.0% of our original dataset) on 97,982 parcels are removed from 

our dataset due to insufficient data. Of these, 112,930 (92.1%) metered 

connections corresponding to 89,369 parcels are eliminated because the data 

provided by Tucson Water is insufficient to calculate an approximate water bill for 

each billing cycle, for a number of reasons. Usage and rate data are complete for 

the entire dataset; however, as Chapter 4 describes, usage and volumetric rates 

are far from the only components in a Tucson Water bill. Many households do not 

have a record of their meter size, which is necessary to calculate meter and 

groundwater charges in each bill. Likewise, for several households, there is no 

indication of whether the household has sewer or garbage service, which makes 

it impossible to determine whether the associated fees for either service should 

be incorporated in approximations of each householdʼs regular bill. Since price is 

a key variable in our model, households for which accurate price information 

could not be obtained are removed from our dataset. 

 During our calculation of lagged average price, an additional 360 

households corresponding to 355 parcels are removed. These households are 
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either so new or billed at such infrequent intervals that a lagged price measure 

cannot not be calculated for each period-ending month; in fact, the most 

frequently-billed household in this subset received only 4 bills throughout the 

study period. Such households would confound our panel analysis. Similarly, 

2,092 households on 2,039 parcels are removed when calculating the winter 

quarter (Dec-Feb) average because no consumption data for December, 

January, or February of the relevant year are available. These households either 

started service later in the year or did not have frequent enough meter readings 

to provide complete usage data. Since we rely on the winter quarter average as 

an approximation of indoor usage in some of our models, households without 

sufficient information to calculate this average are eliminated from our dataset. 

 Finally, 7,251 households were removed from our dataset because 

records from the Pima County Assessorʼs Office are not available for their 

corresponding 6,219 parcel identifiers. Such records are necessary to our 

calculations of household income and parcel landscapable area. After all 

households with insufficient data are removed, 162,360 households 

corresponding to 161,664 unique parcels remain in our dataset. 

 Once the dataset is pared down to only those households with sufficient 

data to inform our analysis, remaining households with nonsensical values for 

parcel size or number of days in a given billing cycle are also eliminated from our 

dataset. Nonsensical parcel size values include a small number of parcels for 

which the area measurement provided by Pima GIS is smaller than the minimum 

house square footage in the Pima County Assessorʼs database (216 sq. ft.). 

Additionally, households with billing cycles of less than 7 days or greater than 65 

days are removed from the dataset. Billing cycles of roughly 62 days might imply 

that Tucson Water simply skipped a monthly meter read; however, billing cycles 

greater than 65 days suggest irregular measurement, which would confound the 

price signals sent to consumers via the IBR structure. Similarly, billing cycles of 

less than one week likely do not constitute regular meter reading, but rather 

some error or change in service. Such anomalies would confound our results 
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regarding the effect of price on consumption and are therefore excluded from our 

analysis. In total, 34,716 individual metered connections on 34,373 unique 

parcels are removed from our dataset due to nonsensical values for parcel size 

or number of days in a billing cycle. 

 After removing all households listed above, we can be confident that the 

households remaining in our dataset have complete and reliable information 

necessary for our analysis. Though our final household analysis is restricted to 

only a small representative sample of these remaining households, this 

restriction is imposed due to computational constraints rather than issues of data 

integrity or incompleteness. The final number of unique metered connections 

from which our sample is drawn is 127,644, accounting for 127,291 unique 

parcels. 

 

Appendix 2: Dealing with Period-Ending Months with Multiple Bills 
 

 While Tucson Water assigned each bill in our dataset to a “period-ending” 

month to ensure that each month had only one bill per household, this process 

was not flawless. Even after data cleaning and sampling, several households in 

our dataset have multiple usage records assigned to the same month. While an 

unbalanced panel model could account for missing months or households that 

were added to the dataset in the middle of our study period, in order to use the 

period-ending month as the time step of our household analysis, we have to 

ensure that each month is assigned at maximum one bill. 

 We examine the 246,049 usage records associated with the 2,000 

households in our sample dataset, identifying and removing 4,535 exact 

duplicate usage records from the dataset. We also find 804 usage records for 

which the household and billing cycle dates are identical, but usage differs. Upon 

closer investigation we discovered that these households have multiple 

connections, one for potable water and another for either reclaimed water or 

irrigation. Only the 402 records for potable connections are kept. 
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 The remaining usage records “overlapping” on the same month are 

handled in one of two ways. In 34 of the cases, we use the meter read date to 

reassign the bill to either the previous or subsequent month, provided that no bill 

was already assigned to these months. The remaining overlapping usage records 

are merged together by summing total usage in the period-ending month; 1,771 

overlapping usage records are merged to form 883 non-overlapping records in 

this way. 

 The final dataset used in our household analysis has 240,224 usage 

records in unique period-ending months. 

 

Appendix 3: AZMET Weather Data by Month and Year 
 
Table 16: Total Precipitation 

 
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1998 0.19 3.83 1.46 0.49 0.00 0.00 3.37 1.14 0.93 0.11 1.21 0.35 
1999 0.00 0.00 0.02 1.10 0.00 0.00 6.80 2.03 1.44 0.00 0.00 0.01 
2000 0.17 0.07 1.03 0.01 0.00 2.94 0.40 2.47 0.40 4.07 0.74 0.04 
2001 1.96 0.17 0.79 1.43 0.07 0.31 1.44 0.80 0.18 0.01 0.04 0.78 
2002 0.21 0.01 0.00 0.00 0.00 0.00 1.88 3.20 2.01 0.48 0.25 0.64 
2003 0.01 1.24 0.47 0.04 0.17 0.00 1.72 3.31 1.72 0.55 1.14 0.27 
2004 0.99 0.58 1.15 1.22 0.00 0.02 1.18 0.93 1.58 0.79 0.84 0.78 
2005 1.60 1.88 0.18 0.44 0.61 0.32 1.40 4.26 0.07 0.17 0.00 0.02 
2006 0.00 0.01 0.72 0.00 0.00 0.26 5.08 0.85 1.52 0.59 0.00 0.54 
2007 0.68 0.19 0.50 0.55 0.00 0.00 4.33 2.29 0.90 0.23 1.77 1.12 
2008 0.82 1.21 0.18 0.02 0.00 0.32 2.75 5.59 1.66 0.06 0.75 0.57 
2009 0.74 0.80 0.18 0.47 0.38 0.36 2.42 1.45 0.67 0.45 0.15 0.56 
2010 2.53 2.32 0.82 0.09 0.00 0.22 2.97 1.94 0.65 0.98 0.04 0.94 
2011 0.20 0.23 0.09 0.30 0.15 0.04 1.90 1.82 2.84 0.14 1.49 2.04 
2012 0.35 0.17 0.58 0.16 0.04 0.03 2.98 2.32 0.66 0.03 0.19 1.31 
Avg. 0.70 0.85 0.54 0.42 0.09 0.32 2.71 2.29 1.15 0.58 0.57 0.66 
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Table 17: Number of Rainy Days 

 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
1998 3 11 8 4 0 0 13 8 4 2 3 4 
1999 0 0 2 3 0 0 15 13 6 0 0 1 
2000 1 3 4 1 0 9 4 13 2 10 5 1 
2001 11 5 4 5 1 2 15 7 5 1 2 7 
2002 2 1 0 0 0 0 11 8 5 4 2 6 
2003 1 10 4 1 2 0 8 11 5 4 2 4 
2004 7 4 5 6 0 1 6 5 4 5 4 4 
2005 9 8 3 2 2 5 10 12 3 5 0 2 
2006 0 1 4 0 0 4 11 7 5 7 0 3 
2007 6 3 3 4 0 0 14 10 4 1 2 7 
2008 6 3 1 1 0 3 14 13 11 4 5 7 
2009 7 3 1 2 3 2 9 11 10 14 3 4 
2010 7 7 6 3 0 1 14 9 5 5 2 4 
2011 1 2 1 2 9 3 20 22 16 10 8 8 
2012 4 5 2 1 1 1 15 11 11 3 4 8 
Avg. 4.3 4.4 3.2 2.3 1.2 2.1 11.9 10.7 6.4 5.0 2.8 4.7 
 

