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ABSTRACT

The rise in the availability of remotely sensed weather data has resulted in economists

predicting different outcomes using rainfall as an explanatory or instrumental variable (IV).

We analyze 174 papers to identify common rainfall metrics used as an instrument and show

the extent of their ad hoc use in predicting a range of outcomes. We use agricultural

productivity as a case study to examine the suitability of using different rainfall metrics as

an IV. To that extent, we test the predictive power of the 14 most common rainfall metrics in

the economics literature, calculated through six remote sensing products across six countries,

on agricultural productivity. We find a large amount of heterogeneity in the performance

of rainfall metrics. We also find concerning evidence about the validity of using rainfall

metrics as an instrument, especially regarding possible exclusion restriction violations and

weak instrument problems. Our findings emphasize the need for researchers to carefully

select and justify their use of a particular rainfall metric to improve the reliability of their

analysis.
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CHAPTER 1

Introduction

The wide availability of remote sensing weather data has led to an increase in the number

of economists using different types of rainfall metrics to predict multiple outcomes. However,

this use occurs in an ad hoc manner. These economists use rainfall as an explanatory variable

or an instrument to predict outcomes from capital to conflict to consumption. The haphazard

use of rainfall comes with the backdrop of little guidance on how, when, and where specific

rainfall metrics could be used. To the best of our knowledge, this paper is the first to

provide guidance on variable selection in the use of remote sensing data integrated with

socio-economic data.

We provide concrete evidence on the extent of the ad hoc nature of the use of multiple

rainfall metrics to look at different outcome categories in the available economics literature.

We review 174 papers that use weather as an instrumental variable. These findings are

presented in Figure 1.1. This “Sankey” diagram clearly shows the unsystematic nature of

researchers’ use of rainfall metrics. We see that papers use multiple rainfall metrics like

total rainfall, deviations in total rainfall, and mean annual rainfall to predict agricultural

productivity. Should researchers use one over another, or are all of the rainfall metrics

substitutes and do not impact the results of a researcher’s findings? Looking at specific

examples of papers in our sample, we see that to predict agricultural productivity, Banerjee

and Iyer (2005) use mean annual rainfall, whereas Hughes (2011) use mean monthly rainfall.

Similarly, Jacoby and Skoufias (1998) use rainfall days, but Ghimire Monika et al. (2016)

use total monthly rainfall to understand consumption. Also, to predict health and nutrition,

Hanandita and Tampubolon (2014) use the deviations in total rainfall, whereas Mapulanga

and Naito (2019) use the log of rainfall.
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Figure 1.1: Rainfall Outcome Relationship

Note: This figure captures relationships between what rainfall variables are used to understand what outcome
category. 75 Flows between 31 Nodes. Number of Papers = Total Inputs = Total Outputs = 174.
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This paper provides guidance to researchers looking to take a systematic approach to

variable selection when using weather data in economic applications. To do this, we calculate

fourteen rainfall metrics commonly used in the economics literature. To ensure the broad

applicability of our findings, we calculate each metric for six different remote-sensing products

favored by economists. Finally, we combine the weather metrics for each remote-sending

product with household survey data collected as part of the World Bank Living Standards

Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA) in Ethiopia, Malawi,

Niger, Nigeria, Tanzania and Uganda. We test the predictive power of each individual rainfall

metrics-remote sensing pair on agricultural productivity, a common first-stage IV regression.

Intuitively, if all these different measures of rainfall are equally valid instruments, then each

should be a significant predictor of agricultural productivity (though signs and magnitudes

will vary depending on the specific metric). We look for metrics that (a) are consistently

significant across remote sensing products and countries, (b) have a consistent sign, and

(c) are similar in significance and sign to other metrics, which would suggest a degree of

substitutability between the metrics.

In addition to the concerns about the ad hoc choice of weather metrics for IVs, there

is a long-simmering concern about whether weather even satisfies the criteria for a valid

instrument. In short, does weather pass the exclusion restriction? Deaton (2010) draws a

distinction between a variable that is external, whose value is determined outside the system,

and a variable that is exogenous, orthogonal to the error term. Weather is clearly the former

but, depending on the context of the research question, may not be the latter. Taking an em-

pirical approach, Sarsons (2015) shows that in the context of conflict stemming from income

shocks in India, rainfall shocks, a frequently used IV, fail to pass the exclusion restriction.

We examine if rainfall in our setting is exogenous using a straightforward heuristic approach.

Intuitively, if rainfall is exogenous, it should be uncorrelated with household unobservables.

Therefore, the significance of any given rainfall metric in predicting agricultural productivity

should remain relatively constant in regressions with and without household fixed effects. If

this is not the case, it suggests that rainfall is correlated with household unobservables that,

absent panel data, end up in the error term.
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There are three headline findings from our research. First, there is a large amount of

heterogeneity in the way rainfall metrics perform across remote sensing products and across

countries. Few rainfall metrics are consistently significant and have a consistent sign. View-

ing our regressions of agricultural productivity on rainfall as a first stage IV regression, our

results show that, depending on the source of the rainfall data and the country of study, the

same rainfall metric might be a weak instrument (not significant) or might be an inconsistent

predictor of agricultural productivity (significant but with opposite signs).

Our second headline finding is that the inconsistency in rainfall as a predictor of agricul-

tural productivity means that few metrics are good substitutes for each other. As Figure 1.1

shows, economists operate with the implicit assumption that many weather metrics are sub-

stitutes for each other when looking to instrument for the same outcome variable. Exceptions

to this lack of substitutability are variables that are calculated as deviations from some mea-

sure of rainfall. Examples include total seasonal rainfall and deviations in total seasonal

rainfall as well as the percentage of rainy days in a season and its deviation.

Our final headline finding is that in regressions that lack household fixed effects (e.g.,

time-invariant household unobservables are captured in the error term), rainfall metrics are

significant predictors of agricultural productivity 80% of the time. Once we include household

fixed effects, removing household unobservables from the error term, rainfall metrics are

significant predictors of agricultural productivity only 35% of the time. We interpret this as

evidence that, while rainfall is external to some household decision-making, it is correlated

with time-invariant, unobservable characteristics of the household, like their past experience

with weather shocks or their geographic location. Absent an ability to control for household

fixed effects, rainfall fails the exclusion restriction. However, having controlled for household

fixed effects, rainfall has a weak instrument problem.

