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Abstract

In Bangladesh, climate change poses a serious threat to agricultural production, with an
increasing number of catastrophic floods in recent years that have led to extensive crop
damage and food insecurity among households. In response, Bangladesh has introduced
stress-tolerant rice varieties (STRVs) that can withstand flooding, allowing farmers to
continue cultivating crops even in submerged fields. This study uses three years of panel
data from rural Bangladesh to assess the impact of STRV adoption on household well-
being. The findings reveal a significant upward trend in the adoption of STRVs, rising
from approximately 8% in 2014 to a substantial 22% in 2022. This increase in adoption
has resulted in a significant increase in average rice yields. Notably, STRV adopters
have significantly higher yields compared to non-adopters. We demonstrates that all
flood measures, including maximum flooding, mean flooding, the area under the curve
(AUC) and neighborhood flooding, cause a reduction in rice yields. However, from TWFE
analysis we find adopting STRV can mitigate this loss and positively influences rice yield.
But from the TWFE-IV model we could not find any strong evidence to prove the insights
of TWFE model. Also, we do not observe any yield benefit from STRVs in a flood-free
conditions. These findings remain consistent regardless of the data set (household panel
data or plot data). Acknowledging certain limitations, including sample size and study
duration, is crucial. This research emphasizes the importance of adopting STRVs as
a strategy to address the detrimental consequences of climate change on agricultural
productivity in Bangladesh. By embracing STRVs, developing countries like Bangladesh
can enhance resilience against recurrent floods, and ultimately improve the well-being of
rural households.

Keywords: STRV Adoption, Impact Assessment, Remote Sensing, Household Welfare



10

Chapter 1

Introduction

Traditionally, South Asian households have rice in their daily diet as the primary source
of carbohydrates. Most of the farmers in this region are smallholder and subsistence
in nature, with very little access to off-farm income. They usually store a portion of
their own produced rice for household consumption and sell the rest to earn a living.
Sometimes farmers need to sell all of the rice to manage any unwanted shocks, which
makes rice the most important crop for farmers in South Asia. Since rice farming is highly
dependent on weather that causes a significant amount of yield variation; monsoon-driven
flood is the greatest threat to it. As a result of early and sometimes lengthy flooding,
farmers face a substantial amount of crop loss (Mishra et al., 2015), leading to the research
and development of a rice variety that can bypass unfavorable rice-growing environments
(Bairagi et al., 2021; Dar et al., 2013).

Figure 1.1. Share of Flooded Rice Area in Bangladesh (2011-2019)
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Figure 1.11 shows that each year, all divisions (largest administrative unit) within Bangladesh
encountered varying degrees of flooding, which causes substantial crop damage and poses
a significant threat to food security in the country. To cope with the rising challenges
of climate change and the challenges associated with feeding a growing population, the
International Rice Research Institute (IRRI) developed and promoted Stress2 Tolerant
Rice Varieties (STRVs). STRVs are bred for using in regions that are exposed to specific
abiotic stresses, such as submergence, drought, or extreme temperature. Thus, diffusion
and adoption must be considered for the particular context where the technology is rele-
vant, rather than for an entire region. In this study, we focus on adoption in flood-prone
rice-growing regions of Bangladesh during the Aman season (planted in June-July and
harvested in November-December). In the Aman season, farmers face more crop loss due
to natural disasters like flood (Bairagi et al., 2021; Khan and Roy, 2020).

Figure 1.2. Rice Production and Loss Due to Flood in Bangladesh Over Time

The rice production in Bangladesh data in Figure 1.2 comes from FAO (2022), and the
loss of rice due to flood data comes from several agricultural statistical yearbook from

1Rice area data come from MODIS composite products such as the 8-day 500m resolution while flood
data comes from Dartmouth Observatory analysis of daily MODIS 250Share m images. Images are
aggregated up to district level and converted to area (ha) values. District values are then aggregated to
the Division-level.

2Stress refers to some unfavorable condition which affects the overall plant growth and development
(Lichtenthaler, 1998)
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BBS (2022, 2021, 2018, 2012). The rice production trend reveals that, every year there is
an increase in production of rice with an exception in 2004 and 2017. The reason of this
exception for 2017 is visible in the right hand side graph where there is a peak in loss of
rice due to flood. Figure 1.2 summarize that though there is an overall upward trend in
rice production, flood damages that production significantly.

Flood-tolerant rice varieties exhibit remarkable adaptability through the utilization of
various mechanisms, including aerenchyma formation 3, submergence-tolerant roots, and
resilient plants, enabling them to thrive even in submerged conditions. These varieties,
developed through conventional breeding techniques and genetic engineering, offer sub-
stantial advantages, such as reducing the detrimental impacts of flood-induced crop loss,
achieving better yields in flood-prone regions, and ultimately improving food security.

The aim of the first-generation STRV was to manage the lower yield only. As time
passes, the demand for only high yielding rice variety has changed and the new genera-
tion of STRV is now available in the market to provide better rice production and to fight
against biotic and abiotic stresses (Hossain et al., 2006). Different researches have argued
that adoption of STRV can ensure a better yield compared to a traditional rice variety
(Bairagi et al., 2021; Takahashi et al., 2020; Islam et al., 2019; Emerick et al., 2016). How-
ever, some studies criticize the argument that productivity and yield can differ depending
on demographic regions and farmers’ socioeconomic characteristics (Zeng et al., 2017;
Awotide et al., 2016; Mottaleb et al., 2015), which makes the existing knowledge about
the impact of STRV adoption patchy. Regardless of the productivity comparison Zeng
et al. (2017); Awotide et al. (2016) found an increase in adoption rates. This increase in
adoption results in a positive impact on yield resilience and synergies between STRVs and
farmers’ investments in mechanization and other technologies. Most of these studies have
been either descriptive or able to establish causality but with limited external validity
(Emerick et al., 2016; Dar et al., 2013).

With these limitations to infer the result at a large scale, previous works have been unable
to portray a complete picture of the impact of STRV adoption on household welfare.

3Aerenchyma development is a structural alteration that occurs in plants when they are subjected to
flooding or conditions with limited oxygen. This adaptation enhances the internal diffusion of atmospheric
and photosynthetic oxygen from the aerial portions to the submerged roots, enabling the roots to maintain
aerobic respiration. (Yamauchi et al., 2013).
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Additionally, previous works fail to deliver clear evidence for returns on investment as
there has been no systematic impact evaluation at scale. To address this knowledge gap,
we propose to answer the following research question:

• Does increased adoption of STRVs result in an increase in household welfare mea-
sured in terms of rice yield?

This study generates evidence that currently does not exist on the impacts at large scale
and the impact of STRVs on several household livelihood outcomes.

Prior to the release of the new round of Rice Monitoring Survey (RMS) data which we
use for this study, we pre-specified our analysis and archived a pre-analysis plan (PAP)
publicly on Open Science Foundation4 (OSF). In the PAP, we outline the data, variables,
empirical specifications, and hypotheses used in this analysis. Also, we explain how we
generate variables that we use to measure the impact of STRV adoption on rice yield.
We outline our research question and the empirical strategies that we use to address it.
Pre-specifying these components of the research before conducting any analysis mitigates
the opportunity to cherry-pick, HARK, or p-hack results.

We find a significant increase in the adoption of STRVs, rising from approximately 8% in
2014 to 22% in 2022. This rise in adoption has resulted in a notable increase in average rice
yields. Upon conducting a descriptive analysis, we find that farmers who adopted STRVs
had significantly higher yields compared to non-adopters. Using household-level panel
data and a Two-Way Fixed Effects (TWFE) model reveals that a variety of different
ways to measure flooding all contribute to a loss in rice yield. Moreover, we find a
strong evidence indicating that STRVs are effective in mitigating yield loss during flood
events, as compared to non-STRVs. We also use plot-level data and find results which are
mostly consistent with the original analysis with household-level panel data. However,
in a TWFE-IV model using the household-level panel, we find no statistically significant
evidence supporting the same conclusion as the TWFE model using household-level and
plot-level data. Overall, these findings, highlight the positive impact of STRV adoption
on rice yields over time. The study also underscores the adverse effects of various flood

4Rafi, Dewan A. A., Anna Josephson, Jeffrey D. Michler, and Valerien Pede. 2023. “Impact of
Stress Tolerant Rice Varieties Adoption in Flood Prone Regions of South Asia.” OSF. February 9.
DOI:10.17605/OSF.IO/YE7PV.
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measures on yield, while emphasizing the effectiveness of STRVs in mitigating such losses
during flood events.
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Chapter 2

Literature Review

The introduction of STRVs involves a multifaceted approach aimed at improving food
security, minimizing the adverse impacts of crop loss, promoting sustainable agricultural
livelihoods through increased yields (Byerlee, 1996), and building adaptive capacity to
climate change-induced challenges, particularly the amplified frequency and intensity of
stress events. Using a combination of traditional cross-breeding methods and advanced
genetic engineering, the development of STRVs offers a promising and imperative avenue
to mitigate risks of crop loss and strengthen agricultural resilience in stress-prone regions
(Sevanthi et al., 2019).