 
Table 18: Mean Temperature 

 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
1998 50 49 56 61 72 81 86 85 82 69 57 49 
1999 50 55 60 61 74 83 82 83 80 70 60 48 
2000 51 56 58 69 80 84 87 83 82 66 50 49 
2001 47 51 59 65 78 84 84 84 83 70 61 46 
2002 49 54 57 71 75 87 86 84 80 67 58 47 
2003 54 53 59 65 77 86 89 85 82 73 56 49 
2004 51 49 65 66 78 85 86 84 80 68 55 50 
2005 52 55 58 66 76 84 89 82 81 70 59 50 
2006 51 55 58 68 79 87 87 83 77 67 59 48 
2007 46 54 62 67 78 86 86 85 82 70 62 46 
2008 49 52 59 67 72 85 84 83 81 69 59 50 
2009 52 54 61 66 79 82 88 87 81 68 60 48 
2010 50 52 57 65 73 85 88 86 83 70 55 52 
2011 47 49 62 68 72 85 86 88 81 70 56 46 
2012 51 53 58 69 78 87 85 86 80 71 61 50 
Avg. 50.0 52.7 59.3 66.3 76.1 84.7 86.2 84.5 81.0 69.2 57.9 48.5 
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Table 19: Total ET (Modified Penman-Monteith) 

 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
1998 2.91 2.65 5.02 7.18 9.34 10.88 8.68 8.41 7.4 6.39 3.59 3.04 
1999 3.98 5.02 6.98 7.78 10.21 10.55 7.18 7.41 6.65 6.65 4.47 3.91 
2000 3.59 4.42 6.23 8.96 11.32 9.08 9.31 7.53 7.37 3.98 2.63 2.56 
2001 2.25 2.99 5.6 6.96 9.8 10.2 7.17 7.83 7.56 5.52 3.81 2.68 
2002 3.06 4.51 7.09 8.6 10.37 11.15 8.38 7.73 6.87 5.19 4.06 2.23 
2003 3.43 2.76 5.48 8.07 9.55 10.68 9.62 7.74 6.98 5.65 3.16 2.91 
2004 2.5 3.5 6 7.5 11 10.7 9.2 8 7.3 5.2 3.1 2.7 
2005 2.4 2.7 5.7 8 9.3 10.2 9.5 7.3 7 5.7 4.1 3 
2006 4 4.2 5.2 8 10.8 10.1 8.5 7 6.2 5.1 4.4 3.2 
2007 2.8 4 7 8.3 10.2 11.3 8.9 7.2 7.1 6.3 4 2.5 
2008 3 3.8 6.9 9 9.7 10.6 8.3 7.6 7.3 6.5 4.2 2.4 
2009 3.3 4.3 6.9 8.5 9.7 9.7 9.3 9.5 7.4 6.3 4 2.5 
2010 2.6 2.8 5.9 7.2 9.9 10.7 8.9 7.9 7.6 5.6 4.2 2.7 
2011 3.5 4.2 7.4 9 10.5 11.1 9.2 8.3 6.9 6 3.4 2.2 
2012 3.3 4.4 6.9 8.7 11.2 11.3 8.30 7.80 6.80 6.30 4.10 2.80 
Avg. 3.11 3.75 6.29 8.12 10.19 10.55 8.70 7.82 7.10 5.76 3.81 2.76 
 

 

Appendix 4: Methods of Calculating Evapotranspiration 
 

 Our water demand analysis utilizes data on monthly standardized 

reference crop evapotranspiration (ET) rather than a more traditional temperature 

metric. According to Brown (2005), ET “provides an estimate of environmental 

evaporative demand and serves as a critical input for most scientifically-based 

irrigation scheduling systems.” As such, we expect ET to have a substantial 

influence on SFR irrigation (outdoor water use) behavior. 

In practice, ET data are not widely available. In Tucson, the Arizona 

Meteorological Network (AZMET) represents one of the only publicly available 

sources of ET, and we use their data in our analysis. Part of the reason for the 

lack of publicly available sources of ET data is the ongoing debate over 

appropriate calculation methods. Although the long-used Penman-Monteith 
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equation is widely considered to be the gold standard in ET estimation, its 

substantial data requirements often make it infeasible in practice. Several 

methods of approximating the Penman-Monteith equation have evolved in 

specific regional contexts. The following equation details the process by which 

the Arizona Meteorological Network (AZMET) estimates standardized reference 

crop evapotranspiration (ET), which represents only a slight modification of the 

Penman-Monteith equation. 

ETos =
0.408!Rn +!

900
T + 273

u2 (es " ea )

!+! (1+ 0.34u2 )
 

 Where: 
ETos : Standardized reference crop evapotranspiration for a short crop (mm/day) 

! : Slope of the saturation vapor pressure-temperature curve (kPA/ºC) 
Rn : Calculated net radiation at the crop surface (MJ/(m2 x day)) 

! : Psychrometer constant (kPA/ºC) 

T : Mean daily air temperature measured at 1.5 m above ground level (ºC) 
u2 : Mean daily wind speed measured at 2m above ground level (m/s) 

es : Saturation vapor pressure measured at 1.5 m above ground level (kPA) 

ea : Mean actual vapor pressure measured at 1.5 m above ground level (kPa) 

 
 While we use AZMET ET data to estimate water demand during our study 

period, we cannot obtain such a diverse set of weather measurements for use in 

our counterfactual climate scenario analysis. In fact, since global climate model 

output must be regionally downscaled to be useful at a scale as small as a 

metropolitan area, only daily minimum and maximum temperature and daily 

precipitation measurements are available in any meaningfully accurate way for 

the Tucson area, via the Downscaled CMIP3 and CMIP5 Climate and Hydrology 

Projections archive. Fortunately, recent work by McKellar and Crimmins (2015) 

has shown that the ET formula developed by Hargreaves (1994) reliably 

approximates Penman-Monteith ET calculations in southern Arizona. The 
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Hargreaves (1994) method is advantageous in that it requires only daily minimum 

and maximum temperature and a latitude-specific measure of solar radiation.  To 

project future ET for our counterfactual climate analysis, we use the Hargreaves 

(1994) equation, which is presented below. 

ETo = 0.0023!RA! (Tmean +17.8)! (Tmax "Tmin )
0.5  

 Where: 
ETo : Potential evapotranspiration 

RA : Constant representing water evaporation due to latitude-specific 

extraterrestrial radiation 
Tmax : Daily maximum temperature (ºC) 

Tmin : Daily minimum temperature (ºC) 

Tmean : (Tmax +Tmin ) / 2  

 

 

Appendix 5: Estimating Coefficient to Project ET 
 

 In order to obtain reasonable estimates of future ET for our counterfactual 

climate scenario analysis, we utilize the Hargreaves (1994) ET formula to 

approximate ET using downscaled daily minimum and maximum temperature 

data. The Hargreaves formula calls for a latitude-specific solar radiation constant, 

which we do not have. Instead, we estimate a coefficient for temperature by 

regressing AZMET daily ET on daily minimum and maximum temperature data 

during the study period (restricting the intercept to be zero), and use this constant 

to project future ET. The results of our regression are shown below. 
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Table 20: Estimating an ET Projection Coefficient for Temperature 

 

Variable Coefficient 
(p-value) 

Temperature 0.00139 
(0.000) 

R2 0.905 

F-test 48,639.22 
(0.000) 

 

 Once daily ET has been projected, we simply calculate by summation total 

monthly ET for each month over the period July 2085 – June 2099 to include in 

our water demand model in place of the current period weather data. 

 

 

Appendix 6: MISS Scenario Weather Data By Month and Year 
 
Table 21: MISS Number of Rainy Days 

 

 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1998 
      

6.5 4 2 2 3 4 
1999 0 0 2 3 0 0 7.5 6.5 3 0 0 1 
2000 1 3 4 1 0 4.5 2 6.5 1 10 5 1 
2001 11 5 4 5 0.5 1 7.5 3.5 2.5 1 2 7 
2002 2 1 0 0 0 0 5.5 4 2.5 4 2 6 
2003 1 10 4 1 1 0 4 5.5 2.5 4 2 4 
2004 7 4 5 6 0 0.5 3 2.5 2 5 4 4 
2005 9 8 3 2 1 2.5 5 6 1.5 5 0 2 
2006 0 1 4 0 0 2 5.5 3.5 2.5 7 0 3 
2007 6 3 3 4 0 0 7 5 2 1 2 7 
2008 6 3 1 1 0 1.5 7 6.5 5.5 4 5 7 
2009 7 3 1 2 1.5 1 4.5 5.5 5 14 3 4 
2010 7 7 6 3 0 0.5 7 4.5 2.5 5 2 4 
2011 1 2 1 2 4.5 1.5 10 11 8 10 8 8 
2012 4 5 2 1 0.5 0.5 

      Avg. 4.4 3.9 2.9 2.2 0.6 1.1 5.9 5.3 3.0 5.1 2.7 4.4 
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Table 22: MISS Temperature 