We contribute to the growing body of empirical research examining instrumental variables,

their validity, exogeneity, and potential weakness. Violations of the exclusion restriction and

the problem of weak instruments, as well as solutions to these problems, is well documents

in the theoretical literature (Angrist and Imbens, 1995; Stock and Yogo, 2002; Andrews

et al., 2019; Kiviet, 2020; Mellon, 2023). Following on the critique in Deaton (2010), applied

economists turned their attention to how certain instruments perform in specific empirical
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contexts. Sarsons (2015) finds that rainfall shocks significantly impact income in areas up-

stream of dams in India but not downstream of the dams. Despite this, rainfall shocks remain

strong predictors of riots. The conclusion is that the strength of rainfall as an instrument

varies by geographic location and that it impacts riots through a channel independent of

income. Mellon (2023) explores the many alternative channels through which rainfall might

impact the outcome variable, violating the exclusion restriction. He analyzes 195 papers and

finds that “the underlying assumptions of weather-IVs are not strictly true, and many results

are likely wrong.” While our research question is the same as Sarsons (2015) and Mellon

(2023), namely when and what rainfall variables are valid instruments, we take a different

approach. We focus exclusively on how rainfall performs in a first-stage regression and make

recommendations on which rainfall metrics are strong instruments, have a consistent sign,

and are substitutable with other metrics.

The implications of our findings speak to the extremely large literature that relies upon

weather as an instrument to identify causal effects. Just since 2020, this includes papers

using mean annual rainfall (Nasser et al., 2022), deviations in total rainfall (Georgiadis

et al., 2021; Trinh et al., 2021, 2022), and total rainfall (Faradiba, 2021) all to predict health

and nutrition. Researchers use deviations in total rainfall to predict agricultural productivity

(Veljanoska, 2022), migration (Palacios and Pérez-Uribe, 2021), welfare (Ngoma et al.), and

capital (Kalemli-Özcan et al., 2020). Others use mean annual rainfall to predict capital

(Kling et al., 2021), poverty (Heger et al., 2020), and consumption (Hassan, 2020). As

we have said before, this ad hoc approach is dominant but not universal. As an example,

Munley et al. (2023), Lind (2020), and Rudolph (2020) all use daily rainfall to predict

democratic change. But even if daily rainfall is frequently use as an IV in the context of

studying democratic change, its use to predict other outcomes by other researchers suggests

that it fails the exclusion restriction for someone (Mellon, 2023). Our findings speak to this

literature as we provide insights regarding whether researchers should be using one weather

metrics over others and how their results might change if they had chosen a different metric

or a different source of weather data. Also, climate and weather variables are complex

instrumental variables because they are either invariant or nearly invariant over time. The

problems we uncover would be common to any time-invariant variable. With panel data,
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this might also be a problem for variables that vary over time but not much over space,

which is a spatial but not a temporal problem.

The remaining paper is organized as follows. In Chapter 2 we discuss how the existing

economics literature uses weather as an instrumental variables and document further the ad

hoc nature of choosing a specific weather metric to instrument a wide variety of potentially

endogenous variables. In Chapter 3 we provide details on the weather and household data

used to generate our first-stage estimates of rainfall on agricultural productivity. We also

discuss our pre-specified analysis plan, the econometric models, and our heuristic method of

inference. In Chapter 4 we discuss our results in three stages. First, we present descriptive

statistics that show the pattern of different rainfall metrics draw from different remote sensing

sources. Second, we analyze the share of the significance point estimates for each rainfall

variable with and without fixed effects. Third, we look at the coefficients on each rainfall

metrics for each country. Finally, we conclude with Chapter 5, giving our recommendations

for best practices when a researcher wants to use rainfall as an instrument.
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CHAPTER 2

How Economists Use Weather Data

The economics literature uses causal inference techniques to understand the effect of ex-

planatory variables on outcomes. If explanatory variables are endogenous, researchers use

the instrumental variables (IV) technique. Many studies incorporating IV use rainfall or

other weather metrics as an instrument (Dell et al., 2014). Thus, to understand how the

current economics literature looks at and incorporates various rainfall metrics as an instru-

ment, we generate a dataset that captures the universe of economic papers that use rainfall

as an IV. We then use ChatGPT to “read” and categorize these papers based on the en-

dogenous rainfall variables as an instrument. Finally, we discuss the patterns of their use in

this body of literature.

2.1 Generating the Literature Data Set

To understand economists’ use of rainfall as an IV, we first look at the current eco-

nomics literature that employs rainfall as an instrument. We examine the various scholarly

sources from which to scope academic literature. This scoping exercise included Google

Scholar, Web of Science, JSTOR, PubMed, Science.gov, Scopus, ResearchGate, and Ope-

nAlex. We select OpenAlex (Priem et al., 2022), named after the Library of Alexandria, for

three reasons. First, OpenALex is the successor to the Microsoft Academic Graph (MAG),

which was retired on December 31, 2021. The MAG was “a heterogeneous graph containing

scientific publication records, citation relationships between those publications, as well as

authors, institutions, journals, conferences, and fields of study” (Sinha et al., 2015). Ope-

nAlex’s database includes sources like the MAG, Crossref, ORCID, ROR, DOAJ, Unpaywall,

Pubmed, Pubmed Central, the ISSN International Center, and other institutional reposito-
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ries like arXiv. The MAG has been used for meta-analysis of research trends in economics by

(Jones, 2021; Josephson and Michler, 2023). It indexes 248 million academic works (nearly

three times of Scopus and Web of Science), making it a very diverse platform of research

works (Priem et al., 2022). Second, OpenAlex is not just a search tool or a database, but

like the MAG, it is a catalog disambiguating connecting scholarly work. For each work,

metadata such as the title of the research paper, the author, and the year the paper was

published are created, as well as concepts that capture what the work is about. OpenAlex

indexes sixty-five thousand concepts. Third, OpenAlex is an open, free-to-use catalog that

allows queries via API. This not only directly allows us to contribute to open science but

indirectly as it allows us to increase the reproducibility of our work.

To capture papers relevant to this study, we use Boolean terms for relevant concepts.

Our query included “((Weather) AND (Instrumental Variable)) OR ((Rainfall) AND (In-

strumental Variable))”. This resulted in more than 65,000 results. After filtering for only

English language papers and papers in “Economics”, “Econometrics”, and “Finance”, the

search results narrowed to 3,062 papers.1 (Priem et al., 2022) These papers comprise what

is, in our view, the potential universe of economic papers that use rainfall as an IV. For

each paper we have, OpenAlex provides complete bibliographic information and, based on

our search criteria, citation count, an OpenAlex location ID, authors, affiliations, and the

number of times the paper has been cited. With the output from OpenAlex, we began with

the first 300 research works (10% of the total) according to the relevance score produced by

OpenAlex.