Studies conducted in Bangladesh by Bairagi et al. (2021) focusing on flood-tolerant vari-
eties and by Takahashi et al. (2020); Islam et al. (2019); Asfawa et al. (2016); Gauchan
et al. (2012); Mendola (2007); Evenson and Gollin (2003) highlighting modern rice vari-
eties have found a significant positive impact of their adoption on yield, profit, and rice
consumption. These findings are consistent with studies by Zeng et al. (2017); Awotide
et al. (2016); Hossain et al. (2006), which also reported similar positive outcomes and a
high adoption rate of flood-tolerant rice varieties. The increase in crop production re-
sulting from the adoption of STRVs have important implications for household-level food
consumption and poverty reduction.

Improved rice varieties have been found to reduce production risks during adverse weather
conditions, as highlighted by Emerick et al. (2016), who further emphasize that there is
no yield penalty under normal weather conditions. STRVs mitigate the downside risks
by enhancing strain-specific extreme weather tolerance capabilities. This highlights the
significance of STRVSs in ensuring stable and resilient crop production and efficiency,
irrespective of varying weather conditions. Furthermore, studies by Mishra et al. (2015);
Mottaleb et al. (2015) reveal that increased abiotic stress reduces farmers’ technical effi-
ciency, leading to substantial yield losses. In a similar vein, Dar et al. (2013) quantify the
vulnerability of rice to flood damage in India and the potential of STRVs to transform
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rice production. These studies emphasize the crucial role of STRVs in minimizing yield
losses and improving overall agricultural productivity. Thus, STRVs have the potential
to enhance farmers’ resilience in the face of abiotic stress and contribute to regional and
national sustainable agricultural development.

The current state of STRV adoption might vary in different regions, socioeconomic class
of farmers, educational attainment of each individual along with farming type. Using
instrumental variable regression with farm-level data, Sanglestsawai et al. (2014) provide
strong evidence that poor smallholder farmers feel the need to adopt modern and improved
crop varieties. This suggests that improved crop varieties can be considered a “Pro-Poor”
technology. As the majority of rice farmers in South Asia are poor and less educated, there
is a discrepancy between poor and wealthy farmers, with the latter gaining early access
to modern farming techniques, hampering overall economic development (Campenhout,
2021). Bridging this gap and promoting the adoption of STRVs among poor farmers are
crucial to achieving equitable agricultural development and poverty reduction.

With changing rice production scenarios due to climate change, farmers in Bangladesh and
around the world are increasingly interested in adopting new and improved rice varieties.
However, the first generation of modern rice varieties were not as productive compared to
the second and third generations (Hossain et al., 2006), as their main goal were to manage
lower yields. However Pandey (2012) criticizes these findings. The goal has now shifted to
developing varieties that ensure biotic and abiotic stress tolerance while achieving higher
production. This highlights the evolutionary nature of the development of rice varieties
and the need for continuous innovation to address emerging challenges. By adopting
STRVs, farmers can better adapt to changing environmental conditions and ensure their
agricultural productivity.

Farm-level decision-making processes are heterogeneous in nature and influenced by a wide
range of socioeconomic and plot-specific factors (Olagunju et al., 2020), and estimating
and understanding these processes can be challenging. Factors such as public interventions
(Devereux, 2007) and the dissemination and extension of region-specific policies (Olagunju
et al., 2020; Zeng et al., 2017; Awotide et al., 2016) have been suggested to improve the
adoption of STRVs, particularly among poor farmers. The influence of early adopter
neighbors, as demonstrated by Yamano et al. (2018), sheds light on the importance of
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information flow in spreading the impact of adoption among farmers. These findings
underscore the importance of targeted and customized strategies to promote the adoption
of STRVs and facilitate knowledge transfer in agricultural communities.

In this study we aim to contribute significantly to the current knowledge base by ex-
tending our understanding of the impact of adoption of STRVss in Bangladesh. Using
rich panel data, our empirical methodology seeks to establish a causal relationship be-
tween STRVs adoption and its impact on farmers’ household welfare. Understanding the
complex dynamics of adoption decisions, the factors influencing adoption rates and the
subsequent impacts on farmers’ well-being is essential for designing effective policies and
interventions that promote sustainable agricultural development in stress-prone regions.
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Chapter 3

Data

3.1 Brief Description of the Data

3.1.1 Data Source: Rice Monitoring Survey (RMS)

For this study, we used Rice Monitoring Survey1 (RMS) data which had three rounds,
2014, 2017, and 2022. Throughout different rounds, the questions were the same except
some minor changes in time. We kept the participants the same to create a balanced
household panel.

Our balanced panel data covered the whole country - six divisions, namely Barisal, Dhaka,
Khulna, Chittagong, Rajshahi, and Rangpur. There are three levels of data in the RMS.
The levels are as follows:

• Household data: includes all household-related information such as demograph-
ics, assets, animal ownership, household membership with different organizations,
access to electricity, farmers’ opinions on different stress such as flood, drought, and
salinity, and the availability of rice seed mini kits.

• Plot data: includes information about plots and varieties planted in a specific plot,
such as, plot size, tenure of the plot along with current accessibility, land type. We
also use remote sensing data to proximate rice yield and flood measures.

• Crop data: includes seasonal crop data. More specifically which rice variety was
planted in which season, methods of planting, damage of crops by different abiotic
shocks such as flood, drought, salinity, total production and spending of the yield
in different sources, estimates of inundation and most recent flooding year.

Since we are using RMS data, it is worth mentioning the sampling process briefly. RMS
uses a cluster sampling method for the survey. The sampling process has three clusters:

1Takashi, Y. (2017). Rice Monitoring Survey: South Asia (Version V1) [Dataset]. Harvard Dataverse.
https://doi.org/10.7910/DVN/0VPRGD
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division, district, and village. This survey used the list of census village in 2013 as the
sampling frame. Because we select a fixed number of samples from a village, households
living in small villages have a larger probability of being selected than households who live
in large villages. Without accounting the village population size, the estimated statistics
will not be representative of the target population. To correct the potential biases due to
the sampling design, we use survey weights that take the clustered design into account.
The weights are equal (or proportional) to the inverse of the probability of being sampled.
Thus, a household living in a larger village will have a larger weight than a household
living in smaller village. The weights could be considered as the number of households
that the sample households represent. In our survey, households living with large rice area
are more likely to be sampled than households living in smaller rice areas thus having
smaller weights.

We construct a strongly balanced panel data set by using data collected during the 2014,
2017, and 2022 rounds. The data set only includes households that are interviewed in all
three years using nearly identical questionnaires. The sampling distribution by division
and year can be found in the appendix section (Table 7.1). The analysis specifically focuses
on Aman season rice data since it is the most flood-prone rice season in Bangladesh. To
ensure data relevance and accuracy, we exclude households that did not cultivate rice
in the last 12 months and during Aman season. Furthermore, data points lacking key
variables such as production or plot size are disregarded. By applying these rigorous
criteria and practices, we construct a robust and reliable data set for analysis.

3.1.2 Data Source: Remote Sensing

In our study, we have collected data using satellite technology to understand the flooding
situation in Bangladesh. This data includes four different measurements related to floods.
In the first two rounds of the RMS, GPS coordinates were only collected for households
only and not for rice plots. In the third round of the RMS, GPS coordinates were collected
for both the household and the rice plots. This gives rise to a situation in which we know
household locations in all three rounds but plot locations in only the last round. Since plot
boundaries move from season-to-season and farmers buy, sell, and rent plots, we cannot
use the GPS location of a given plot in 2022 to determine the location of a plot in the
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previous rounds. Because many plots in Bangladesh are close to the homes of farmers,
we could use household GPS location as a proxy for plot location. However, some plots
remain far away from the households and may be at a lower latitude than the house.
In these cases, if we use the household GPS coordinates as a proxy of plot level GPS,
it would not be accurate. To overcome this limitation, we compare 2022 flood data for
the household with that from the plots to test if household flooding is an accurate proxy.
We end up using household GPS coordinates to proxy for plot locations and construct
historical flooding information for each household.

The process of collecting remote sensing flood data involves several steps. Initially we use
the Google Earth Engine platform to extract data. In our case we have used Convolutional
Neural Long Short-term Memory Network (CNN-LSTM) model where we have used the
combination of Sentinel 2 and MODIS 500m satellite data. First, using Google Earth
Engine we compile various data pertaining to water bodies in Bangladesh. Then using
the CNN-LSTM model in the Global Flood Database2 (GFD), we mask out permanent
water bodies like rivers, ponds, and lakes, resulting in the identification of temporary
water bodies. Leveraging this dataset of temporary water bodies, we proceed to acquire
historical flood-related data spanning from 2001 to 2022. Then we combine the flood
related data with the household panel data.

3.2 Variables

The RMS captures numerous variables, most focused on farming, but includes some socio-
economic indicators. Our analysis relies on a subset of these variables. Specifically, we
will use the following:

• Yield: calculated from the RMS for a specific plot in a given season. Yield is total
rice production in kg divided by plot size in hectare.

• Maximum Flooding: from the remote sensing data we get the maximum portion
of land affected by flooding during monsoon season of a year. We collect historical

2Tellman, B., Sullivan, J. P., Kuhn, C. C., Kettner, A. J., Doyle, C. S., Brakenridge, G. R., Erickson,
T., & Slayback, D. (2021). Satellite imaging reveals increased proportion of population exposed to floods.
Nature, 596(7870), 80–86. https://doi.org/10.1038/s41586-021-03695-w
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flooding data for all our flood measures from 2001. We define the “max flood”
variable as the highest amount of land that floods in a year and actively record it in
our analysis. The unit of measurement for this variable is the maximum percentage
of land inundation.