 

a) Minimum 
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
1998       80 80 74 56 45 39 
1999 37 39 46 49 59 71 76 75 70 55 45 36 
2000 38 43 45 54 66 75 80 78 74 59 41 37 
2001 39 40 47 52 65 71 79 77 72 58 50 36 
2002 38 39 41 56 61 73 80 77 74 56 44 38 
2003 41 44 47 51 65 72 81 80 74 62 47 37 
2004 42 38 54 55 65 72 79 77 72 57 46 39 
2005 44 50 48 52 65 73 80 78 74 59 45 37 
2006 38 41 47 53 65 77 82 80 71 56 45 36 
2007 37 42 48 54 65 72 81 81 75 58 50 38 
2008 40 41 45 50 61 72 80 79 74 55 47 41 
2009 41 42 48 52 68 73 83 79 73 55 46 38 
2010 41 44 46 52 59 74 84 81 75 60 42 41 
2011 35 37 47 55 60 69 79 80 73 56 47 38 
2012 39 41 44 53 65 75       
Avg. 39.3 41.5 46.7 52.7 63.4 72.8 80.1 78.8 73.2 57.4 45.7 38.0 
 

b) Mean 
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
1998       93 93 89 73 63 55 
1999 56 59 64 65 77 86 88 88 85 74 66 53 
2000 56 60 62 72 84 90 93 91 89 72 55 55 
2001 53 56 63 69 83 89 91 91 88 75 65 52 
2002 54 58 60 73 80 92 93 92 88 72 62 53 
2003 60 58 62 68 82 90 95 93 89 78 62 55 
2004 56 54 69 69 82 89 93 91 86 72 59 55 
2005 58 60 62 69 81 90 95 90 89 75 64 56 
2006 56 59 61 70 83 93 94 91 84 72 64 53 
2007 51 58 65 70 82 90 93 93 89 75 68 52 
2008 54 57 63 69 78 90 92 91 88 74 64 56 
2009 57 59 65 69 84 88 96 93 88 71 65 53 
2010 55 57 61 68 78 90 95 93 90 75 59 58 
2011 53 54 65 71 77 89 93 94 88 74 61 51 
2012 57 57 62 71 83 92       
Avg. 55.4 57.5 63.2 69.5 81.1 89.8 93.1 91.7 87.8 73.6 62.6 54.0 
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 c) Maximum 

 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1998 
      

106 106 104 91 81 71 
1999 75 78 82 81 94 101 99 102 99 94 87 70 
2000 75 77 78 90 102 104 107 103 104 84 70 74 
2001 66 71 78 85 101 107 104 105 104 92 81 68 
2002 70 77 79 91 98 110 106 106 102 87 80 67 
2003 78 71 78 85 100 108 110 106 103 94 77 73 
2004 70 69 85 84 100 107 107 104 101 87 73 71 
2005 72 70 76 86 98 106 109 102 103 90 82 74 
2006 74 77 76 88 102 109 107 102 98 89 83 70 
2007 66 74 83 87 100 108 106 106 102 91 85 66 
2008 68 73 80 88 95 108 104 103 102 92 81 71 
2009 73 77 81 85 100 102 109 107 103 87 83 67 
2010 70 70 76 83 96 107 106 105 105 90 77 75 
2011 71 71 83 88 94 108 107 108 103 92 76 65 
2012 74 74 80 89 102 110 

      Avg. 72 73 80 86 99 107 106 105 102 90 80 70 
 

 
Table 23: MISS ET 

 
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
1998       8.40 8.47 8.25 7.64 6.54 5.50 
1999 6.14 5.85 6.78 6.27 7.75 8.11 7.41 8.08 7.73 8.25 7.32 5.44 
2000 6.08 5.81 6.24 7.37 8.99 8.31 8.72 8.09 8.46 6.31 5.11 5.95 
2001 4.84 4.93 6.26 6.73 8.89 9.06 8.11 8.56 8.50 7.65 6.22 5.19 
2002 5.45 5.67 6.18 7.39 8.69 9.55 8.45 8.62 7.93 7.09 6.38 5.04 
2003 6.43 4.76 6.14 6.80 8.63 9.23 9.10 8.33 8.25 7.80 5.73 5.83 
2004 5.23 4.87 6.82 6.46 8.69 9.12 8.65 8.34 7.91 7.06 5.26 5.44 
2005 5.28 4.24 5.80 6.88 8.39 8.83 9.09 7.74 8.20 7.34 6.69 6.01 
2006 5.89 5.71 5.75 7.12 8.98 9.02 8.38 7.70 7.52 7.30 6.88 5.39 
2007 4.89 5.26 6.82 7.03 8.62 9.26 8.39 8.26 7.99 7.61 6.81 4.88 
2008 4.99 5.38 6.59 7.32 8.04 9.34 7.99 7.93 7.92 7.92 6.40 5.37 
2009 5.69 5.60 6.61 6.80 8.51 8.12 8.66 8.83 8.15 7.10 6.67 5.06 
2010 5.29 4.59 5.94 6.56 8.32 8.95 8.01 8.23 8.45 7.24 5.99 5.97 
2011 5.65 5.02 6.98 7.03 8.03 9.54 8.71 8.70 8.32 7.79 5.65 4.66 
2012 5.94 5.49 6.65 7.36 9.02 9.43       
Avg. 5.56 5.23 6.40 6.94 8.54 8.99 8.43 8.28 8.11 7.44 6.26 5.41 
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Appendix 7: CanESM2 Projections by Month and Year 
 
Table 24: Total Precipitation 2085-2099 

a) RCP 2.6 
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

2085       2.71 1.55 1.16 0.19 0.02 0.07 

2086 0.65 1.11 2.68 0.24 0.15 0.55 2.98 1.65 1.14 0.47 0.75 0.38 

2087 0.57 1.09 0.11 0.36 0.13 0.55 4.17 1.97 1.03 0.19 1.00 1.07 

2088 1.91 0.58 0.88 0.55 0.07 0.43 3.05 3.48 0.92 0.85 1.24 1.66 

2089 0.87 0.15 3.47 0.22 0.10 0.34 2.71 2.76 0.62 0.11 0.21 0.41 

2090 0.95 3.68 0.99 0.52 0.08 0.72 3.01 5.23 1.73 0.11 0.86 0.60 

2091 0.53 0.23 0.89 0.13 0.08 0.55 1.34 2.86 0.25 0.21 0.37 0.17 

2092 1.29 0.03 0.15 0.03 0.02 0.27 1.91 3.90 0.67 0.58 0.20 1.54 

2093 0.30 2.06 1.32 0.88 0.04 0.20 2.61 3.26 1.41 0.52 0.15 0.90 

2094 0.21 2.49 0.67 0.38 0.13 0.16 2.45 4.78 0.33 0.90 2.73 0.38 

2095 1.64 0.81 0.51 0.51 0.13 0.24 0.93 2.15 1.10 1.23 0.99 0.83 

2096 0.30 0.11 0.57 0.19 0.01 0.33 2.29 2.86 1.93 0.06 0.09 2.31 

2097 2.80 2.99 0.20 0.16 0.08 0.51 4.24 4.93 2.44 0.40 0.12 0.54 

2098 0.08 2.12 0.19 1.00 0.06 0.16 3.93 3.70 0.95 0.46 1.52 0.47 

2099 1.66 0.55 2.08 0.24 0.02 1.02       

Avg. 0.98 1.29 1.05 0.39 0.08 0.43 2.74 3.22 1.12 0.45 0.73 0.81 

 

b) RCP 8.5 
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

2085       2.57 6.33 4.02 0.38 0.28 2.96 

2086 1.52 2.81 0.09 0.19 0.04 0.73 4.39 7.18 2.75 0.53 1.51 1.21 

2087 0.50 1.20 0.47 0.53 0.02 0.78 4.31 5.10 3.04 1.01 1.43 1.48 

2088 0.36 0.10 0.04 0.13 0.12 0.18 3.05 5.09 4.13 0.42 0.08 1.65 

2089 2.22 3.19 0.41 0.28 0.17 0.07 3.68 4.49 3.12 0.21 0.68 1.39 

2090 2.89 2.55 0.67 0.12 0.03 0.31 3.86 7.28 1.49 3.45 0.28 0.97 
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2091 0.68 0.85 1.17 0.29 0.05 0.32 3.26 1.87 1.52 0.65 0.41 1.00 