2.2 “Reading” the Literature

With the metadata on papers generated from OpenAlex, we aim to parse through these

papers efficiently so that we can better understand how the economic literature uses rainfall

as an instrument. Reading all 3,062 papers would be a lengthy task. To speed up the process

1One shortcoming of OpenAlex is that other researchers working with OpenAlex may get a different
number of papers, even using the same criteria and search process. OpenAlex is continuously adding more
papers, and/or the papers are cited more, both of which change the “relevance score” of papers. According to
OpenAlex: “The relevance score is based on text similarity to your search term. It also includes a weighting
term for citation counts: more highly-cited entities score higher, all else being equal.”
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and to create a road map for other researchers attempting to parse a large body of literature,

we use ChatGPT to do the “reading”.

ChatGPT (Chat-Generative Pre-Trained Transformer 4.0) allows us to “read” each paper

and extract outcome variables, explanatory variables, the presence of weather instruments,

and rainfall variables into a .csv file. Our decision to use ChatGPT 4.0 by OpenAI over

other artificial intelligence models like Bard by Google, Perplexity AI, or others, stems from

the current understanding of ChatGPT 4.0 to be the most efficient, widely available, and

largest natural language processing (NLP) model (as of this writing).

To optimize our GPT model for reading research papers successfully and obtaining our

desired information, we created a custom GPT called Econ Analyst. We told Econ Analyst

GPT that its purpose was to “analyzes hundreds of economics papers in PDF format for IV

usage and structure.” We thus generate prompts to help get consistent information about

the papers and tabulate the results in order to shorten this workflow from OpenAlex to

analyzable data. Econ Analyst GPT’s instructions are to:

Analyze hundreds of economics research papers in PDF format, specifically fo-

cusing on the use of Instrumental Variables (IV). When reviewing a paper, [it

should] identify whether an IV is present or not and provide a brief analysis of the

paper’s structure, including the dependent variable (y), the explanatory variables

(x), the instrumental variable (if present), and the variable that the instrument

is replacing (z). Additionally, [it should] mention the source of the data used in

the research. In [its] responses, [it should] clearly indicate with a ‘1’ if an IV is

present or a ‘0’ if not. [Its] goal is to assist users in understanding the application

and presence of IV in economic research.

We then upload a batch of ten papers and provide the following additional instructions:

Please analyze the entire PDF research paper with its title, focusing on the

presence of Instrumental Variables (IV), and provide the information in a list

format: 1. IV (yes no) – indicate with a ‘1’ if IV is present, ‘0’ if not. 2. y –

identify the dependent variable. 3. x – list the explanatory variables. 4. z –

specify the instrument being used. 5. source – mention the data source. Also,
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detail the type of rainfall or temperature variable used, such as annual rainfall

or mean daily temperature.

We arrived at these instructions after numerous iterations. Multiple versions of the in-

struction were trialed, and when Econ Analyst GPT gave a reasonable answer that was as

close to what we were looking for, we asked Econ Analyst GPt, “How should we prompt you

so that you’ll produce the results you just produced.” Iterations in this fashion eventually

led to the instructions given above.

After ten papers were analyzed by Econ Analyst GPT, we asked it to convert the generated

data into a more accessible tabular format. We chose to analyze ten papers before asking

them to tabulate, as sometimes, with more than ten papers, Econ Analyst GPT would claim

it couldn’t read PDFs or would analyze one or two papers, duplicate the results till it had

its output, then claim it had read all the ten individual papers. As with the instructions to

read the paper, when we got satisfactory output data, we asked Econ Analyst GPT what

we should ask it so that it would produce the results output data. This instruction given by

Econ Analyst GPT was:

Please convert the analyzed PDFs into a tabular format in the order I submit-

ted them with the following columns: ‘Paper,’ ‘IV (yes no),’ ‘Dependent Vari-

able,’ ‘Explanatory Variables,’ ‘Instrument,’ ‘Data Source,’ and ‘Type of Rain-

fall/Temperature Variable.’ Each PDF should be represented in one row of the

table.

The use of ChatGPT allows us to “read” many more papers in a shorter time than a human

could. That said, our GPT required a great deal of revision and quality checks. Once we had

data from 10% sample of 3,062 papers filed into a .csv file, we performed a verification check

to ensure that ChatGPT gave us accurate information. We opened a selection of papers

analyzed by Econ Analyst GPT and confirmed if the dependent variable given was correct

or not and if it was given a rainfall variable, it was specific to our need or not. During this

process, we also categorized outcome variables into one of eighteen categories:
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Table 2.1: Categories of Outcome Variables

Outcome Definition

Agricultural productivity Using measures of agricultural productivity, e.g. yield, value, technology adoption.
Capital Using various forms of capital at a macro-level (institutions, state, global).2

Conflict Examining various forms of conflict between nation-states, or different groups.
Consumption Examining household- or individual-level consumption.
Crime Using different types of crimes.
Democratic change Examining change in government institutions.
Education Examining the impact on education.
Food Security Examining the determinants of food security.3

Government size Examining the functioning and productivity of various institutions.
Growth Examining economic growth at a macro level.
Health & nutrition Examining determinants of health and/or nutrition.
Income Examining income at an individual and household level.
Insurance Examining insurance for individuals, households, or businesses.
Justice Examining the factors around inequality, discrimination, and injustice.
Migration Examining migration.
Poverty Examining determinants of poverty.
Social Examining group behavior, social cohesion, or societal factors.
Technology adoption Examining at various types of technology adoption.4

Note: Categories by the authors, these variables represent the eighteen most common outcomes in the literature.
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These variables represent the eighteen most common output categories. We also catego-

rized the rainfall variables into one of the 14 rainfall categories described in Table 3.2. Of

the first 300 papers, we found that ChatGPT was unable to or only partially able to analyze

83 papers, as either it could not read the PDF or it gave random output. Of the remaining

217 papers, about 43 were irrelevant to our study as they did not use any rainfall variable

and simply mentioned rainfall in the text. Our final sample is 174 papers.

This sample of 174 successfully analyzed papers reveals what rainfall metrics researchers

commonly use in their research. The sample also provides us with information about what

outcome categories the researchers are trying to instrument for with these rainfall metrics,

and sheds more light on the ad hoc matching of rainfall metrics with outcome categories.