• Neighborhood Flooding Duration: the flood data set provides us with the
flooding for all households from 2001 to 2022, which we use to calculate the neighbor-
hood flooding. We organize the previous rounds of RMS data by village, where each
village comprises around ten households. To determine the neighborhood flooding
for a specific household in a village, we calculate the sum of the maximum propor-
tion of land inundation for all households in that village and subtract the individual
values from that sum. Then to get the normalized neighborhood flooding value,
we divide the neighborhood flooding by the total number of households from that
village.

• Mean Flooding: each household in our sample has more than one plot with some
exceptions. Each plot has a different level and proportion of inundation over time.
We calculated the average inundation of all plots of a household during the monsoon
season. The unit of measurement for this variable is the average percentage of land
inundation.

• Area Under the Curve (AUC): using the historical flooding experience of each
household, we calculate the area under the curve (AUC) function. We integrate the
fraction of land inundated during the monsoon period with respect to time t and
multiply with the time span value for a satellite image, which is 8 days in our case.

• STRV Adoption Dummy: it is necessary to determine STRVs adoption in the
households. The RMS data provides information regarding cultivating Aus, Aman,
and Boro rice seasons. Using administrative information about rice variety releases
from IRRI and Bangladesh Rice Research Institute (BRRI), we create a dummy
variable for STRV adoption where 1 represents the adoption of STRVs and a 0
value represents non-adoption.

• Lag of All Flood Measures: we calculate 13 years of lag value for all flood
measures described above for all households. The selection of this lag period entirely
depends upon the data availability.
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3.3 Data Limitation

In this study, we use RMS data from IRRI and the flood measures we collect from satellite
image analysis. This data source has some limitations. First, in the 2022 round, we could
not find all 1,500 samples from previous rounds since there is a long gap between our
survey in 2017 and 2022. During this time, some respondents died, and some migrated to
new places. Moreover, a household might produce rice in 2014, but in 2017, they might
not produce the same. Then, we drop those households to build a strongly balanced
panel data (see Table 7.1). Thus, we have fewer observations. Second, there are no plot
GPS coordinates in 2014 or 2017. Even in 2022, when we collected plot-specific GPS, we
could only collect the data for the most valuable and easily accessible plots. Sometimes,
farmers were unwilling to take the enumerator to the distant plots. Because it is extremely
time-consuming, especially when farmers have large numbers of plots, and those plots are
located miles away from each other. So, we only have data about four plots for each farm
household cultivating rice in the last 12 months.

Third, as mentioned previously, we can not track each plot over time. In Bangladesh,
land ownership changes very frequently. For example, a landowner could buy one in 2014,
rent out that land in 2017, and sell that in 2018. In this case, we have data until 2017.
Hence, in the 2022 round, that land will not be included since the previous owner sold
the land before the initiation of our 2022 round. Also, a farmer might have a plot that
is flood-prone. The farmer then sells that land and possibly buys new land in a better
position. In both examples, we can not track plots over time. This means we have a
household-level panel data set but we are unable to construct a plot-level panel. As a
robustness check, we conducted analysis on the pooled plot data and compare results to
the household-panel. Fourth, we do not have any input-output price-related data. We
only have the total amount of seed used to cultivate, total rice production, and spending
on the produced rice in different sectors, such as saved for future use, consumed, sold,
and used as a loan payment method. This lack of price data limits our ability to measure
household welfare in income and expenditure form. Another way to calculate household
welfare is the asset index. However, we need data about the age of the asset holding and
the buying price of that asset. Thus, it is impossible to calculate the asset index as well.
Last, the data integration process makes the dataset compact. This means we identify a
household under STRV cultivation if that household has at least one STRV plot. Then,



23

we take the average yield and flooding for all STRV plots and disregard other non-STRV
plots. On the other hand, if there is no STRV plot in a household, then we identify that
household as under non-adoption and take the average. So, our household data is more
compact and thus has less variation than if we conducted the analysis at the plot-level.
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Chapter 4

Methods

4.1 Conceptual Framework

Our Conceptual framework (Figure 4.1) begins with change rooted in the development
and diffusion of STRVs. There is heterogeneity in adoption of any farm technology as
each farmer optimizes their farm production decision subject to local conditions and
constraints. Given that our study focuses on rural regions, farm production decisions will
determine the amount of labor available to allocate outside the farm.

Having decided whether to produce rice, the farmer then assess the plot characteristics:
Prone or not prone to flood. In our study we only focus on the appropriate context which
refers to the land is prone to flood. At this point the farmer has two options. Either
the farmer can adopt STRVs or dis-adopt. Having made the adoption decision, plots
experience or do not experience a flood event represented by the black box in the Figure
4.1.

If inundation does not occur, the farmer will get typical yields. However, if flooding does
occur, the path diverges for households who adopted or did not adopt STRVs. Although
all plots in a given village experience different degrees of inundation, farm production
outcomes vary depending on the adoption status of STRVs.
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Figure 4.1. Impact Pathway - Theory of Change

Farm production allows the farmer to decide consumption. Farmers who adopt STRVs and
experience flooding will have higher yields and, therefore, higher income and consumption
than farmers who did not adopt STRVs and experienced a similar flood event. The
increased farm production, income, and consumption directly tie to increased income and
food security, as well as the cross-cutting theme of mitigating and adapting to climate
change.

4.2 Empirical Model

The RMS data allows us to use standard panel data techniques to control for time-
invariant household unobservables and compare changes in outcome within a household
for those who adopt or dis-adopt STRVs. However, panel data methods are unlikely to
allow us to identify the causal impacts of STRVs. Because the decision to adopt or dis-
adopt will likely vary over households and time. To address this endogeneity arising from
time variant characteristics of households, we use an instrumental variable (IV) strategy
that relies on the historical flooding experience, which we have discussed in chapter 5.
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To answer the research questions, we employed two-way fixed effect and Instrumental
Variable (IV) model using a panel data that matches RMS household data to the pixel-
level remote sensing data. The goal of theis analysis is to measure the causal effects
of adoption of STRVs on rice yield as a proxy of household welfare. As part of our
identification strategy, we will also use the remote sensing data as an inputs to the analysis.
This micro-level analysis relies on two different models to estimate causal effects. One is
the Two Way Fixed Effect Model (TWFE) and another one is the TWFE-Instrumental
Variable (TWFE-IV).

4.2.1 Two Way Fixed Effect Model (TWFE):

In this study the TWFE model is estimated as:

Yit =
n∑

i=1

αi +
r∑

t=1

δt + γSTRVi,t + ωFLOODi,t + β(STRVi,t ∗ FLOODi,t) + ϵi,t (4.2.1)

The TWFE approach incorporates household-level fixed effects (αi) and time-specific fixed
effects (δt). The model uses a dummy variable, STRVi,t, to denote the STRV adoption
status of a household at a given time period, where a value of 1 signifies adoption and 0
represents non-adoption. The outcome variable, Yit, captures household welfare measured
as rice yield. The interaction term between STRV adoption status and flooding will
capture the combined effect on the outcome variable. This approach enables us to assess
the joint impact of these two factors on rice yield and to determine whether the effect of
STRV adoption is contingent upon the presence of flooding. To explain the effect more
clearly, we will use the linear combination of the parameters from Equation 4.2.1.

4.2.2 TWFE-Instrumental Variable (TWFE-IV):

Similar to the TWFE, this model controls for individual and time fixed effects, but also
uses an instrumental variable to address endogeneity concerns arising from time variant
attributes of households in the relationship between adoption of STRVs and rice yield. In
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the first stage, we estimate:

STRVi,t =
n∑

i=1

αi +
r∑

t=1

δt + β1Lag of Flooding i,t + µi,t (4.2.2)

where i and t represent the individual household and time period. Lag of Floodingi,t is
our instrument and use to predict STRV adoption. The idea is that the Lag of Floodingi,t

affects the adoption decision directly but does not directly affect the rice yield, conditional
of contemporaneous flooding, time and household fixed effects.

To introduce an instrument for each households i at time t, we use Inverse Mills Ratio
(IMR) technique from Michler et al. (2019); Wooldridge (2003). The IMR is derived from
the cumulative distribution function of a standard normal distribution, and represents
the ratio of the density function to the cumulative distribution function. The reason of
introducing the IMR into our TWFE-IV model is to tackle any sample selection bias which
provides a way to correct for the potential biases and improve the accuracy of regression
estimates in the presence of selection bias and endogeneity. This process includes several
manual steps before proceeding to second stage IV method. After estimating equation
4.2.2, we calculate the linearly predicted value of STRVit. We then calculate the IMR
from the predicted STRV (ŜTRVit) value and interacted with different flood measures
(ŜTRVit × FLOODit).