2092 0.57 3.87 1.10 0.26 0.03 0.22 5.70 9.20 1.58 0.63 1.25 0.27 

2093 1.04 1.68 0.42 0.19 0.05 0.36 4.22 4.94 1.36 0.50 0.46 0.91 

2094 1.47 0.03 0.50 0.13 0.02 1.14 6.99 6.30 4.32 0.32 0.11 0.98 

2095 2.79 1.87 0.21 0.10 0.11 1.03 3.93 1.96 2.55 0.06 1.28 2.34 

2096 0.23 0.73 1.33 0.10 0.12 0.94 5.73 3.13 0.69 0.10 0.15 0.16 

2097 0.25 0.21 0.10 0.11 0.03 0.07 6.21 6.35 1.66 0.46 0.21 1.57 

2098 0.59 0.19 0.04 0.11 0.04 1.43 4.90 8.23 4.95 1.29 0.18 4.09 

2099 2.51 6.41 0.71 0.14 0.44 1.66       

Avg. 1.26 1.84 0.52 0.19 0.09 0.66 4.49 5.53 2.65 0.72 0.59 1.50 

 

 
Table 25: Number of Rainy Days 2085-2099 

a) RCP 2.6 
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

2085       31 31 26 25 20 17 

2086 29 23 30 24 16 25 31 31 27 26 17 25 

2087 25 23 19 12 23 22 30 31 29 23 25 26 

2088 28 19 29 23 17 22 31 31 27 29 23 25 

2089 24 20 27 19 20 23 31 31 28 28 19 21 

2090 26 24 27 23 15 28 31 31 29 20 23 23 

2091 25 23 27 19 18 18 31 31 24 22 18 23 

2092 25 15 17 9 20 25 31 31 26 22 21 29 

2093 27 25 24 22 11 25 31 30 29 21 18 24 

2094 19 24 23 14 18 23 31 31 30 27 29 26 

2095 29 21 23 22 18 22 29 31 29 28 22 25 

2096 16 18 19 18 12 26 31 30 28 15 20 19 

2097 23 24 22 13 13 18 31 31 29 23 22 24 

2098 22 24 26 20 14 25 31 31 28 27 28 23 

2099 28 20 26 18 12 25       
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Avg. 24.7 21.6 24.2 18.3 16.2 23.4 30.8 30.9 27.8 24.0 21.8 23.6 

 

 

b) RCP 8.5 
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

2085       30 31 30 21 24 27 

2086 30 25 16 14 11 27 31 31 30 25 23 25 

2087 27 24 26 16 10 20 31 31 29 27 19 24 

2088 23 17 16 19 14 22 31 31 30 26 16 26 

2089 28 18 27 18 17 14 31 31 30 24 23 28 

2090 27 27 25 15 20 20 31 31 30 30 24 23 

2091 25 25 26 18 17 22 31 31 30 23 26 29 

2092 27 23 18 21 15 21 31 31 30 24 24 23 

2093 27 23 23 19 14 23 30 31 28 28 23 26 

2094 28 17 21 15 12 25 31 31 30 18 21 26 

2095 22 25 19 16 18 24 31 31 30 21 21 27 

2096 20 24 23 16 21 28 31 30 28 18 21 22 

2097 15 20 22 14 12 21 31 31 30 22 19 25 

2098 25 18 13 17 11 28 31 31 30 28 17 26 

2099 20 23 20 18 24 27       

Avg. 24.6 22.1 21.1 16.9 15.4 23.0 30.9 30.9 29.6 23.9 21.5 25.5 

 

 
Table 26: Temperature 2085-2099 

a) RCP 2.6 Minimum 
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1998       74 74 69 52 47 37 

1999 36 40 43 50 61 69 74 75 67 56 42 33 

2000 42 40 47 55 59 70 74 72 69 56 43 37 

2001 40 43 47 48 57 69 75 71 66 57 43 38 
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2002 36 43 47 53 57 65 73 74 68 56 43 39 

2003 39 41 44 50 55 69 74 74 67 53 43 39 

2004 33 38 45 51 60 68 74 73 65 55 42 39 

2005 35 41 47 49 58 71 75 72 69 55 47 32 

2006 34 44 47 49 58 68 71 74 66 58 42 38 

2007 37 38 45 51 57 74 75 72 67 59 42 35 

2008 38 41 43 50 56 70 75 73 67 59 43 38 

2009 39 40 45 50 59 71 74 72 65 55 40 37 

2010 39 41 43 48 59 69 75 72 65 56 44 35 

2011 41 40 46 49 62 68 74 72 65 56 44 36 

2012 32 40 43 50 61 72       

Avg. 37.2 40.6 45.1 50.2 58.5 69.5 74.1 72.9 66.8 55.9 43.2 36.6 

 

b) RCP 2.6 Mean 
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1998       89 87 84 69 65 54 

1999 51 55 57 66 78 86 87 89 82 73 58 47 

2000 58 55 63 72 76 87 87 86 84 73 59 51 

2001 55 60 63 64 74 86 88 85 81 73 59 52 

2002 52 60 62 70 73 82 87 87 83 73 60 56 

2003 56 54 59 67 71 86 88 87 82 69 58 54 

2004 48 54 60 68 78 86 88 87 80 72 59 56 

2005 50 58 64 66 76 88 89 85 83 71 64 46 

2006 49 59 62 65 76 85 86 87 81 75 60 53 

2007 54 53 60 68 74 91 89 86 82 75 56 49 

2008 53 55 59 67 73 86 89 87 82 75 60 54 

2009 55 56 61 67 77 88 88 85 80 72 58 52 

2010 54 55 59 66 76 86 88 86 80 73 61 50 

2011 55 55 63 66 80 85 88 86 81 72 59 51 

2012 47 56 58 66 78 89       

Avg. 52.5 56.0 60.7 67.0 75.8 86.5 87.8 86.3 81.8 72.4 59.7 51.8 
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c) RCP 2.6 Maximum 
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1998       103 100 99 85 83 71 

1999 67 71 72 82 95 103 100 102 97 90 75 62 

2000 73 71 78 90 93 103 101 100 98 89 74 66 

2001 70 76 78 79 90 102 101 98 96 88 75 66 

2002 68 77 77 87 90 98 100 100 99 90 77 73 

2003 72 68 73 84 88 103 101 100 97 86 74 69 

2004 63 70 75 84 96 104 102 101 96 89 75 73 

2005 64 75 81 84 94 105 103 98 98 88 81 59 

2006 64 74 78 81 94 103 101 101 96 91 77 69 

2007 70 68 76 85 91 109 103 99 97 91 70 63 

2008 68 69 75 84 90 103 103 101 97 90 77 70 

2009 71 71 78 84 95 105 101 98 95 89 76 67 

2010 68 69 75 83 93 103 102 99 94 90 78 65 

2011 70 70 80 83 98 102 102 99 97 88 75 66 

2012 63 71 72 82 96 105       

Avg. 67.9 71.5 76.3 83.7 93.1 103.5 101.5 99.8 96.8 88.9 76.1 67.1 

 

d) RCP 8.5 Minimum 
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1998       83 81 74 63 50 40 

1999 41 42 51 59 64 78 84 78 72 63 49 43 

2000 42 48 49 55 64 75 84 79 74 64 51 39 

2001 42 49 54 59 63 77 85 80 73 60 50 42 

2002 45 43 51 56 67 74 84 80 74 61 47 38 

2003 41 42 49 57 66 74 83 80 75 62 48 39 

2004 40 48 51 52 63 76 83 81 74 63 53 40 

2005 40 39 49 57 63 76 83 80 74 60 52 41 

2006 41 46 54 55 63 76 84 79 76 67 55 44 
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2007 42 49 54 60 63 76 83 80 72 62 53 45 

2008 46 46 52 58 60 77 84 80 76 61 54 44 

2009 44 44 53 60 70 86 85 81 78 66 55 45 

2010 46 49 54 61 67 77 82 79 73 63 52 42 

2011 40 49 53 55 65 83 84 77 74 65 50 42 

2012 45 46 51 56 64 80       

Avg. 42.5 45.8 51.7 57.2 64.4 77.4 83.5 79.7 74.3 62.9 51.4 41.7 

 

e) RCP 8.5 Mean 
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1998       96 94 89 79 65 55 