2.3 Analysis of the Literature

To understand the unsystematic nature of the use of rainfall metrics by researchers, we

look at the Sankey diagram in Figure 1.1, which presents the results from Econ Analyst

GPT’s “reading” of the papers. In our sample of 174 papers, we see that 36% of the papers

use deviations in total rainfall (this is the most used rainfall variable), 20% of the papers

use annual rainfall, and 17% of the researchers use mean total rainfall. About 9% of the

researchers use daily rainfall. These four rainfall variables account for more than 80% of the

rainfall variables used in IVs.

While most papers use one of these four as IV, all instruments for numerous outcomes.

The most common of which are health and nutrition (17%), agricultural productivity (15%),

income (12%), and conflict (9%). But they are also used to predict everything from consump-

tion (7%), poverty (6%), growth (5%), capital (5%), democratic change (4%), government

size (4%), crime and justice (3% each), food security (3%), migration (2%), social (2%), tech-

nology adoption (1%), and insurance (1%). Among the 16% papers that look at agricultural

productivity, about 30% use annual rainfall, 33% use deviations in total rainfall, and 18%

use mean total rainfall. For the 12% of papers looking at income, total rainfall (24%) and

deviations in total rainfall (43%) were the most used rainfall variables. However, six other

papers use other rainfall metrics to instrument income. Total rainfall (24%) and deviations

in total rainfall (33%) are the most used instruments for the 17% of papers that study health
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and nutrition. But again, six other papers use different measures of rain as an IV. Even for

an outcome like democratic change, where researchers exclusively use two weather metrics

(deviations in total rainfall or daily rainfall), these two metrics measure distinct types of

events like agricultural productivity, capital, and health/nutrition.

When we look at specific papers or researchers, this heterogeneity persists. we see that

Brückner (2012) uses annual rainfall to predict growth in one instance, whereas in another

instance, Brückner et al. (2020) uses annual rainfall to predict income. Also, Hansford and

Gomez (2010) uses daily rainfall to understand democratic change, whereas Fontenla et al.

(2019) uses daily rainfall to understand health and nutrition. Similarly, for deviations in

total rainfall, Amare et al. (2018) uses it to predict consumption, but Veljanoska (2022)

uses deviations in total rainfall to predict agricultural productivity, and Raleigh et al. (2015)

uses deviations in total rainfall to predict conflict. As for the log of rainfall, we can see

that Brückner and Gradstein (2014) uses that to predict government size, and Owens et al.

(2003) uses the log of rainfall to predict agricultural productivity. All the above shows that

researchers use the same rainfall variables to predict other things. This should be fine if the

same rainfall metric is a good predictor of different outcomes. But is annual rainfall as good

a predictor of growth as it is of income, if it is at all?

Based on the review of 174 papers, we see evidence of researchers using rainfall as an in-

strument in an ad hoc manner. Researchers publishing across economics use different rainfall

variables to predict similar outcomes, and/or researchers use the same rainfall variables to

predict different outcomes. This is not to say there is no consistency. We see a small amount

of consistency, notably in understanding democratic change; researchers use deviations in

total rainfall or daily rainfall only. Similarly, in an attempt to understand agricultural pro-

ductivity, about 80% of the researchers use either total rainfall, deviations in total rainfall, or

mean total rainfall. Finally, to predict poverty, we see that researchers predominantly (80%)

use total rainfall or mean total rainfall. Given that economists mostly tend to use rainfall

as an IV in an unsystematic and ad hoc manner, we aim to understand the implications

for these IVs in terms of their strength (relevance) and their ability to pass the exclusion

restriction (exogeneity). To that effect, we take agricultural productivity as a test case, as it
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is one of the most common outcomes, also used as a proxy for well-being, in the economics

literature.
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CHAPTER 3

Testing the Effects of Various Weather Metrics

Our synthesis of the literature led us to the conclusion that researchers use rainfall met-

rics in an unsystematic manner. Now, we use agricultural productivity as a test case to

understand the effect of using different rainfall variables, generated from multiple remote

sensing products on the sign, or significance of estimates. At the same time, we test the

validity of two of the four major identification assumptions for an instrumental variable:

Stable Unit Treatment Value Assumption (SUTVA); exogeneity of the instrument; relevance

of the instrument to the endogenous variable; and monotonicity.

The following analysis and the associated results were pre-specified in a pre-analysis plan

(Michler et al., 2019), which was registered with Open Science Framework (OSF). We high-

light any differences in methods, approaches, or inference criteria from our plan. Results

arising from these deviations in that plan should be interpreted as exploratory.

3.1 Data

To examine the substitutability of different rainfall metrics and their consistency (the

sign and significance), we combine two distinct types of precipitation data and household

survey data. The weather data are taken from multiple remote sensing sources, and all are

available from 1983. These remote sensing products allow us to do two things. One, calculate

multiple rainfall metrics at various levels of aggregation. And two, help us to understand if

using one rainfall metric over another, coming from different remote sensing products, will

change the sign and significance of the effect on agricultural productivity. To that end, we

need household data, which comes from multiple survey instruments from six Sub-Saharan
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African countries, part of the World Bank Living Standards Measurement Study - Integrated

Surveys on Agriculture (LSMS-ISA).

3.1.1 Weather Data

In selecting weather data, we want to use datasets that are both available in the public

domain and extensively used in the applied social sciences. We pre-specified that the data

used must: (1) be available at the daily level, which helps us calculate the most commonly

available weather metrics; and (2) have at least three decades of data available so we can

calculate shocks or deviations from long-term average. This allows us to have uniform

temporal resolution and duration to cover all the years from our household data.

Modern remote sensing sources of rainfall data combine information on precipitation by

combining satellite data that provides meteorological information at full coverage, rain gauge

data that provides site-specific observations, and the outcome of atmospheric reanalysis. Our

study includes the following data products: (1) African Rainfall Climatology 2 (ARC2), (2)

the Tropical Applications of Meteorology using SATellite data and ground-based observa-

tions (TAMSAT), (3) the Climate Hazards group InfraRed Precipitation with Station Data

(CHIRPS) (4) the European Centre for Medium-Range Weather Forecasts (ERA5), (5) the

NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA-2) and,

(6) the NOAA Climate Prediction Center (CPC) Unified Gauge-Based Analysis of Daily

Precipitation.