The second stage of the TWFE-IV equation is:

Yit =
n∑

i=1

αi +
r∑

t=1

δt + θ1 ̂STRVi,t + νFLOODi,t + θ2( ̂STRVi,t ×FLOODi,t) + ϵi,t (4.2.3)

Here, ̂STRVi,t is the predicted value from the first stage (equation 4.2.2) regression. All
other terms are as previously defined.
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4.3 Reason for Including Household Level Fixed Effect

The inclusion of household-level fixed effects in the models holds significant methodologi-
cal importance. By incorporating household level fixed effects, we actively address several
crucial considerations in the analysis.

First, including household-level fixed effects allows us to control for unobservable time-
invariant characteristics specific to individual households. These unobserved factors may
be correlated with both adoption and the outcome variable (yield), potentially leading
to biased estimates if we do not account for them properly. Including household fixed
effects removes these unobservable household-specific factors so that we can accurately
attribute the effect of STRV adoption on yield rather than unobserved heterogeneity that
may confound it.

Second, household-level fixed effects actively capture time-invariant household-specific
factors that may independently affect yield. These factors encompass various characteris-
tics such as farming practices, infrastructure, or socio-economic attributes, which remain
constant over time but may influence yield apart from the flood measures and STRV
adoption. By accounting for these fixed effects, we actively control household hetero-
geneity. This allows us to focus on the within-household variation in flood measures and
STRV adoption, leading to more precise and reliable estimates of their effects on yield.
Moreover, including time fixed effects actively alleviates potential endogeneity concerns
arising from unobservables that differ over time but are constant across households.

4.4 Assumptions of Instrumental Variables

We used the instrumental variable approach to take the omitted variable bias or unob-
served heterogeneity into consideration, where simply the unobserved variable leaves into
the error term but rather than using the general OLS model, the instrumental variable
approach is utilized. Angrist et al. (1996) explained five assumptions for an instrumental
variable, that we follow in our study. The assumptions are as follows:

1. Stable Unit Treatment Value Assumption (SUTVA): The instrument affects
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only the subject and there are no different versions of the instrument that have
different effects. Mathematically:

∀d ∈ D, ∀i ∈ I : if Di = d then Yi(d) = Yi

where D represents the instrument, i shows the individual and Yi is the outcome
variable of each indidvuals. In other words, SUTVA states that the potential out-
come for a unit is not influenced by the treatment status of other units. In the
context of this study, SUTVA imply that the previous experience of flooding in one
household does not affect by the lag values of flooding of other households. This
is because the lag of flooding is a unit-level characteristic, and SUTVA states that
unit-level characteristics are not influenced by the instrument value of other units.

• Exogeneity of the Instrument

– Unconfoundedness of the Instrument: The unconfoundedness of the instrument
can be expressed mathematically as follows:

Corr(Z,U) = 0

where Z is the instrumental variable, U is the unobservables that affect the
outcome variable. The instrumental variable is not correlated with any unob-
servables that affect the outcome. That means, the distribution of the previous
experience of flooding is correlated with STRV adoption through which we pre-
dicted our outcome variable yield.

– Exclusion Restriction: The exclusion restriction can be expressed mathemati-
cally as follows:

E(Z|X,Y ) = 0

where X is the STRV adoption, Y is the rice yield, and E refers to the expec-
tation.There is no direct relationship between the previous flooding experience
and rice yield. The only relationship is through the STRV adoption.

• Monotonic Effect of Probability of Flooding on STRV Adoption: This can
be expressed mathematically as follows:

d
dP (FLOOD)

(X) > 0
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where X is the STRV adoption, P(FLOOD) is the lag value or previous experience
of flooding. In other words, the monotonic effect of previous flooding experience on
STRV adoption assumption states that the STRV adoption is an increasing function
of the lag value of flooding. So, an higher degree of experience of flooding motivates
farmer to adopt STRVs. It is plausible that the adoption of STRVs provides a clear
incentive and no disincentive to take the treatment.

• Non-zero Effect of Instrument on Treatment: To fullfill this assumption, the
first stage estimation coefficient for previous flooding experience or simply lag of
flood should be not equal zero. In other words, β̂1Z,X

̸= 0 in equation 4.2.2
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Chapter 5

Results

5.1 Summary Statistics

In this section, we present the summary statistics of the variables explained in chapter
3 section 3.2 at both household and plot levels. We conduct this analysis for three spe-
cific years, namely 2014, 2017, and 2022. Additionally, we examine the data based on
the adoption status of STRV, distinguishing between STRV and non-STRV cases. This
approach allows us to gain insights into the overall trends across the years and differences
between the two adoption groups. Mann-Whitney tests and Pearson tests reveal the mean
differences between groups and periods.

5.1.1 Summary Statistics: Household Level

Table 5.1 summarizes key variables by STRV adoption status, encompassing 2,874 obser-
vations. The data reveals that 87.4% of the cases are classified as non-STRV, while 12.6%
are STRV adoption cases. Statistical tests show significant differences in the distribution
across the years and various variables, such as the average Area Under the Curve (AUC),
average of maximum values of inundation during the monsoon season, and average yield.
Moreover, STRV adoption is translated into higher average yields. However, the two
adoption groups have no statistically significant distinction in plot size. Curiously, these
findings demonstrate that STRV adopters tend to cultivate rice in less flood-prone ar-
eas, which does not make much sense given the technology is to mitigate damage due to
flooding. In addition to being less susceptible to flooding, the summary statistics show
that, on average, adopters have higher yields than non-adopters. This may be evidence of
sample selection bias, with skilled farmers being more likely to adopt the new technology.
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Table 5.1. Summary Statistics of Key Variables by STRV Adoption at Household Level
Adoption

Non-STRV STRV Total Test
N** 2,513 (87.4%) 361 (12.6%) 2,874 (100.0%)

Year**
2014 884 (35.2%) 74 (20.5%) 958 (33.3%) <0.001
2017 878 (34.9%) 80 (22.2%) 958 (33.3%) <0.001
2022 751 (29.9%) 207 (57.3%) 958 (33.3%) <0.001

AUC* 2.82 (1.84) 2.52 (1.78) 2.78 (1.83) 0.004
Max Flood* 0.33 (0.16) 0.30 (0.15) 0.32 (0.16) 0.002
Mean Flood Value* 0.12 (0.08) 0.11 (0.08) 0.12 (0.08) 0.004
Neighborhood flood* 0.31 (0.14) 0.29 (0.12) 0.31 (0.13) 0.003
Average Yield (kg/ha)* 3,904.04 4,574.77 3,988.29 <0.001

(1,528.44) (1,371.38) (1,525.67)
Plot Size (ha)* 0.67 (0.69) 0.64 (0.54) 0.66 (0.67) 0.474

*Mean (Standard deviation): p-value from a Mann-Whitney test.
**Frequency (Percent %): p-value from Pearson test.

Table 5.2. Summary Statistics of Key Variables by Year at Household level
Year

2014 2017 2022 Total
N** 958 (33.3%) 958 (33.3%) 958 (33.3%) 2,874 (100.0%)

Adoption**
Non-STRV 884 (92.3%) 878 (91.6%) 751 (78.4%) 2,513 (87.4%)
STRV 74 (7.7%) 80 (8.4%) 207 (21.6%) 361 (12.6%)

AUC* 2.93 (1.87) 2.76 (1.94) 2.66 (1.66) 2.78 (1.83)
Max Flood* 0.32 (0.16) 0.31 (0.17) 0.34 (0.15) 0.32 (0.16)
Mean Flood Value* 0.13 (0.08) 0.12 (0.08) 0.12 (0.07) 0.12 (0.08)
Neighborhood flood* 0.31 (0.14) 0.30 (0.14) 0.32 (0.12) 0.31 (0.13)
Average Yield (kg/ha) 3,993.85 3,735.03 4,236.00 3,988.29

(1,334.52) (1,569.80) (1,617.70) (1,525.67)
Plot Size (ha)* 0.68 (0.73) 0.70 (0.60) 0.60 (0.67) 0.66 (0.67)

*Mean (Standard deviation), **Frequency (Percent%)

Table 5.2 reveals the mean difference of some key variables based on different years.
Specifically, the average AUC, an average of the maximum and mean flood value, and
neighborhood flood differ slightly across the years, suggesting some variations in flood
patterns in Bangladesh. Additionally, the average yield signifies the differences in agri-
cultural productivity over the years, with 2017 having the lowest yields and 2022 the
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highest. Also it is clear from Table 5.2 that, STRV adoption has substantially increased
over time. The adoption was around 8% in 2014 and increased to 22%.

0

.0001

.0002

.0003

D
e
n
s
it
y

1000 2000 3000 4000 5000 6000

Yield (kg/ha)

STRV Non−STRV

Distribution of Yield in 2014

0

.0001

.0002

.0003

D
e
n
s
it
y

1000 2000 3000 4000 5000 6000

Yield (kg/ha)

STRV Non−STRV

Distribution of Yield in 2017

0

.0001

.0002

.0003

.0004

D
e
n
s
it
y

1000 2000 3000 4000 5000 6000

Yield (kg/ha)

STRV Non−STRV

Distribution of Yield in 2022

0

.0001

.0002

.0003

D
e
n
s
it
y

1000 2000 3000 4000 5000 6000

Yield (kg/ha)

STRV Non−STRV

Distribution of Yield (all)

Figure 5.1. Distribution of Yield By Year and Rice Variety at Household Level

The kernel density plot in Figure 5.1 illustrates the yield distribution over rice variety type
and year. We find that the yield of STRV rice is higher than the non-STRV counterparts
over the year. This finding implies that STRV rice demonstrates higher crop efficiency
and resilience against environmental factors that can potentially affect yield. The distri-
butional findings align with the descriptive results in Table 5.1 and 5.2. In later sections
of this study, we will delve deeper into analyzing the causal effects more extensively.