1999 56 57 68 75 82 94 97 91 87 79 64 58 

2000 57 64 65 71 82 92 97 92 88 79 67 53 

2001 57 66 72 77 81 94 98 93 87 77 67 57 

2002 60 59 67 72 84 91 97 93 89 78 63 52 

2003 55 58 65 73 84 91 96 93 89 77 63 56 

2004 55 62 67 69 80 93 96 94 89 79 68 54 

2005 55 53 65 73 81 93 95 92 88 77 68 57 

2006 56 61 70 72 81 94 97 92 91 83 71 59 

2007 57 65 70 77 80 93 96 93 86 78 69 59 

2008 61 61 69 76 78 94 97 93 90 78 71 59 

2009 60 60 68 77 88 102 98 95 92 82 72 62 

2010 62 65 69 78 84 94 95 92 87 80 68 58 

2011 56 65 70 71 82 98 97 90 87 81 66 58 

2012 60 62 67 74 81 95       

Avg. 57.5 61.2 67.9 73.9 82.2 94.1 96.6 92.6 88.6 79.0 67.3 56.8 

 

f) RCP 8.5 Maximum 
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1998       110 106 103 95 81 69 

1999 70 72 85 91 100 110 110 103 102 95 79 73 
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2000 73 80 81 87 100 109 111 105 102 94 84 68 

2001 72 82 90 94 99 110 110 105 101 94 84 72 

2002 74 74 82 88 102 108 110 106 103 95 80 65 

2003 69 73 80 89 102 109 110 105 103 91 79 72 

2004 70 77 83 86 97 111 109 108 104 95 83 68 

2005 69 67 81 90 99 110 108 105 103 93 83 73 

2006 70 76 86 89 99 111 111 105 105 99 86 74 

2007 71 82 86 94 98 110 109 106 100 95 85 73 

2008 76 76 86 93 96 112 110 106 104 94 87 74 

2009 76 76 84 94 106 117 111 108 107 98 88 79 

2010 77 80 84 95 102 110 107 105 102 97 84 73 

2011 72 82 86 87 100 113 110 103 101 96 83 74 

2012 75 78 84 91 99 109       

Avg. 73 77 84 91 100 111 110 106 103 95 83 72 

 

 
Table 27: Total ET 2085-2099 

a) RCP 2.6 
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1998       8.4 8.0 7.9 7.1 6.7 5.5 

1999 5.1 5.0 5.5 6.5 8.1 8.6 7.9 8.2 7.8 7.5 5.8 4.6 

2000 5.7 4.9 6.3 7.4 7.9 8.6 8.1 8.1 7.8 7.5 5.7 4.9 

2001 5.4 5.7 6.2 6.1 7.6 8.6 8.0 7.8 7.7 7.2 5.7 4.9 

2002 5.2 5.6 6.0 7.1 7.5 8.2 8.0 8.0 7.9 7.6 6.1 5.9 

2003 5.7 4.6 5.6 6.7 7.3 8.6 8.1 7.9 7.7 7.0 5.6 5.3 

2004 4.7 5.0 5.9 6.7 8.3 8.9 8.3 8.2 7.6 7.5 5.9 5.9 

2005 4.8 5.6 6.7 6.8 8.1 8.8 8.4 7.7 7.8 7.3 6.4 4.2 

2006 4.8 5.2 6.1 6.4 8.1 8.7 8.3 8.1 7.6 7.7 6.0 5.3 

2007 5.5 4.6 6.0 6.9 7.8 9.3 8.3 7.9 7.7 7.6 5.1 4.6 

2008 5.1 4.7 6.0 6.8 7.6 8.6 8.4 8.1 7.7 7.5 6.0 5.4 
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2009 5.6 5.2 6.2 6.8 8.3 8.9 8.1 7.8 7.6 7.5 6.0 5.1 

2010 5.1 4.7 5.9 6.7 8.0 8.6 8.2 7.9 7.4 7.5 6.2 4.9 

2011 5.4 4.9 6.6 6.6 8.5 8.6 8.2 8.0 7.8 7.3 5.7 5.1 

2012 4.7 5.0 5.6 6.5 8.3 8.8       

Avg. 5.2 5.1 6.1 6.7 8.0 8.7 8.2 8.0 7.7 7.4 5.9 5.1 

 

b) RCP 8.5 
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1998       8.9 8.4 8.2 7.9 6.3 5.2 

1999 5.2 5.0 7.0 7.4 8.7 9.2 8.8 8.2 8.2 8.0 6.0 5.6 

2000 5.7 5.8 6.5 7.0 8.8 9.4 9.1 8.3 8.0 7.7 6.7 5.2 

2001 5.6 6.3 7.7 7.9 8.7 9.3 8.8 8.4 7.9 7.9 6.8 5.6 

2002 5.7 5.3 6.6 7.0 8.9 9.1 8.9 8.5 8.3 8.1 6.2 4.8 

2003 5.2 5.1 6.5 7.1 9.0 9.4 9.0 8.3 8.2 7.4 6.1 5.7 

2004 5.4 5.5 6.8 7.0 8.4 9.5 8.7 8.7 8.4 7.9 6.5 5.1 

2005 5.2 4.7 6.5 7.2 8.6 9.3 8.5 8.2 8.2 7.9 6.5 5.7 

2006 5.4 5.3 7.1 7.3 8.7 9.5 9.0 8.4 8.4 8.4 6.8 5.8 

2007 5.4 6.0 7.1 7.8 8.6 9.4 8.7 8.4 7.8 8.0 6.7 5.6 

2008 6.0 5.3 7.2 7.7 8.3 9.7 8.9 8.6 8.1 7.9 7.0 5.7 

2009 6.1 5.6 6.8 7.8 9.4 9.9 8.8 8.6 8.6 8.3 7.1 6.4 

2010 6.1 5.8 6.8 7.9 8.9 9.3 8.5 8.4 8.1 8.3 6.6 5.7 

2011 5.7 6.0 7.1 7.0 8.7 9.3 8.7 8.2 7.9 7.9 6.5 5.8 

2012 5.8 5.6 6.9 7.5 8.5 8.8       

Avg. 5.6 5.5 6.9 7.4 8.7 9.4 8.8 8.4 8.2 8.0 6.6 5.6 

  

 

Appendix 8: Weather Variable Comparison: Current Period vs. 
Counterfactual Climate Scenarios 
 

 To provide a visual sense of how different weather projections from the 

MISS scenario or the CanESM2 model under RCP 2.6 and RCP 8.5 are from the 



	   134 

current period weather data, we present graphs comparing total monthly 

precipitation, number of rainy days, mean monthly temperature, and total monthly 

ET from the current period and each of the 3 scenarios. Note that we do not 

include the MISS scenario in the total precipitation comparison because in the 

MISS scenario we simply cut the number of rainy days in the historic period in 

half without considering actual precipitation levels. 

 Because MISS data are an artificial transformation of the AZMET data, we 

have already described how number of rainy days and temperature vary between 

the two. However, we do see that ET estimates using the Hargreaves method 

appear to vary much less seasonally than do historic ET levels. 

 Examining the differences between CanESM2 projections and the historic 

AZMET data, we see that precipitation appears more volatile in the CanESM2 

projections, particularly the RCP 8.5 scenario. CanESM2 projections data also 

suggest a substantially higher number of rainy days than in the current period. 

Temperatures appear higher throughout the year, particularly in the summer 

months and most noticeably in the RCP 8.5 scenario. Our ET projections using 

the Hargreaves method tend to be slightly higher on average than current period 

monthly ET, but these projections are not nearly as volatile as the current period 

data. 

  
 

 

 

 

 

 

 

 

 



	   135 

Figure 15: Weather Variable Comparison 

 
a) Total Monthly Precipitation 

 
 

b) Number of Rainy Days Per Month 
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c) Mean Monthly Temperature 

 
 

 d) Total Monthly ET 
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Appendix 9: Method to Determine the Significance of Stone-Geary 
Parameters 
 

 Here we present a general framework of the delta method to calculate the 

standard errors and determine the significance of the Stone-Geary parameters. 
First, we present the method used to calculate standard errors of  in the 

SGF model formulation. The parameter  is a function of the estimated 

parameters: 

! = f ("̂) =#0 + #iCi
i=1

k

!  

  Where: 
   !i =! 'i (1!")  

 
The variance of the parameter  is approximated as: 
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The covariance matrix Var(!̂)  is the robust covariance matrix calculated via 

Huber/White/sandwich standard errors in the case of the household models, or 

via Newey-West standard errors in the case of the aggregate models. The 
standard error of  is calculated as the square root of Var(! ) . To determine the 

!

!

!

!
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significance of , the test statistic below is calculated and compared to critical 

values of a standard normal distribution. 
!

S.E(! )
~ z(0,1)  

The standard normal distribution is used because f (!
^
)  is nonlinear in the 

estimated parameters. 
Next, we describe the process of calculating the standard errors of both !  

and  in the SGV model formulation. In this case, both parameters are functions 

of the estimated parameters: 

! = f (!̂) = !0 + !iCi
i=1

k

!  