ARC2 uses rain gauge data from the Global Telecommunications System (GTS) and Geo-

stationary Operational Environmental Satellite (GOES) precipitation index (GPI). The data

generated from ARC2 are at a resolution of 0.1◦. Similarly, TAMSAT uses rain gauge data

from the GTS and Meteosat thermal IR. CHIRPS is built on the same approach as ARC2

and TAMSAT but has more climatological products and is at a resolution of 0.05◦(Tarnavsky

et al., 2014; Novella and Thiaw, 2013; Funk et al., 2015). ERA5 and MERRA-2 are reanal-

ysis data products (Bosilovich et al., 2016; Hennermann and Berrisford, 2020). Assimilation

models combine observations gathered from multiple sources to generate a more comprehen-

sive model of the climate system. And reanalysis data products are created are using the

assimilation models in such a way that the final product can support climate analysis over
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a long period of time. CPC created from the information available at the NOAA Climate

Prediction Center, and its special collections and GTS is primarily a gauge data product

using an Optimal Interpolation (OI) technique at a resolution of 0.5◦ (Chen et al., 2017).

Table 3.1 provides a summary of the characteristics of each remote sensing precipitation

product.

To measure precipitation, we use the fourteen rainfall metrics given in Table 3.2. Mean

daily rainfall, median, variance of daily rainfall, and skew of the daily rainfall are the moments

of daily rainfall distribution for the growing season. Total rainfall and the z-score of total

rainfall are cumulative of the daily rainfall. Rainfall days and no rain days are the number

of days with at least 1 mm of rain and the number of days with less than 1 mm of rain,

respectively. The share of rainy days is the percentage of growing season days with rain.

The intr-season dry spell is the maximum length of time in days without rain. Some rainfall

metrics also have deviations calculated from the long-run average.
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Table 3.1: Sources of Precipitation Weather Data

Dataset Length of record Resolution (◦) ≈Grid size (km) Time step Data Units

Africa Rainfall Climatology version 2 (ARC2) 1983-current 0.1 11× 11 daily total precip mm
Climate Hazards group InfraRed Precipitation with Sta-
tion data (CHIRPS)

1981-current 0.05 5.5× 5.5 daily total precip mm

CPC Global Unified Gauge-Based Analysis of Daily Pre-
cipitation

1979-current 0.5 55× 55 daily total precip mm

European Centre for Medium-Range Weather Forecasts
(ECMWF) ERA5

1979-current 0.28 31× 31 hourly total precip m

Modern-Era Retrospective analysis for Research and Ap-
plications, version 2 (MERRA-2) Surface Flux Diagnos-
tics

1980-current 0.625× 0.5 69× 55 hourly rain rate kg m2 s1

Tropical Applications of Meteorology using SATellite data
and ground-based observations (TAMSAT)

1983-current 0.0375 4.1× 4.1 daily total precip mm

Note: The table, adapted from Michler et al. (2019), summarizes the remote sensing sources and related details for precipitation data.
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Table 3.2: Weather Variables & Transformations

Rainfall
Daily rainfall In mm
Mean The first moment of the daily rainfall distribution for the

growing season
Median The median daily rainfall for the growing season
Variance The second moment of the daily rainfall distribution for the

growing season
Skew The third moment of the daily rainfall distribution for the

growing season
Total Cumulative daily rainfall for the growing season
Deviations in total rainfall Cumulative daily rainfall for the growing season minus the

long run average
Scaled deviations in total rainfall The z-score for cumulative daily rainfall for the growing season
Rainfall days The number of days with at least 1 mm of rain for the growing

season
Deviation in rainfall days The number of days with rain for the growing season minus

the long run average
No rain days The number of days with less than 1 mm of rain for the grow-

ing season
Deviation in no rain days The number of days without rain for the growing season minus

the long run average
Share of rainy days The percent of growing season days with rain
Deviation in share of rainy days The percent of growing season days with rain minus the long

run average
Intra-season dry spells The maximum length of time (measured in days) without rain

during the growing season

Note: The table presents definitions for included weather variables and transformations from weather sources
defined in Michler et al. (2019). Growing season is determined for each country following FAO crop calendar. For
variables when “long run” is referenced, long run is defined as the entire length of the weather dataset. While
each weather source has a different start date, to ensure a uniform time series all datasets were shortened to 1983,
which is the latest start date of the data sources.

3.1.2 Household Data

For the household data, we use the World Bank LSMS-ISA data, taken from surveys

designed in collaboration with Sub-Saharan African nations’ statistical offices. With support

from the Living Standards Measurement Study, this data has multiple rounds of household

panel survey data conducted by the statistical offices of Ethiopia, Malawi, Niger, Nigeria,

Uganda, and Tanzania for over a decade.

The data for Ethiopia is from the Ethiopia Socioeconomic Survey (ESS) conducted over

three rounds of 2011-12, 2013-14, and 2015-16 by the Central Statistical Agency of Ethiopia

(Central Statistics Agency of Ethiopia (CSA), 2014, 2015, 2017). The first round of survey

data is regionally representative. Whereas the subsequent rounds of surveys added 1,500

http://www.fao.org/agriculture/seed/cropcalendar/welcome.do
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Table 3.3: Sources of Household Data

Country Survey Name Years Original n Final n

Ethiopia Ethiopia Socioeconomic Survey (ERSS) 2011/2012 3,969 1,689
2013/2014 5,262 2,865
2015/2016 4,954 2,718

Malawi Integrated Household Panel Survey (IHPS) 2010/2011 3,246 1,241
2013 4,000 968

2016/2017 2,508 1,041
Niger Enquête Nationale sur les Conditions de Vie des 2011 3,968 2,223

Ménages et l’Agriculture (ECVMA) 2014 3,617 1,690
Nigeria General Household Survey (GHS) 2010/2011 5,000 2,833

2012/2013 4,802 2,768
2015/2016 4,613 2,783

Tanzania Tanzania National Panel Survey (TZNPS) 2008/2009 3,280 1,907
2010/2011 3,924 1,914
2012/2013 3,924 1,848

Uganda Uganda National Panel Survey (UNPS) 2009/2010 2,975 1,704
2010/2011 2,716 1,741
2011/2012 2,850 1,805

Total 6 countries 17 waves 65,608 33,738

Note: The table summarizes the household data details for each country, per LSMS Basic Information Documents.

households in urban areas. After removing non-agricultural households, the final dataset

has 7,272 observations.