5.1.2 Summary Statistics: Plot Level

Table 5.3 provides an overview of key variables by STRV adoption status at the plot-level.
The analysis reveals that most plots, accounting for 90% of the dataset, are cultivated
under non-STRVs, while the remaining 10% represents cases with STRV adoption. Among
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the non-STRV plots, 34% come from 2014 round whereas 28 and 38 % come from 2017
and 2022 round respectively. Statistical tests demonstrate significant disparities in the
distribution, including the average AUC, maximum and average inundation values, and
average yield. Additionally, plots under STRVs have higher average yield and the variation
of rice yield is statistically different from zero.

Table 5.3. Summary Statistics of Important Variables by STRV at Plot Level
STRV Adoption

Non-STRV STRV Total Test
N** 4,650 (90.0%) 517 (10.0%) 5,167 (100.0%)
Year**
2014 1,573 (33.8%) 72 (13.9%) 1,645 (31.8%) <0.001
2017 1,309 (28.2%) 77 (14.9%) 1,386 (26.8%) <0.001
2022 1,768 (38.0%) 368 (71.2%) 2,136 (41.3%) <0.001

AUC* 2.78 (1.95) 2.45 (1.60) 2.75 (1.92) <0.001
Max Flood* 0.33 (0.17) 0.29 (0.14) 0.32 (0.17) <0.001
Mean Flood Value* 0.12 (0.08) 0.11 (0.07) 0.12 (0.08) <0.001
Neighborhood flood* 0.31 (0.13) 0.28 (0.10) 0.31 (0.13) <0.001
Average Yield (kgha)* 3,992.99 4,896.49 4,088.41 <0.001

(1,597.91) (1,432.87) (1,605.36)
*Mean (Standard deviation): p-value from Mann-Whitney test.
**Frequency (Percent%): p-value from Pearson test.
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Table 5.4. Summary Statistics of Important Variables by Year at Plot Level
Year

2014 2017 2022 Total
N(%) 1,645 (31.8) 1,386 (26.8) 2,136 (41.3) 5,167 (100.0)

Adoption
Non-STRV (%) 1,573 (95.6) 1,309 (94.4) 1,768 (82.8) 4,650 (90.0)
STRV (%) 72 (4.4) 77 (5.6) 368 (17.2) 517 (10.0)

AUC 2.92 (2.01) 2.61 (1.89) 2.70 (1.86) 2.75 (1.92)
Max Flood 0.32 (0.17) 0.31 (0.18) 0.34 (0.16) 0.32 (0.17)
Mean Flood Value 0.13 (0.09) 0.11 (0.08) 0.12 (0.08) 0.12 (0.08)
Neighborhood flood 0.31 (0.14) 0.29 (0.14) 0.32 (0.12) 0.31 (0.13)
Average Yield (kgha) 3,960.61 3,798.57 4,362.50 4,088.41

(1,427.46) (1,577.13) (1,699.88) (1,605.36)

Table 5.4 shows that the mean difference of some key variables based on different years.
Specifically, the average AUC, maximum and mean flood value, and neighborhood flood
differ across the years, suggesting variations in flood patterns in Bangladesh. Additionally,
the average yield signifies the differences in agricultural productivity over the years. Like
the results from household panel data, in this case, adoption of STRV increases over time
refers to the increasing awareness among farmers.

Figure 5.2, depicts the kernel density plot of rice yield distribution over time and rice
variety type. It is clear from the distribution that the yield of the STRV rice variety
surpasses that of other varieties. This finding suggests that STRV rice exhibits enhanced
crop efficiency and resilience than its counterparts towards environmental conditions that
can impact yield. The distributional findings align with the descriptive results presented
in Table 5.3 and 5.4. Also, the household panel data shows a similar pattern of yield
distribution by rice type over time.

In summary, this section revels the distribution of key variables by rice variety type
(STRV and Non-STRV) and year (2014, 2017, 2022). Also, we have discussed plot specific
data along with household panel data. The data integration process is slightly different
causing a marginal deviation from the household level descriptive statistics. We find,
STRV adoption is increasing over time. Additionally, STRVs have a higher yield than
Non-STRVs.
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Figure 5.2. Distribution of Yield By Year and Rice Variety at Plot Level

5.2 Two-Way Fixed Effect (TWFE) Analysis

This section presents the results obtained from the TWFE analysis. This statistical
method enables us to account for time-invariant factors by introducing fixed effects for
households and time. By controlling for unobserved heterogeneity and time-specific
shocks, we can discern the actual effects of the variables of interest on the outcome
variable. The TWFE analysis offers valuable insights into the underlying dynamics and
provides robust evidence for the impact of STRV adoption on rice yield. Table 5.5 reports
the results from the TWFE model with household and time fixed effect.

To answer our research question we need to look closely to Table 5.6 where we summarize
and present the point estimates and the linear combination of the independent variables.
In Equation 4.2.1, the coefficient γ captures when farmers adopt STRV and face no flood.
This measures the difference of average yields for adopters who experience no flood relative
to non-adopter who experience no flood. Across three of the four models the coefficient
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Table 5.5. TWFE Models (Equation 4.2.1)
Ln Yield (1) (2) (3) (4)
Max Flood -1.646

[-2.58,-0.72]
Adoption × Max Flood 0.293

[-0.43, 1.01]
AUC -0.244

[-0.40,-0.09]
Adoption × AUC -0.001

[-0.05, 0.05]
Mean Flood Value -5.611

[-9.11,-2.11]
Adoption × Mean Flood Value -0.029

[-1.14, 1.08]
Neighborhood flood -2.144

[-3.19,-1.10]
Adoption × Neighborhood flood 0.963

[0.09, 1.83]
STRV Adoption 0.021 0.126 0.126 -0.178

[-0.24, 0.28] [-0.04, 0.29] [-0.04, 0.29] [-0.45, 0.09]
Number of Observations 2874 2874 2874 2874
Log Likelihood -4220.32 -4222.43 -4222.43 -4216.02
Number of Cluster 958 958 958 958
Fixed Effect Household and Time

All equations include intercept and dummy variable of year
Values in parentheses include 90% confidence interval. Std. Errors are clustered at household level

γ is positive. But these coefficients are not statistically significant, meaning that, the
difference in average yield between adopter and non-adopter is not different from zero.
In other words, there is no yield benefit or penalty for adopting STRV when there is no
flood.

A second scenario of adoption and flood describes when the farmer does not adopt STRV
but face some degree of flooding. From Equation 4.2.1, ω captures this effect. It measures
the difference in average yields for non-adopters who experience a flood relative to non-
adopters who do not experience a flood. The negative coefficient ranging between -0.24
and -5.61 reflects that there is a negative effect on average rice yield and the difference
of yield are significantly different from zero. This result signifies the findings that, non-
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adopter farmer experience a loss in yield during a flood event.

A third scenario is when a farmer adopts STRVs and experiences. From our TWFE
estimation, β captures the difference on yields for an adopting farmer who experiences
a flood relative to a non-adopter who faces no flood. The coefficient has a mixed effect
on rice yield, sometimes being positive or negative, but is only statistically significant in
one of the four regressions. In words, when β is not significant it means adopters who
experienced the flood had yields that were no different from non-adopters who did not
experience a flood. Simply put, that β is not negative and significant means that farmers
growing STRVs have yields that are resilient to flood because they obtained yields equal
to those who had no flood at all.

We can also consider two “total effect” scenarios. First, γ+β measures the overall impact
of adoption regardless of flood status. We find all the coefficients are positive ranging
between 0.09 to 0.78, and the linear combination when using neighborhood flooding is
statistically significant too. This finding means that there would be a yield gain from
adoption compared to non-adoption in any flood state. However, for other flood mea-
sures, this difference in rice yield are statistically insignificant. Because in this case we
are comparing the results between adopters and non-adopters regardless of flood status.
Second, ω + β measures the impact of flood regardless of adoption status. From our
estimation we find that, for all flood measures, the effect of flood on rice yield regardless
of adoption is negative. The coefficient is ranging between -5.63 to -0.25.

The final comparison to be made is between adopters and non-adopters when there is a
flood. To answer our research question we need to know the difference between ω and β.
We run a F-test to evaluate the mean difference between these two parameters. For all
flood measures, this test is positive and significant, meaning that the average yields for
non-adopters who experience a flood are significantly less than adopters who experience
a flood. Hence, this finding demonstrates the effectiveness of STRV during flood events.

To understand the effect of adoption to different flood intensity, in Figure 5.3 we classify
the predicted value of rice yield into different flood categories. The lowest category com-
prises households with flood values in the bottom 25% of the data whereas the medium
and highest flood category consists of middle 50% and top 25% of the entire data set. We
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find that, in most of the cases, STRV poses a higher yield than the Non-STRVs. Only
the highest flood segment for flood mean and area under the curve has slightly different
insights, showing that Non-STRV have a better yield. The predicted value of rice yield
has a similar pattern compared to the actual rice yield (Figure 7.4). So, our estimation
is in line with the actual yield value.
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Table 5.6. Summary of Parameters and Point Estimates of TWFE Model

Parameter Description Flood Max Flood Mean AUC Neighborhood Flooding

γ

measures the difference in average
yields for adopters who experience
no flood relative to non-adopters
who experience no flood.