! = g("̂) =#0 + #iCi
i=1

k

!  

  Where: 
   !i =! 'i (1!")  

 

The variance of these parameters is estimated as follows: 
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Once again, the covariance matrix Var(!̂)  is the robust covariance matrix 

calculated via Huber/White/sandwich standard errors in the case of the 

household models, or via Newey-West standard errors in the case of the 
aggregate models. The standard error of !  or  can be calculated as the square 

root of Var(!)  or Var(! ) , respectively. To determine the significance of these 

parameters, the test statistics below can be calculated and compared to critical 

values of a standard normal distribution. 
!

S.E(!)
~ z(0,1)  

!
S.E(! )

~ z(0,1)  

Once again, the standard normal distribution is used because!  and are 

nonlinear in the estimated parameters. 
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Appendix 10: IV Estimation of NDVI 
 

 Having received feedback that the relationships between parcel 

greenness, water price, and quantity of water consumed are likely to be 

endogenous, we conduct a Durbin-Wu-Hausman test to determine whether our 

NDVI measure is truly exogenous to quantity consumed. We reject the null 

hypothesis of exogeneity with 99% confidence, and therefore we must instrument 

NDVI using other variables in order to include it in our household water demand 

model. This is a difficult task, since few available variables not already included 

explicitly in our demand model can be expected to provide reliable indicators of 

parcel greenness. We select three instrumental variables: the construction year 

of each house (BuildYear), the assessed value of each house in a given year 

(HomeValue), and the area of each parcel (ParcelArea). While these variables 

may be correlated with quantity consumed, we can be confident that they are 

exogenously determined. We expect that older homes will tend to have greener 

yards, since they are often more centrally located and tend to have more non-

native landscaping. We also expect that, in general, the higher the assessed 

home value, the greener that householdʼs yard will be, since they can 

presumably afford to irrigate more. We also expect parcel size to be related to 

parcel greenness, although its expected sign is unclear. It may be that smaller 

lots in the center of town have greener, non-native landscaping, or it may be that 

households with more land have more vegetation. 

 The results of our regression of NDVI on these three variables are 

presented below. We see that, although the model has a low R2, the overall F-

statistic is significant at the 99% confidence level, as are each of the variables. 

Both BuildYear and HomeValue have the expected signs, and their large t-

statistics (-85.7 and 163.95, respectively) indicate that they have strong 

explanatory power in the model. The predicted values from this regression are 

used in place of actual NDVI values in our final demand model. 
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Table 28: IV Estimation of NDVI 

 

Variable Coefficient 
(p-value) 

Intercept 1.0573 
(0.000) 

BuildYear -0.0005 
(0.000) 

HomeValue 0.00000014 
(0.000) 

ParcelArea -0.00000001 
(0.000) 

R2 0.128 

F-test 11,760.73 
(0.000) 

 

 

Appendix 11: Counterfactual Climate Scenario Per Household 
Consumption Monthly Mean Comparison 
 
Table 29: Per Household Consumption Monthly Means by Weather Data 

 

a) SGF 

 Actual AZMET MISS CanESM2 
RCP 2.6 

CanESM2 
RCP 8.5 

Jan 10.2 10.8 12.4 15.7 16.0 
Feb 10.4 11.2 12.1 15.1 15.5 
Mar 10.1 12.7 12.7 16.2 16.2 
Apr 11.8 13.7 12.9 15.6 15.7 
May 13.5 14.8 13.6 16.0 16.3 
Jun 16.6 15.1 14.0 17.7 18.0 
Jul 17.1 15.5 14.4 18.6 19.1 
Aug 14.4 14.7 14.2 18.6 18.8 
Sep 14.8 13.6 13.7 17.9 18.5 
Oct 13.6 12.6 13.7 17.0 17.3 
Nov 12.6 10.9 12.5 15.5 16.0 
Dec 11.2 10.6 12.3 15.5 16.1 
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b) SGV 

 Actual AZMET MISS CanESM2 
RCP 2.6 

CanESM2 
RCP 8.5 

Jan 10.2 10.8 12.4 15.1 15.8 
Feb 10.4 11.2 12.1 14.9 15.6 
Mar 10.1 12.6 12.7 15.9 16.2 
Apr 11.8 13.7 12.9 15.4 16.0 
May 13.5 14.8 13.6 16.0 16.4 
Jun 16.6 15.1 13.9 18.3 19.0 
Jul 17.1 15.5 14.4 19.8 20.6 
Aug 14.4 14.8 14.2 19.7 20.2 
Sep 14.8 13.6 13.7 18.7 19.8 
Oct 13.6 12.5 13.7 17.0 17.8 
Nov 12.6 10.9 12.5 15.2 16.2 
Dec 11.2 10.6 12.3 14.8 15.8 

 

 
Table 30: Per Household Consumption Monthly Mean Percent Difference 

 

a) SGF 

 Percent Difference 
(p-value) 

 

MISS 
vs. 

AZMET 

RCP 2.6 
vs. 

AZMET 

RCP 8.5 
vs. 

AZMET 

RCP 2.6 
vs. 

MISS 

RCP 8.5 
vs. 

MISS 

RCP 8.5 
vs. 

RCP 2.6 
Jan 14.34 44.89 47.79 26.73 29.26 2.00 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.405) 
Feb 8.17 35.38 38.38 25.15 27.92 2.22 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.220) 
Mar 0.20 27.98 28.09 27.72 27.84 0.09 

 (0.907) (0.000) (0.000) (0.000) (0.000) (0.967) 
Apr -5.81 13.74 14.88 20.76 21.96 1.00 

 (0.002) (0.000) (0.000) (0.000) (0.000) (0.642) 
May -8.06 8.20 9.73 17.68 19.34 1.41 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.486) 
Jun -7.75 16.66 19.06 26.47 29.07 2.06 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.233) 
Jul -7.39 20.20 22.79 29.79 32.59 2.16 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.056) 
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Aug -3.77 25.89 27.90 30.82 32.92 1.60 

 (0.025) (0.000) (0.000) (0.000) (0.000) (0.158) 
Sep 1.15 31.77 36.43 30.28 34.88 3.54 

 (0.410) (0.000) (0.000) (0.000) (0.000) (0.005) 
Oct 8.75 35.31 37.96 24.42 26.86 1.96 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.387) 
Nov 14.69 43.08 47.64 24.76 28.73 3.19 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.065) 
Dec 16.26 46.37 52.11 25.90 30.84 3.92 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.017) 
 

 Percent Difference 
(p-value) 

 

AZMET 
vs. 

Actual 

MISS 
vs. 

Actual 

RCP 2.6 
vs. 

Actual 

RCP 8.5 
vs. 

Actual 

MISS 
vs. 

AZMET 
Jan 6.71 22.01 54.61 57.70 14.34 

 (0.021) (0.000) (0.000) (0.000) (0.000) 
Feb 7.67 16.47 45.76 48.99 8.17 

 (0.021) (0.000) (0.000) (0.000) (0.000) 
Mar 25.30 25.55 60.35 60.50 0.20 

 (0.000) (0.000) (0.000) (0.000) (0.907) 
Apr 16.36 9.60 32.35 33.67 -5.81 

 (0.000) (0.002) (0.000) (0.000) (0.002) 
May 10.12 1.25 19.15 20.84 -8.06 

 (0.007) (0.704) (0.000) (0.000) (0.000) 
Jun -9.01 -16.06 6.15 8.34 -7.75 

 (0.006) (0.000) (0.051) (0.012) (0.000) 
Jul -9.02 -15.74 9.36 11.72 -7.39 

 (0.011) (0.000) (0.009) (0.002) (0.000) 
Aug 2.38 -1.49 28.88 30.95 -3.77 

 (0.505) (0.669) (0.000) (0.000) (0.025) 
Sep -8.45 -7.40 20.64 24.90 1.15 

 (0.013) (0.026) (0.000) (0.000) (0.410) 
Oct -7.58 0.51 25.06 27.51 8.75 

 (0.003) (0.816) (0.000) (0.000) (0.000) 
Nov -13.42 -0.70 23.88 27.83 14.69 

 (0.000) (0.818) (0.000) (0.000) (0.000) 
Dec -5.95 9.34 37.67 43.06 16.26 

 (0.019) (0.001) (0.000) (0.000) (0.000) 
 

b) SGV 
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 Percent Difference 
(p-value) 

 

MISS 
vs. 