The data for Malawi comes the Integrated Household Panel Survey (IHPS), which is

longitudinal in nature and is representative at multiple rural-urban and regional-national

levels. This data comes from the 2010-11, 2013-14, and 2016-17 rounds of surveys (National

Statistical Office (NSO), 2012, 2015, 2017). After removing non-agricultural households and

households that relocated, the final dataset has 3,250 observations.

The data from Niger includes two waves: 2011 and 2014 (Survey and Census Division,

National Institute of Statistics, Niger (NIS), 2014, 2016). The survey data is representative

at multiple rural-urban and regional-national levels. The final dataset, after excluding the

non-agricultural households, has 3,913 observations.

The data for Nigeria comes from multiple rounds of General Household Survey data from

2010-11, 2012-13, and 2015-16 (National Bureau of Statistics (NBS), 2012, 2014, 2019).

This data, like data from Malawi and Niger, is representative at multiple rural-urban and

regional-national levels. The final dataset for three rounds after removing non-agricultural

households has 8,384 observations.
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We use the Tanzania National Panel Survey (TZNPS) data for Tanzania. This data was

collected in three rounds in 2008-09, 2010-11, and 2012-13 (Tanzania National Bureau of

Statistics (TNBS), 2011, 2012, 2015). After removing the households that did migrate and

non-agricultural households, the final datasets consist of 5,669 observations.

For Uganda, we use the Uganda National Panel Survey (UNPS) data that covers three

rounds of data collection from 2009-10, 2010-11, and 2011-12 (Uganda Bureau of Statistics

(UBOS), 2019, 2014a,b). Like other countries, the data for Uganda is representative at

multiple rural-urban and regional-national levels. The final data set after removing non-

agricultural households consists of 5,250 observations.

The data from the six countries are combined to form a single cross-country panel dataset.

This combined dataset constitutes 33,738 observations (see Table 3.3). To measure agricul-

tural productivity, we use the yield of the primary crop in kilograms per hectare as well

as the total value of the harvest in 2010 US dollars per hectare (see Table 3.4). In some

econometric specifications, we include independent variables like labor in number of days per

hectare, application of fertilizer in kilograms per hectare, pesticide, herbicide, and irrigation

as an indicator variable (equal to 1 if used, 0 otherwise).

Table 3.4: Household Variables and Definitions

Panel A: Outcome Variables
Yield Output in kilograms per hectare for the primary cereal crop

in each country data set
Value Output in real USD per hectare for all seasonal farm crop

production

Panel B: Input Variables
Labor use rate Number of days per hectare
Fertilizer application rate Kilograms per hectare
Seed application rate Value in USD per hectare
Pesticide use Equal to 1 if yes, 0 if no
Herbicide use Equal to 1 if yes, 0 if no
Irrigation use Equal to 1 if yes, 0 if no

Note: The table taken from Michler et al. (2019) presents definitions for included outcome and input
variables from LSMS sources defined in Table 3.3.
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3.2 Analysis Plan

As stated above, the data cleaning, analysis, and the associated results were pre-specified

in an OSF pre-analysis plan (Michler et al., 2019).

3.2.1 Estimation Strategy

We follow Deschênes and Greenstone (2007):

Yht = αh + γt +
J∑
j

βjfj (Rjht) +Xhtπ + uht (3.1)

where Yht is our outcome variable from the LSMS-ISA-supported household surveys, for

household h in year t. Xht is a matrix of input variables from the LSMS-ISA. We include

year fixed-effects (γt) and control for household fixed-effects (αh). The function fj (Rjht)

represents our weather variables of interest, where j represents a particular measurement of

rainfall. Last, uht is an idiosyncratic error term clustered at the household level.

From here, we estimate the following three linear models, where for each model, we consider

a single rainfall variable:

Yht = βRht + uht (3.2a)

Yht = αh + γt + βRht + uht (3.2b)

Yht = αh + γt + βRht +Xhtπ + uht (3.2c)

Here, we have many regressions as we include the 14 rainfall variables, six countries, six

remote sensing products, and two outcome variables. This gives us a total of 3,024 different

regressions 1.

1Here, deviating from the pre-analysis plan given by Michler et al. (2019), we do not include eight
temperature variables, ten extraction methods, and quadratic specifications. A complete set of results are
presented in Michler et al. (2019).
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3.2.2 Tests

Unlike a “typical” economics research paper, which would include tables of coefficient

estimates, p-values, t-statistics, confidence intervals, and standard errors to show the results,

we present our results in a different format. This is motivated as, with more than three

thousand regressions, it becomes a challenge to tabulate our results for effective analysis.

So, we rely on heuristics that make our analysis more presentable and understandable. The

metrics we adopt to showcase our results are (1) the distribution of rainfall metrics originating

from different remote sensing products; (2) the share of coefficients of p-values significant

at 0.05 with just weather metrics, weather plus fixed effects, and weather plus fixed effects

plus input variables and; (3) the coefficient size with 95% confidence intervals for each of the

fourteen rainfall metrics by each country.

To compare our metrics across regressions, we apply the following two tests:

1. Weak difference test : the value of a result (either mean log-likelihood, share of sig-

nificant p-values, or coefficients) from one regression lies outside the 95% confidence

interval on the value of a result from a competing regression. The confidence intervals

can overlap.

2. Strong difference test : the 95% confidence interval on the value of a result (either

mean log-likelihood, share of significant p-values, or coefficients) from one regression

lies outside the 95% confidence interval on the value of a result from a competing

regression. The confidence intervals cannot overlap.

This approach is built on Levine and Renelt (1992)’s extreme bounds approach and Sala-i

Martin (1997)’s graphical methods to visualize the differences.
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CHAPTER 4

Results

As mentioned in 3.2.2, to deal with more than three thousand regressions, we present

results in a series of figures, which allow us to evaluate the significance, magnitude, and

general trends exploring the relationship between rainfall variable selection and its relation-

ship with agricultural productivity. We do this to apply our heuristic criteria so that we

can discuss differences across regressions absent test statistics. Our aim is to explain, in

a given country, whether rainfall measured via remote sensing products will be a suitable

instrument. We begin our discussion by showing that the value of a rainfall metric differs

by remote sensing products. Next, we present the share of p-values from individual rain-

fall variables and observe how that share changes across specifications. We then examine

the consistency of the sign and significance of coefficients on rainfall metrics disaggregated

by country, remote sensing product, and dependent variable. Finally, we conclude with a

discussion of our analysis and draw a set of best practices for researchers.