0.02 [-0.24, 0.28] 0.12 [-0.04, 0.29] 0.12 [-0.04, 0.29] -0.17 [-0.44, 0.08]

ω

measures the difference in average
yields for non-adopters who experi-
ence a flood relative to non-adopters
who do not experience a flood

-1.64 [-2.57, -0.71] -5.61 [-9.11, -2.11] -0.24 [-0.39, -0.09] -2.14 [-3.19, -1.09]

β

measures the difference in average
yields for adopters who experience
a flood relative to non-adopters who
experience no flood

0.29 [-0.43, 1.01] -0.02 [-1.14, 1.08] -0.001 [-0.05, 0.05] 0.96 [0.09, 1.83]

γ + β
measures the overall impact of adop-
tion regardless of flood status. 0.31 [-0.17, 0.79] 0.09 [-0.007, 0.25] 0.12 [-0.88, 1.08] 0.78 [0.15, 1.41]

ω + β
measures the overall impact of flood
regardless of adoption status. -1.35 [-2.14, -0.56] -5.63 [-0.39, -0.09] -0.25 [-9.02, -2.25] -1.18 [-2.0, -0.36]

test ω = β
or ω − β =
0

measures the difference of average
yield between the adopter and non-
adopter who experience flood

4.76** 5.43** 5.43** 8.65***

All models include year dummy and intercept.Values in parenthesis represents 90% confidence interval. Standard Errors are clustered at
household level. *,**,*** means value is significant at 10%, 5% and 1% level
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Figure 5.3. Predicted Value of Ln Yield from TWFE Models at Household Level
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5.3 Two-Way Fixed Effect Instrumental Variable (TWFE-IV)
Analysis

In this section, we delve into the results obtained from the TWFE-IV analysis. This
approach tackles the endogeneity issue commonly encountered in econometric studies by
employing instrumental variables to address potential biases caused by omitted variables
or measurement errors. By accounting for the exogenous variation in the instrumental
variables, we can establish causal relationships between the predictors and the outcome
variable, further strengthening the validity of our findings

5.3.1 First Stage of TWFE-IV Model:

The results of the first stage of TWFE-IV approach is in Table 5.7. Following the Equation
4.2.2 we include the lag of all flood measures up to 13 years as the previous experience of
flooding for each households. The selection of lag value is completely dependent on data
availability. The main reason behind the inclusion of lag value is very intuitive. Farmers
in Bangladesh use their previous years flooding experience (Yamano et al., 2018) and
combine that experience with the land type, frequency and amount of rainfall of current
year to predict the flooding potentiality in the current year. We have explained this kind
of prediction and decision making in our conceptual framework in Section 4.1, Figure 4.1
as the “Appropriate context, prone to flood”.

The analysis of the first stage equation reveals that previous flooding experience demon-
strates a robust explanatory power in accounting for the observed variations in STRV
adoption. Additionally, all the models exhibit high F-statistic values, exceeding the
threshold of 10, commonly regarded as an indicator of a superior instrument for the
second stage. The results lead to the conclusion that the lag values of flood measures
provide strong explanatory power for the extent of variation in STRV adoption among
the farmers.
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Table 5.7. TWFE-IV model (First stage) (Equation 4.2.2)
Flood max Flood Mean AUC Neighborhood Flood

Lag 1 0.18 0.06 0.01 0.29
[0.02, 0.34] [-0.37, 0.49] [-0.01, 0.02] [0.10, 0.49]

Lag 2 -0.19 -0.04 0 -0.32
[-0.34,-0.05] [-0.43, 0.36] [-0.01, 0.02] [-0.49,-0.14]

Lag 3 -0.28 -0.98 -0.03 -0.29
[-0.43,-0.14] [-1.53,-0.42] [-0.06,-0.01] [-0.46,-0.12]

Lag 4 0.5 1.08 0.05 0.54
[0.33, 0.67] [0.63, 1.52] [0.03, 0.07] [0.34, 0.74]

Lag 5 0.26 0.22 0 0.28
[0.08, 0.44] [-0.27, 0.71] [-0.02, 0.03] [0.08, 0.49]

Lag 6 0.21 0.32 0.02 0.37
[0.04, 0.38] [-0.17, 0.81] [-0.01, 0.04] [0.16, 0.58]

Lag 7 0.12 0.61 0.03 0.21
[-0.04, 0.28] [0.19, 1.03] [0.01, 0.05] [0.01, 0.40]

Lag 8 -0.1 -0.3 -0.01 -0.14
[-0.27, 0.07] [-0.88, 0.28] [-0.04, 0.01] [-0.33, 0.06]

Lag 9 -0.53 -1.01 -0.04 -0.81
[-0.71,-0.35] [-1.46,-0.56] [-0.06,-0.02] [-1.01,-0.60]

Lag 10 0.43 1.01 0.04 0.61
[0.27, 0.58] [0.60, 1.42] [0.03, 0.06] [0.43, 0.79]

Lag 11 0.01 -0.41 -0.01 -0.01
[-0.14, 0.16] [-0.82, 0.00] [-0.03, 0.00] [-0.19, 0.16]

Lag 12 -0.12 -0.78 -0.03 -0.14
[-0.28, 0.05] [-1.25,-0.30] [-0.05,-0.01] [-0.34, 0.05]

Lag 13 0.3 1.18 0.05 0.36
[0.21, 0.40] [0.82, 1.54] [0.04, 0.07] [0.25, 0.47]

Number of Obs. 2874 2874 2874 2874
Log Likelihood 100.791 81.011 81.158 136.214
F Stat 12.508 11.105 11.194 15.235
Number of Cluster 958 958 958 958
Fixed Effect Household & Time
All models include year dummy and intercept.Values in parenthesis represents 90% confidence interval.
Standard Errors are clustered at household level



44

Figure 5.4. TWFE-IV First Stage Impact at Household Level (not drawn to scale)

Figure 5.4 demonstrates a non-linear relationship between the adoption of STRV and
flooding measures. The x-axis represents the lag period, while the y-axis illustrates the
impact of four flood measures. In each graph, points above the horizontal line indicate
a positive effect of flood measure on STRV adoption, whereas the lower part signifies a
negative impact. The findings from Figure 5.4 suggest that farmers are more inclined
to adopt STRV based on the most recent flooding experience. In all first lag period the
coefficients are positive. But in almost all second lag period, coefficients are negative
or zero.As the lag period increases, farmers show an uinconsistent relationship between
past flood experience and STRV adoption. Several potential reasons can account for this
phenomenon.

First, STRVs represent a costlier alternative to traditional rice varieties. Consequently,
it is commonplace for farmers to encounter financial constraints that hinder their abil-
ity to adopt STRVs every year. In the event of flooding during one year, farmers may
adopt STRVs in the subsequent year. Furthermore, previous research findings and our
own TWFE estimation have revealed no discernible yield benefit associated with STRV
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adoption during normal weather conditions. As a result, if farmers choose to adopt STRVs
in a given year and subsequently experience a flood-free season, they will not observe any
yield advantage resulting from their adoption - just increased costs. In contrast, their
neighboring farmers who refrain from adopting STRVs may achieve comparable yields
at lower costs. Considering the input and output aspects, this situation becomes dis-
heartening for farmers who have embraced STRVs. Therefore, the observed tendency for
farmers to adopt STRVs depending on short-run flooding experience can be attributed to
a combination of factors, including financial constraints, variable soil conditions, and the
absence of yield benefits under normal weather conditions.

5.3.2 Second Stage of TWFE-IV Model:

Estimation results from the second stage of the TWFE-IV model are presented in Table
5.8. As with the TWFE model, we focus our attention on the summarized results in Table
5.9.

Recall from Equation 4.2.3 θ1 represents the difference in rice yield between adopters who
experience no flood relative to non-adopters who experience no flood. All the coefficients
for θ1 are positive (for flood max, flood mean and area under the curve) and negative
(neighborhood flooding) but insignificant. That means, the difference of rice yield between
adopter and non-adopter who experience no flood is not different from zero. In words,
there is no yield benefit or penalty for adopting STRV in a flood free season.

Next, ν measures the difference in average yields for non-adopters who experience a flood
relative to non-adopters who do not experience a flood. From the TWFE-IV model we
find that, for all flood measures, ν is negative and significant. This result shows that
non-adopter farmers face yield loss due to flood, which is significantly different from zero.

θ2 represents the difference in average yields for adopters who experience a flood relative
to non-adopters who experience no flood. In our case, for flood max, flood mean and
neighborhood flooding has negative but insignificant coefficient for θ2. Only the AUC has
a positive but insignificant result. This means that for all flood measures, the difference in
average yield for adopters who experience a flood is no different than the average yield for
non-adopters who do not experience a flood. In simple words, adopters who experience a
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flood had yields that were resilient to the flood and got yields equal to those who had no
flood at all.