AZMET 

RCP 2.6 
vs. 

AZMET 

RCP 8.5 
vs. 

AZMET 

RCP 2.6 
vs. 

MISS 

RCP 8.5 
vs. 

MISS 

RCP 8.5 
vs. 

RCP 2.6 
Jan 14.62 39.66 45.62 21.84 27.04 4.26 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.080) 
Feb 8.49 33.88 39.84 23.40 28.90 4.46 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.020) 
Mar 0.38 25.38 27.94 24.91 27.46 2.04 

 (0.827) (0.000) (0.000) (0.000) (0.000) (0.402) 
Apr -5.78 12.05 16.60 18.91 23.74 4.06 

 (0.006) (0.000) (0.000) (0.000) (0.000) (0.125) 
May -8.07 7.63 10.78 17.08 20.51 2.93 

 (0.001) (0.008) (0.000) (0.000) (0.000) (0.261) 
Jun -7.72 21.22 25.55 31.37 36.06 3.57 

 (0.002) (0.000) (0.000) (0.000) (0.000) (0.166) 
Jul -7.33 27.52 32.41 37.60 42.87 3.83 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.120) 
Aug -3.78 33.33 36.47 38.56 41.83 2.36 

 (0.072) (0.000) (0.000) (0.000) (0.000) (0.301) 
Sep 1.19 37.78 46.03 36.17 44.31 5.98 

 (0.502) (0.000) (0.000) (0.000) (0.000) (0.010) 
Oct 9.13 35.71 42.20 24.36 30.31 4.78 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.114) 
Nov 14.84 40.16 49.13 22.05 29.86 6.40 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.003) 
Dec 16.31 39.96 49.14 20.33 28.23 6.56 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
 

 Percent Difference 
(p-value) 

 

AZMET 
vs. 

Actual 

MISS 
vs. 

Actual 

RCP 2.6 
vs. 

Actual 

RCP 8.5 
vs. 

Actual 
Jan 6.52 22.10 48.77 55.11 

 (0.011) (0.000) (0.000) (0.000) 
Feb 7.46 16.58 43.86 50.28 

 (0.019) (0.000) (0.000) (0.000) 
Mar 25.13 25.60 56.89 60.09 

 (0.000) (0.000) (0.000) (0.000) 
Apr 16.48 9.75 30.51 35.81 
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 (0.000) (0.002) (0.000) (0.000) 
May 10.36 1.46 18.78 22.26 

 (0.008) (0.673) (0.000) (0.000) 
Jun -9.13 -16.15 10.15 14.09 

 (0.008) (0.000) (0.005) (0.000) 
Jul -8.98 -15.65 16.06 20.51 

 (0.012) (0.000) (0.000) (0.000) 
Aug 2.57 -1.31 36.75 39.98 

 (0.482) (0.718) (0.000) (0.000) 
Sep -8.36 -7.27 26.26 33.82 

 (0.015) (0.032) (0.000) (0.000) 
Oct -7.70 0.73 25.27 31.25 

 (0.002) (0.747) (0.000) (0.000) 
Nov -13.46 -0.62 21.29 29.05 

 (0.000) (0.839) (0.000) (0.000) 
Dec -5.87 9.48 31.74 40.39 

 (0.013) (0.000) (0.000) (0.000) 
 

 

Appendix 12: Alternative Aggregate Model Runs 
 

 Since our original aggregate model runs including control variables for 

number of rainy days per month and total monthly ET produce a counterintuitive 

positive sign on the coefficient for number of rainy days, we experiment with 

alternative combinations of control variables. We run the aggregate model (for 

both Stone-Geary specifications) in three different ways. First, we attempt to 

distinguish between the impacts of rainfall on water consumption at different 

times of year. Second, we run the model excluding any precipitation variable. 

Third, we consider the more traditional total monthly precipitation metric instead 

of number of rainy days per month. 

Our first alternative model attempts to account for seasonality in the effect 

of rainfall on water consumption. Since rainfall is expected to influence only the 

portion of water consumption related to outdoor use, we focus our efforts on 

highlighting the effect of rainfall events on water consumption in summer.  

However, in Tucson, summer weather patterns are not uniform. The months of 
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May and June tend to be hot, with little to no rainfall, whereas the months of June 

through September remain hot but see substantial rainfall due to the occurrence 

of the North American monsoon. We expect that rainfall events will have a much 

more substantial influence on water consumption if they occur during the portion 

of the summer that does not typically experience precipitation (May-June). 

Therefore, we construct a dummy variable for the months of May and June 

(DSummer) and a dummy variable for the months of July, August, and 

September (DMonsoon), and interact each of these dummies with number of 

rainy days. Thus, two separate interaction terms, N_Rainy_Days_DSummer, and 

N_Rainy_Days_DMonsoon, are included in the model in addition to the original 

variable N_Rainy_Days. Results from these model runs are summarized below in 

Table 31. 

 
Table 31: Aggregate Model Results Including Seasonal Dummies 

 

  SGF SGV 

Variable Parameter Estimate 
(p-value) 

Estimate 
(p-value) 

Intercept αʼ0 7.3341 
(0.000) 

8.3660 
(0.001) 

N_Rainy_Days αʼ1 -0.0706 
(0.288) 

0.2389 
(0.403) 

N_Rainy_Days_DSummer αʼ2 0.2879 
(0.154) 

-1.1561 
(0.014) 

N_Rainy_Days_DMonsoon αʼ3 0.2853 
(0.000) 

-0.1089 
(0.738) 

ET αʼ4 0.4557 
(0.000) 

0.2954 
(0.429) 

IVpcinc_price β 0.0003 
(0.014) 

 

IVpcinc_price β0  0.0002 
(0.572) 

IVpcinc_price_NRainyDays β1  0.0000 
(0.258) 
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IVpcinc_price_N_Rainy_Days_DSummer β2  0.0002 
(0.001) 

IVpcinc_price_N_Rainy_Days_DMonsoon β3  0.0000 
(0.207) 

IVpcinc_price_ET β4  0.0000 
(0.648) 

 β 0.0003 
(0.014) 

0.0003 
(0.010) 

 γ 10.6788 
(0.000) 

10.7819 
(0.000) 

 F-test 28.79 
(0.000) 

22.57 
(0.000) 

 

 Precipitation aside, these results qualitatively similar to those of our 

original model runs, with one exception. In the SGV model, the interaction term 

between IVpcinc_price and ET was not found to be significant, whereas our 

original model runs showed this variable to be positive with 95% confidence. The 

precipitation variables also prove less than satisfactory. In the SGF model, only 

the coefficient on N_Rainy_Days_DMonsoon is significant, and this coefficient is 

positive. The SGV model appears more promising on first glance. Only the 

coefficients on N_Rainy_Days_DSummer and the interaction between 

IVpcinc_price and N_Rainy_Days_DSummer are significant. However, the two 

coefficients have opposite signs, which makes their interpretation unclear. Given 

that the inclusion of seasonal dummies 1) appears to offer little additional 

information in terms of the effects of precipitation on water consumption and 2) 

eliminates the significance of the ET variable, which has been much more robust 

than the precipitation variables across household and aggregate model runs, we 

prefer our original model formulation. 

 In our second alternative model, we drop the precipitation variable 

completely, regressing consumption on simply ET and the ratio of per capita 

income to instrumented lagged average price. However, the significance of β in 

both models is adversely affected by the elimination of the precipitation variable, 

as are the significance levels of the SGV model coefficients related to ET. In fact, 
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neither of the variables related to ET appear significant in the SGV model. We 

conclude that, despite the counterintuitive sign on our precipitation variable, 

precipitation does influence water consumption substantially enough to warrant 

inclusion in the model. 

 Our third alternative model substitutes total monthly precipitation, the 

conventional metric used to approximate rainfall in water demand models, for 

number of rainy days per month. However, as we would expect, this variable 

performs more poorly than number of rainy days in both model specifications. 

The sign of the precipitation variable remains positive, but the significance level is  

less than that of number of rainy days. Additionally, the significance of all other 

variables in the model is adversely affected. We conclude that number of rainy 

days is the superior precipitation metric. 

Because none of these alternative model specifications appear superior to 

our original specification, we maintain our original model specification for use in 

assessing the sensitivity of water consumption to potential climate change. 

 

Appendix 13: Household Analysis with Only Time-Varying Controls 
 

 To determine whether performing a water demand analysis at the 

household level, which requires much more data and more sophisticated 

econometric methods than an analysis at the aggregate level, provides 

substantial marginal benefit, we develop a household model including only time-

varying control variables. This provides a more balanced comparison of our 

aggregate and household models, and allows us to see what additional 

information we glean from controlling for household heterogeneity. 