4.1 Descriptive Statistics

We begin our analysis by examining our fourteen rainfall variables by each remote sensing

product in each country. This helps us understand how different rainfall metrics created by

various remote sensing products differ from one another and in each country. The between-

type variation within a given rainfall variable is due to the varied nature of different remote

sensing products. As discussed in Subsection 3.1.1, ARC2, CHIRPS, and TAMSAT use

merged gauge and remote sensing data, CPC uses an optimal interpolation technique on

gauge data, ERA5 and MERRA-2 are reanalysis data sets. They each have their own data

sources, interpretation, and interpolation of precipitation. To make our descriptive analysis
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more accessible, we take the average value of the metrics for each year in each country and

then plot the resulting time series. We do this for all fourteen metrics but limit our discussion

in the paper to mean daily rainfall and the share of rainy days.1

Figure 4.1 presents the mean of daily rainfall for all countries and all remote sensing

products. Considering each country individually, we see that in Ethiopia, CHIRPS does not

show much variation, whereas CPC and MERRA-2 show more variation, with large dips

from 1999 to 2005. At the same time, CPC, using only gauge data, generally gives mean

rainfall values lower than CHIRPS, whereas ERA5, which is reanalysis data, always gives

mean rainfall values higher than CHIRPS. These differences can be extreme. In 2011, CPC

reported an average of 1 mm of rainfall a day, while ERA5 reports 5 mm of rainfall a day.

Turning to Malawi, there is much more agreement across products than in Ethiopia.

However, as in Ethiopia, CPC generally gives mean rainfall values lower than the average,

whereas ERA5 always gives mean rainfall values higher than the average. This relative

disagreement of products in Ethiopia, compared to Malawi, may be due to some products

performing worse in the mountainous terrain of Ethiopia. In Niger, remote sensing products

are even more consistent than in Malawi. The only outlier is ERA5, which, while over-

reporting rainfall in Ethiopia and Malawi, relative to the other products, under-reports in

Niger.

Turning to Nigeria, as in Ethiopia, CHIRPS has relatively low variation, whereas CPC,

MERRA-2, ARC2, and TAMSAT show wide variations. MERRA-2 and CPC perform par-

ticularly poorly, reporting a daily average rainfall of 11 mm in some years and only 3 mm a

day in other years. In some years, the disagreement between products can be pronounced.

In 2014, CPC report an average daily rainfall of 3 mm, while ERA5 report 7 mm of rainfall

a day.

In Tanzania, like Niger, we see consistent values except for an anomaly in 1999, where

CHIPS and ERA5 report over 6 mm of rain a day. After 2000, there is a large agreement

between products.

1The other 12 rainfall variables and their descriptive figures are available in Appendix A.
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In Uganda, like Malawi, we see a fair amount of variation but none of those anomalous

spikes that occur in Ethiopia and Nigeria. As in most other countries, CPC tends to report

less rainfall than other products, while ERA5 reported more.

Summarizing our findings across countries, there is a broad agreement between CHIRPS,

ARC2, TAMSAT, and MERRA-2, while CPC tends to report less rain and ERA5 reports

more. But this is not always the case. In Nigeria, CPC and ERA5 did the opposite. And

MERRA-2 shows wide variation with implausible spikes and dips.

Next, we turn to Figure 4.2, which presents the share of rainy days by country and by

remote sensing product. In Ethiopia, as in mean daily rainfall, we see that CHIRPS and

ARC2 do not show much variation but remain constant at around 30% rainy days. In

contrast, CPC shows extensive variations, going from 20% in one year to 60% in another.

TAMSAT tends to agree with CPC but lacks the wide swings. While ARC2 and CHIRPS

report an average of 20% rainy days, and CPC and TAMSAT report 40%, MERRA-2 and

ERA5, both reanalysis products, report rain 65% of days.

In Malawi, there is more agreement between ARC2/CHIRPS and CPC/TAMSAT, though

again, CPC/TAMSAT tends to vary more. As with Ethiopia, MERRA-2 and ERA5 calculate

a much higher share of rainy days.

In Niger, only MERRA-2 reports substantially more rainy days than others, though TAM-

SAT also reports slightly higher values.

Nigeria repeats the pattern of a three-way separation. Here, CHIRPS, CPC, and ARC2

report the lowest share of rainy days, TAMSAT reports a slightly higher share of rainy days,

and MERRA-2 and ERA5 report a substantially higher share of rainy days. According to

ERA5, it rains in Nigeria 85% of the days, while MERRA-2 reports it rains 92% of the days.

Tanzania looks substantially like Nigeria, though TAMSAT is more in agreement with the

non-reanalysis data products.

Similarly, in Uganda, the reanalysis data sets report rain nearly every day, while the other

data sets are in substantial agreement. However, Uganda is unique in that it is the only

country where TAMSAT reports fewer rainy days than ARC2/CHIRPS/CPC. In all other

countries, TAMSAT tended to be between those data products and the reanalysis products.
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There are evident differences for any given rainfall metric across country and between

remote sensing products. That differences exist across metrics and country is not surprising.

What is more surprising are the differences across products for a single metric in a single

country. When we examine the share of rainy days, these differences become stark. Our

descriptive analysis highlights three important points. First, rainfall metrics calculated by

different remote sensing products differ, and those differences vary by country. Second, for a

single remote sensing product, there is often inter-country heterogeneity in how it performs.

ERA5 tends to report the largest value for mean daily rainfall except in Niger where it reports

the least. TAMSAT tends to report a larger share of rainy days than ARC2/CHIRPC/CPC,

except in Uganda, where it reports the fewest. This highlights an important point: remote

sensing products calculate the same metrics in a notably different manner depending upon

the country. There is a geographical component to how accurate a product is that has not

been explored or understood by the economics literature. Third, in the same country, while

looking at different rainfall metrics, remote sensing products may show some relationships

in one rainfall metric, whereas, in another rainfall metric, we see an entirely new grouping

of products or no grouping at all. As an example, remote sensing products calculated from

merged gauge, OI on gauge data, or reanalysis data sets show different patterns of results

in the same country for different rainfall metrics, meaning there is not only inter-country

heterogeneity but also intra-country heterogeneity.