We can also look at θ1 + θ2, which measures the overall impact of adoption regardless of
flood status. From Table 5.9 we can see that the coefficient is ranging between -1.82 to
0.28. Since both θ1 and θ2 are not different from zero, so the linear combination of these
two parameters is also be zero. This is because the comparison group is non-adopters
who experience no flood. So, this linear combination is not that informative because it
compares adoption to the status quo of no flood non-adopters. Now, ν+ θ2 represents the
impact of flood regardless of adoption status. We find that coefficients for all the flood
measures are negative and statistically insignificant. This is because we are comparing
everyone who experienced a flood to non-adopters who experienced no flood.

Finally, to answer our research question, we want to determine if yields for STRV adopters
who experience a flood are significantly greater than the yields for non-adopters who also
experience a flood. The test for a difference between ν and θ2 turns up no significant
difference in rice yield between these two groups. While our TWFE estimates showed
a positive and signficant effect of STRV adoption on yields during floods, this result is
not robust to the use of our IV. This may be due to several reasons. First, IV estimates
have larger confidence intervals, meaning a difference might exist but we cannot measure
it with precision. Second, our instrument may not be valid and therefore the TWFE-IV
results are biased compared to our TWFE results. Third, our instrument may be valid,
meaning the TWFE-IV is effectively controlling for endogeneity that is left uncontrolled
for in the TWFE, meaning the null results of the IV estimates are to be believed. At this
point we cannot determine which of these explanations is most likely.
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Table 5.8. TWFE-IV model at Household level fixed effect
Ln Yield (1) (2) (3) (4)
Max Flood -1.52

[-2.36,-0.68]
Adoption × Max Flood -1.88

[-6.92, 3.17]
Mean Flood Value -5.49

[-8.79,-2.20]
Adoption × Flood Mean -2.15

[-21.76,17.46]
AUC -0.24

[-0.39,-0.09]
Adoption × AUC 0.10

[-0.48, 0.68]
Neighborhood flood -1.80

[-2.80,-0.80]
Adopion × Neighborhood Flood -1.85

[-9.65, 5.95]
STRV Adoption 0.27 0.33 0.18 0.67

[-1.05, 1.58] [-0.91, 1.58] [-0.69, 1.05] [-1.29, 2.63]
Number of Observations 2874 2874 2874 2874
F Stat 1.550 1.597 1.587 1.600
Number of Cluster 958 958 958 958
Fixed Effect Household and Time

All models include intercept and dummy variable for year
Values in parenthesis represents 90% confidence interval. Std. Errors are clustered at household level
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Table 5.9. Summary of Parameters and Point Estimates of TWFE-IV Model

Parameter Description Flood Max Flood Mean AUC Neighborhood Flooding

θ1

measures the difference in average
yields for adopters who experience
no flood relative to non-adopters
who experience no flood.

2.65 [-1.04, 1.58] 0.33 [-0.91, 1.58] 0.18 [-0.69, 1.05] 0.67 [-1.29, 2.63]

ν

measures the difference in average
yields for non-adopters who experi-
ence a flood relative to non-adopters
who do not experience a flood

-1.51 [-2.35, -0.67] -5.49 [-8.78, -2.19] -0.24 [-0.38, -0.09] -1.8 [-2.8, -0.8]

θ2

measures the difference in average
yields for adopters who experience
a flood relative to non-adopters who
experience no flood.

-1.87 [-6.92, 3.17] -2.15 [-21.76, 17.45] 0.10 [-0.48, 0.68] -1.85 [-9.65, 5.94]

θ1 + θ2
measures the overall impact of adop-
tion regardless of flood status. -1.61 [-5.51, 2.29] -1.82 [-20.29, 16.64] 0.28 [-0.23, 0.79] -1.18 [-7.09, 4.72]

ν + θ2
measures the overall impact of flood
regardless of adoption status. -3.39 [-8.49, 1.71] -7.65 [-28.97, 13.69] -0.13 [-0.79, 0.52] -3.65 [-11.17, 3.87]

test ν = θ2
or ν − θ2 =
0

measures the difference of average
yield between the adopter and non-
adopter who experience flood

0.01 0.09 1.12 0.00

Values in parenthesis represents 90% confidence interval. Standard Errors are clustered at household level. *,**,*** means value is
significant at 10%, 5% and 1% level
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Figure 5.5. Predicted Value of Ln Yield from TWFE-IV Models at Household Level Fixed Effect
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Figure 5.5, shows the predicted value of ln Yield from the above TWFE-IV model (equa-
tion 4.2.3) over STRV adoption status, classified as STRV and Non-STRV by different
categories of flood measures. In this case, we categorize the flood measures into three
parts, namely the lowest (bottom 25%), medium (middle 50%), and highest (top 25%) in
terms of the value of each flood measure. It is evident that, in most of the cases, STRV
shows a higher yield compared to the non-STRVs. But in terms of different segments of
maximum flooding, non-STRVs do better.

5.4 Robustness Check:

In addition to the primary concern of TWFE and TWFE-IV models with household and
time fixed effect from household panel data, we conduct another set of robustness checks
with plot data from the households. The primary purpose of this analysis is to account
for the fact that households do not adopt STRVs in all of their plots. And the data
integration process for household panel data does not allow us to consider both STRV
and Non-STRV plots at the same time. So, to understand the deviation coming from the
data integration process we conduct the robustness check. In this case, we use the same
estimation technique as in section 5.2 and section 5.3.

The results from the TWFE analysis with plot data, as presented in Table 7.3, demon-
strate remarkable consistency with the household-level TWFE model. However, a no-
ticeable deviation emerges when we try to measure the linear combination of parameters
which is in Table 7.4. From this TWFE analysis we could not find any strong evidence to
prove that STRVs are effective during flooding as the test for differences between ω and β

is not significant. But flood is damaging the rice yield. β for TWFE and ν for TWFE-IV
model (see Table 7.7) turns out as negative in some case whereas for other cases, its zero.
Meaning that adopters who experienced the flood had yields that were 100% resilient to
the flood and farmers got yields equal to those who had no flood at all. The reason be-
hind these disparities can be attributed to plot specific heterogeneity inherent in the data
used for the analysis and the data integration process. Individual plots possess unique
attributes, such as diverse soil qualities, different drainage systems, and variations in land
types. These plot-specific characteristics might influence the impact of STRV adoption
on rice yield.
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Chapter 6

Conclusion

Climate change is a pervasive threat to Bangladesh and many other parts of the world.
In recent years, the country has experienced an increasing number of catastrophic floods
(NASA Earth Observatory, 2022), which have caused substantial crop damage and ren-
dered many poor households food insecure (Mishra et al., 2015). To counteract the effects
of flooding, Bangladesh has introduced submergence-tolerant rice varieties. These vari-
eties can withstand flooding, so farmers can still produce a crop even when their fields are
submerged. This research uses three years of household panel data from rural Bangladesh
to quantify the impact of stress-tolerant rice varieties (STRVs) adoption on rice yield.
We extract the historical flooding experience by the farmer using Sentinel 2 and MODIS
500m jointly in CNN-LSTM algorithm in Google Earth Engine. We employ the Two-Way
Fixed Effect (TWFE), and Two-Way Fixed Effect Instrumental Variable (TWFE-IV)
approaches as a causal pathway.

We find that the STRV adoption has increased significantly over time, from around 8%
in 2014 to 22% in 2022. This increase in adoption has led to a significant increase in
average rice yields. From descriptive analysis we find that STRV adopter farmers have
yields that are significantly higher than those of non-adopter farmers. Our causal effect
analysis shows that all flood measures, including maximum flooding, mean flooding, the
area under the curve (AUC), and neighborhood flooding, cause rice yield loss. From the
TWFE estimation, we find strong evidence that STRVs are effective during any flood
events compared to non-STRVs in terms of rice yield. But from the TWFE-IV model,
we could not find any strong evidence supporting the same conclusion as the TWFE
model. Our results are also not robust to when we use pooled plot-level data instead of
household-level panel data.