A few key differences between the two models remain, aside from the fact 

that one is a panel model and the other is a time-series model. One is the way in 

which we control for asynchronous billing cycles. In the household analysis, we 

control for the number of days in a billing cycle explicitly in the model, and match 

weather variables exactly to each billing cycle. In the aggregate analysis, we had 
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to match weather variables to period-ending months and standardize billing 

cycles to 30-day increments. Lastly, in our household analysis, we utilize 

precipitation data from 11 spatially-dispersed Pima County RFCD rain gauges, 

whereas our aggregate analysis relies on precipitation data from a single gauge 

maintained by AZMET. 

We specify the simplified household model in the SGF case as: 
Usagei,t =! '0+! '1(ET )i,t +! '2 (N _Rainy_Days)i,t +! '3(DaysinRead)i,t
+"(IVinc_ price)i,t +ui +#i,t

 

In the SGV case, the simplified model is as follows: 
Usagei,t =! '0+! '1(ET )i,t +! '2 (N _Rainy_Days)i,t +! '3(DaysinRead)i,t
+"0 (IVinc_ price)i,t +"1(IVinc_ price_ET )i,t +"2 (IVinc_ price_NRainyDays)i,t
+"3(IVinc_ price_Days)i,t +ui +#i,t

 

 For the simplified model, diagnostic test results are similar, so we estimate 

the model using feasible GLS with fixed effects and Huber/White/sandwich 

standard errors, as before. The results from these simplified models are 

presented below in Table 32. 

 
Table 32: Simplified Household Model Results 

 

  SGF SGV 

Variable Parameter Estimate 
(p-value) 

Estimate 
(p-value) 

Intercept αʼ0 -6.1381 
(0.000) 

-0.3917 
(0.416) 

N_Rainy_Days αʼ1 -0.0128 
(0.046) 

-0.0410 
(0.002) 

ET αʼ2 0.8171 
(0.000) 

0.4767 
(0.000) 

DaysinRead αʼ3 0.3507 
(0.000) 

0.2373 
(0.000) 

IVpcinc_price β 0.0024 
(0.000)  

IVpcinc_price β0  -0.0037 
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(0.000) 
IVpcinc_price_NRainyDays β1 

 
0.00002 
(0.052) 

IVpcinc_price_ET β2 
 

0.0004 
(0.000) 

IVpcinc_price_Days β3 
 

0.0001 
(0.000) 

 β 0.0024 
(0.000) 

0.0025 
(0.000) 

 γ 9.8956 
(0.000) 

9.8473 
(0.000) 

 F-test 718.96 
(0.000) 

532.74 
(0.000) 

 

 Immediately evident is the significant, negative sign on number of rainy 

days. This is much more reasonable than the positive and significant coefficient 

we estimate for number of rainy days in the aggregate model. Thus, we can see 

the benefit of using disaggregated precipitation measurements to estimate water 

demand. The other parameter estimates here resemble results from our original 

household model runs as well as our aggregate model in terms of both sign and 

significance. The magnitudes of β and γ appear to be somewhat smaller in the 

household models than in the aggregate model, but this is consistent between 

our original household model runs and these simplified models. 

 The other comparison of interest using these simplified household models 

is an examination of the trends in the average marginal budget share allocated to 

water, the average conditional water use threshold, and price elasticity of 

demand over time. These trends are plotted below in Figure 16, and their 

significance is tested using a regression on a time trend. These results are 

tabulated in Table 33. 
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Figure 16: Simplified Household Model Stone-Geary Parameter Trends 

 

a) Temporal Variation in Mean β 

 
 

b) Temporal Variation in Mean γ 
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c) Temporal Variation in Mean εp 

 
 

Table 33: Significance of Simplified Household Model Stone-Geary 
Parameter Trends 

 

Dependent Variable Explanatory Variable Coefficient 
(p-value) 

β SGV 
Intercept 0.0019 

(0.442) 

Date 0.0000 
(0.828) 

γ SGF 
Intercept 8.3928 

(0.149) 

Date 0.0000 
(0.795) 

γ SGV 
Intercept 8.8932 

(0.010) 

Date 0.0000 
(0.780) 

εp SGF 
Intercept -2.4555 

(0.000) 

Date 0.0001 
(0.000) 

εp SGV Intercept -2.2518 
(0.000) 

-0.6"

-0.4"

-0.2"

0"

SGF" SGV"
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Date 0.0001 
(0.000) 

 

 From these results, we can see that, while the trend toward zero in 

elasticity remains, we no longer see any distinct trend in either the marginal 

budget share allocated to water or the conditional water use threshold. This is 

probably because results from our original household model runs imply that 

Hispanic ethnicity has a significant, positive effect on the marginal budget share 

allocated to water and a significant, negative effect on the conditional water use 

threshold. It appears that trends in the proportion of Hispanic residents in 

Tucsonʼs various Census tracts have influenced trends in water consumption 

over the study period. When we eliminate this variable from our model, we fail to 

account for changing demographic conditions that affect water demand. In other 

words, failing to account for household heterogeneity masks household-level 

trends that are affecting aggregate water consumption, and thus we do gain 

valuable information by conducting our water demand analysis at the household 

level. 

 

 

Appendix 14: Preliminary Counterfactual Climate Scenario ET 
Projection 
 

Prior to our discovery of the Hargreaves (1994) ET formula, we used a 

somewhat simpler method of estimating total monthly ET from CanESM2 

temperature projections. Originally, we obtained downscaled mean monthly 

temperature projections for the CanESM2 model. We used a simple regression 

model to estimate the historical relationship between ET and temperature, and 

then, assuming the same relationship between mean monthly temperature and 

total monthly ET in the future, we projected future ET using the estimated 

coefficients. This process is recorded below. 
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To project ET for the period July 2085 to June 2099 from CanESM2 mean 

monthly temperature projections over this period, we first quantify the historical 

relationship between ET and mean monthly temperature. We collect total monthly 

ET and mean monthly temperature measurements from AZMET over the 25-year 

period July 1987 to June 2012, since AZMET has only published weather data for 

Tucson going back to 1987. We assess the sensitivity of the ET/temperature 

relationship by estimating OLS regression models of total monthly ET on mean 

monthly temperature over five 5-year increments and comparing the estimated 

coefficients for temperature. We also estimate coefficients for the 14-year study 

period (July 1998 – June 2012) and treat the remaining 12 years of available data 

(July 1987 – June 1998) as the prior period for comparison. The results of these 

regressions are summarized in Table 34 below. In every case, the parameter 

estimates were found to be significant at the 99% confidence level, so p-values 

are not reported. 

 
Table 34: OLS Regression Results, Dependent Variable: Total Monthly ET 

 

 a) 5-Year Incremental Estimates 

Variable 7/87-6/92 7/92-6/97 7/97-6/02 7/02-6/07 7/07-6/12 

Intercept -5.777 -6.194 -4.360 -5.403 -4.463 

Mean Temp. 0.181 0.186 0.160 0.172 0.163 
 

b) Study Period vs. Prior Period Estimates 

Variable 7/87-6/98 7/98-6/12 

Intercept -5.923 -4.671 

Mean Temp. 0.183 0.164 
 

 From these results, it is evident that the relationship between ET and 

mean temperature tends to vary somewhat over time, though its sign and 
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significance remains stable. It can also be seen that the coefficient on 

temperature, when estimated over the study period, has a lower value than the 

same estimate during the prior period. In fact, the study period coefficient (0.164) 

is very close to the minimum coefficient out of the 5-year estimates (0.160), while 

the prior period coefficient (0.183) is very close to the maximum value out of the 

5-year estimates. Since the two longer period estimates appear to accurately 

represent the extremes of temperature coefficients estimated from the available 

data, we use these two sets of coefficients to project ET from CanESM2 mean 

temperature projections. 

 We graphically illustrate the differences between ET projected using these 

two sets of coefficients below in Figure 17, comparing them to current period 

weather data as well. “ET1” refers to ET projections using temperature 

coefficients estimated in the study period July 1998 – June 2012, while “ET2” 

refers to ET projections using temperature coefficients estimated over the prior 

period July 1987 – June 1998. Note that the RCP 8.5 scenario has generally 

higher ET estimates than either the RCP 2.6 scenario or the study period data. 

And while ET2 levels are higher than ET1 values due to the larger temperature 

coefficient used to estimate them, these differences are not very pronounced. 
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Figure 17: Preliminary Monthly ET Projection Comparison 
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