In conclusion, our analysis of TWFE and TWFE-IV reveals no yield penalty for adopting
STRVs during the flood-free season. Non-adopting farmers experience yield losses during
flood events, whereas STRV adopters demonstrate resilient yields. Based on these find-
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ings, the government should encourage farmers to adopt STRVs to attain resilient yields.
However, while the TWFE analysis supports the effectiveness of STRVs during floods,
the TWFE-IV analysis needs more conclusive evidence, necessitating further research for
solid policy recommendations. Hence, more investigation is required to ascertain the ef-
fectiveness of STRVs during flood events, ensuring well-informed decisions for sustainable
agriculture and environmental conservation.
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Chapter 7

Appendix

7.1 Appendix A - Detail Tables and Figures

Table 7.1. Sampling Distribution of Households by Division and Year
Year

Division 2014 2017 2022 Total
Barishal 332 332 332 996
Chittagong 77 77 77 231
Dhaka 50 50 50 150
Khulna 134 134 134 402
Rajshahi 193 193 193 579
Rangpur 172 172 172 516
Total 958 958 958 2,874
Rate of Attrition 0.013 0.114

Values represent frequency of households.
Rate of attrition represents before strongly balanced panel obs. count

Table 7.2. Sampling Distribution of Plots by Division and Year
Year

2014 2017 2022 Total
Barisal 517 438 676 1,631
Chittagong 137 136 156 429
Dhaka 57 38 93 188
Khulna 221 202 316 739
Rajshahi 333 266 459 1,058
Rangpur 380 306 436 1,122
Total 1,645 1,386 2,136 5,167

Values represent number of plots
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Figure 7.1. Area under STRV Cultivation by Year

Figure 7.2. Average ln Yield Over Cultivated Area By Years



59

Figure 7.3. Average ln Yield Over Adoption Status By Years
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Figure 7.4. Actual Value of ln Yield with Household Panel Data
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Table 7.3. TWFE Models with Plot Level Data (Equation 4.2.1)
Ln Yield (1) (2) (3) (4)
Max Flood -0.939

[-1.72,-0.16]
Adoption × Max Flood 0.401

[-0.42, 1.22]
AUC -0.088

[-0.16,-0.02]
Adoption × AUC 0.012

[-0.04, 0.06]
Mean Flood Value -2.018

[-3.64,-0.39]
Adoption × Mean Flood Value 0.265

[-0.90, 1.43]
Neighborhood flood -1.283

[-2.44,-0.13]
Adoption × Neighborhood flood 0.093

[-1.13, 1.32]
STRV Adoptiopn 0.098 0.211 0.211 0.180

[-0.17, 0.36] [0.00, 0.42] [0.00, 0.42] [-0.22, 0.58]
Number of Observations 4895 4895 4895 4895
Log Likelihood -7605.41 -7610.07 -7610.07 -7604.84
Number of Cluster 922 922 922 922
Fixed Effects Household & TIme

All equations include intercept and dummy variable of year
Values in parenthesis represents 90% confidence interval. Std. Errors are clustered at household level
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Table 7.4. Summary of Parameters and Point Estimates of TWFE Model

Parameter Description Flood Max Flood Mean AUC Neighborhood Flooding

γ

measures the difference in average
yields for adopters who experience
no flood relative to non-adopters
who experience no flood.

0.09[-0.16, 0.36] 0.21[0.001, 0.42] 0.21[0.001, 0.42] 0.18[-0.22, 0.58]

ω

measures the difference in average
yields for non-adopters who experi-
ence a flood relative to non-adopters
who do not experience a flood

-0.94[-1.72, -0.16] -2.01[-3.64, -0.39] -0.08[-0.15, -0.02] -1.28[-2.43m -0.13]

β

measures the difference in average
yields for adopters who experience
a flood relative to non-adopters who
experience no flood

0.40[-0.42, 1.22] 0.27[-0.90, 1.43] 0.01[-0.03, 0.06] 0.09[-1.12, 1.31]

γ + β
measures the overall impact of adop-
tion regardless of flood status. 0.49[-0.122, 1.11] 0.47[-0.55, 1.51] 0.22[0.04, 0.399] 0.27[-0.59, 1.14]

ω + β
measures the overall impact of flood
regardless of adoption status. -0.53[-1.39, 0.31] -1.75[-3.17, -0.34] -0.07[-0.13, -0.01] -1.19[-2.52, 0.14]

test ω = β
or ω − β =
0

measures the difference of average
yield between the adopter and non-
adopter who experience flood

2.64 2.35 2.34 1.33

All models include year dummy and intercept.Values in parenthesis represents 90% confidence interval. Standard Errors are clustered at
household level. *,**,*** means value is significant at 10%, 5% and 1% level
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Figure 7.5. Predicted Value of Ln Yield from TWFE Models at Household Level Fixed
Effect with Plot Data
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Table 7.5. TWFE-IV model with Plot Level Data (1st stage) (Equation 4.2.2)
Flood max Flood Mean AUC Neighborhood Flood

Lag 1 0.05 0.08 0 0.17
[-0.10, 0.19] [-0.27, 0.44] [-0.01, 0.02] [-0.03, 0.37]

Lag 2 -0.09 0.01 0 -0.1
[-0.19, 0.02] [-0.27, 0.30] [-0.01, 0.01] [-0.25, 0.06]

Lag 3 -0.33 -0.99 -0.04 -0.44
[-0.45,-0.20] [-1.49,-0.50] [-0.06,-0.02] [-0.61,-0.27]

Lag 4 0.36 0.56 0.03 0.48
[0.22, 0.50] [0.20, 0.91] [0.01, 0.04] [0.30, 0.66]

Lag 5 0.29 0.42 0.01 0.39
[0.14, 0.44] [0.00, 0.83] [-0.01, 0.03] [0.20, 0.59]

Lag 6 0.19 0.45 0.02 0.48
[0.06, 0.32] [0.07, 0.83] [0.00, 0.03] [0.30, 0.66]

Lag 7 0.24 0.72 0.03 0.39
[0.13, 0.36] [0.40, 1.05] [0.02, 0.05] [0.23, 0.56]

Lag 8 -0.1 -0.07 0 -0.07
[-0.23, 0.03] [-0.54, 0.40] [-0.02, 0.02] [-0.27, 0.13]

Lag 9 -0.51 -1 -0.05 -0.74
[-0.65,-0.37] [-1.37,-0.63] [-0.06,-0.03] [-0.94,-0.55]

Lag 10 0.32 1.08 0.05 0.45
[0.20, 0.44] [0.73, 1.43] [0.03, 0.06] [0.28, 0.61]

Lag 11 -0.23 -0.87 -0.04 -0.24
[-0.37,-0.10] [-1.23,-0.51] [-0.05,-0.02] [-0.41,-0.07]

Lag 12 -0.1 -0.96 -0.04 0.04
[-0.23, 0.02] [-1.32,-0.59] [-0.06,-0.02] [-0.13, 0.21]

Lag 13 0.16 0.81 0.03 0.25
[0.07, 0.25] [0.50, 1.11] [0.02, 0.05] [0.14, 0.35]

Number of Observations 5167 5167 5167 5167
Log Likelihood 500.712 472.524 469.971 573.809
Number of Cluster 925 925 925 925
F Stat 9.938 8.692 8.65 11.881
Fixed Effects Household & Time
All models include year dummy and intercept. Values in parenthesis represents 90% confidence interval.
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Figure 7.6. TWFE-IV First Stage Impact at Plot Level
(not drawn to scale)
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Figure 7.7. Comparison of TWFE-IV First Stage Impact Between Household Panel and
Plot Data

(not drawn to scale)
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Table 7.6. TWFE-IV model at HH level fixed effect with Plot Level Data (Equation
4.2.3)
Ln Yield (1) (2) (3) (4)
Max Flood -0.91

[-1.68,-0.14]
Adoption × Max Flood -1.43

[-7.24, 4.38]
Mean Flood Value -2.13

[-3.85,-0.40]
Adoption × Flood Mean 2.28

[-8.51,13.07]
AUC -0.09

[-0.17,-0.02]
Adoption × AUC 0.14

[-0.32, 0.59]
Neighborhood flood -0.95

[-2.22, 0.32]
Adoption × Neighborhood Flood -7.06

[-33.82,19.69]
STRV Adoption 0.20 0.18 0.34 1.94

[-1.48, 1.88] [-0.87, 1.24] [-0.68, 1.36] [-5.11, 8.99]
Number of Observations 4895 4895 4895 4895
F-Stat 2.784 2.820 2.800 2.716
Number of Cluster 922 922 922 922
Fixed Effects Household & Time

All models include intercept and dummy variable for year
Values in parenthesis represents 90% confidence interval. Std. Errors are clustered at household level
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Table 7.7. Summary of Parameters and Point Estimates of TWFE-IV Model

Parameter Description Flood Max Flood Mean AUC Neighborhood Flooding

θ1

measures the difference in average
yields for adopters who experience
no flood relative to non-adopters
who experience no flood.

0.19[-1.48, 1.87] 0.18[-0.87, 1.24] 0.34[-0.67, 1.36] 1.94[-5.10, 8.99]

ν

measures the difference in average
yields for non-adopters who experi-
ence a flood relative to non-adopters
who do not experience a flood

-0.91[-1.68, -0.14] -2.12[-3.85, -0.40] -0.09[-0.17, -0.02] -0.95[-2.22, 0.32]

θ2

measures the difference in average
yields for adopters who experience
a flood relative to non-adopters who
experience no flood.

-1.43[-7.24, 4.38] 2.28[-8.51, 13.07] 0.13[-0.32, 0.59] -7.06[-33.82, 19.69]

θ1 + θ2
measures the overall impact of adop-
tion regardless of flood status. -1.23[-5.54, 3.08] 2.46[-7.55, 12.47] 0.48[-0.27, 1.22] -5.12[-24.86, 14.62]

ν + θ2
measures the overall impact of flood
regardless of adoption status. -2.33[-8.10, 3.43] 0.15[-10.24, 10.51] 0.04[-0.38, 0.47] -8.01[-34.04, 18.00]

test ν = θ2
or ν − θ2 =
0

measures the difference of average
yield between the adopter and non-
adopter who experience flood

0.02 0.40 0.60 0.13

Values in parenthesis represents 90% confidence interval. Standard Errors are clustered at household level. *,**,*** means value is
significant at 10%, 5% and 1% level
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Figure 7.8. Predicted Value of Ln Yield from TWFE-IV Models at household Level
Fixed Effect with Plot Data
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Figure 7.9. Actual Value of ln Yield with Plot Data
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