38

Figure 4.1: Mean Daily Rainfall
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Note: The figure presents the time series of the average value of the mean daily rainfall for each year in each country, measured by different remote
sensing products. The y-axis has the mean daily rainfall in mm, and the x-axis has the duration of the analysis from 1983 to current.
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Figure 4.2: Share of Rainy Days
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Note: The figure presents the time series of the average value of the share of rainy days for each year in each country, measured by different remote
sensing products. The y-axis has the share of rain days in percentages, and the x-axis has the duration of the analysis from 1983 to current.
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4.2 Share of Significant of p-values

Having discussed the inter and intra-country variation in rainfall metrics coming from

different remote sensing products, we now shift to try and understand the predictive power

of each rainfall metric. As we saw in Section 2.3, there is little agreement in the economics

literature about which rainfall metric to use, even in the same context. To answer our

question about the impact of using one rainfall metric over another, we estimate typical

first stage IV regression of agricultural productivity on different rainfall metrics. Then we

calculate the share of significance coefficients. A larger share of p-values less than 0.05, the

stronger the metric is as an IV. The smaller the share, the weaker the instrument.

Figure 4.3 displays the share of coefficients for each rainfall metric, by each of our three

econometric specifications: weather only, weather and household fixed effects, weather,

household fixed effects, and measured inputs. These are aggregated over country, remote

sensing product, and outcome variable. The figure summarizes the results of 3,024 re-

gressions, with each column representing 72 regressions. For a column, which is a weather

metric-specification pair, we calculate the mean number of regressions in which the coefficient

on the weather metric is significant at p < 0.05. We also calculate the standard deviation of

the mean. We divide the mean number of regressions with significant coefficients by 72 to

calculate the share of significant point estimates. We use the standard deviation to calculate

95% confidence intervals around the mean. We can then apply our heuristic difference test to

determine if one weather metric is a substantially stronger/weaker instrument than another

metrics. We have also drawn horizontal lines to mark the upper and lower bounds of the

confidence interval on mean daily rainfall so as to allow for easy visual inspection of where

differences exist.

For regressions that only include weather, total rainfall has the highest share of significance,

whereas median daily rainfall has the lowest share of significance. Many weather metrics are

significant between 70% and 80% of the time. The exceptions are median, variance, skew,

z-score, deviations in rainy days, deviations in no rain days, deviations in percent rainy days,

and longest dry spell. All are weak instruments in terms of weak difference heuristics when

compared to the mean daily and total seasonal rainfall. When we compare rainfall metrics
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Figure 4.3: Share of Significance of Point Estimates
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Note: The figure displays the share of significant coefficients for each rainfall metric, by each of our three
econometric specifications, aggregated over country, remote sensing product, and outcome variable. The
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to our strongest IV (total seasonal rainfall), we find that the median and longest dry spells

fail our strong difference test, suggesting they are particularly weak options among these

fourteen potential IVs.

Looking at the share of significant point estimates on weather metrics in the weather

only specification, there is a clear hierarchy of potentially stronger and weaker rainfall in-

struments. But, including only weather as an explanatory variable ignores the fact that

we have panel data. Those regressions will only be correctly specified if unobserved time-

invariant household heterogeneity, currently in the error term, is uncorrelated with weather.

If that is the case, then weather can serve as an instrument for agricultural productivity

and total seasonal rainfall appears to be a particularly strong IV. If, however, weather is

external to time-invariant household unobservables but not exogenous to those unobservable,

our weather only specification will be mis-specified and rainfall may not pass the exclusion

restriction.

To test this hypothesis, we control for household fixed effects and examine how rainfall

changes as predictor of agricultural productivity. As Figure 4.3 demonstrates, most weather

metrics go from being significant 80% of the time to significant only about 35% of the

time. Adding measured inputs to the fixed effects does not substantially alter the estimates.

Once we use fixed effects to control for time-invariant household unobservables, every metric

performs similarly, with no difference in metrics based on either our strong or weak difference

test.

To explain this, we conjecture that while rainfall is external to household characteristics,

it is not exogenous in that rainfall is correlated with time-invariant household characteristics

and if those are left uncontrolled rainfall is not orthogonal to the error term. This means

that our weather only specification, where rainfall metrics appeared to be strong IVs, is

mis-specified, with coefficients on rainfall metrics being biased upward. The most obvious

candidate household characteristic that is correlated with rainfall is geographic location.

There are time-invariant characteristics about the geographic location that determine how

much rain the location gets but that also, independent of rainfall, are correlated with agricul-

tural productivity. Absent a location fixed effect, rainfall is unlikely to satisfy the exclusion

restriction.
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This potential exclusion restriction violation has an easy solution - include control for

household or location fixed effects. The problem with this solution, at least in the context of

a first stage regression in which rainfall predicts agricultural productivity, is that controlling

for household fixed effects creates a potential weak instrument problem. In 65% of fixed

effects regressions, rainfall is not a significant predictor of agricultural productivity, meaning

it frequently no longer satisfies the relevancy assumption. There is a clear trade-off, in our

setting, between satisfying the exogeneity assumption and the relevancy assumption. We

explore this more in the next section where we examine coefficients on specific regressions

and attempt to draw conclusions regarding which rainfall metrics might remain good IVs

and in what context.

4.3 Coefficients

In this section, we determine which metrics might serve as suitable instruments based on

the consistency of their sign and the significance of their coefficients. We know that rainfall

metrics calculated from different remote sensing products differ and that those differences

vary across countries. We present a series of specification charts by country, which allows

us to examine the coefficient size and significance by metric, remote sensing products, and

dependent variable. We limit our analysis to just specifications with rainfall, household fixed

effects, and measured inputs.

We have 168 regressions in every figure. The “⋄” represents the coefficient of rainfall metric

and it comes from a combination of rainfall metric, remote sensing product, and the outcome

variable. The figure is divided into two sections: on the left of the red line are coefficients

less than zero, whereas on the right of the red line are those greater than zero. We also have

symbols for the significance of the coefficient: “+” when the negative or positive coefficients

are significant at 0.05 or “∆” when the negative or positive coefficients are not significant at

0.05. We have our fourteen rainfall variables, the six remote sensing products, and the two

outcome variables on the y-axis. Our x-axis represents each individual regression.

To analyze the specification charts, we first look for groupings of different rainfall metrics.

This allows us to gain a sense of which rainfall metrics might be good substitutes for each

other and sheds light on the appropriateness of using many metrics to predict the same
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outcome, which we saw evidence of in Figure 1.1. Second, we determine which rainfall metrics

are statistically significant (relevant). If they are significant, we consider their sign; if they are

not, we discard them. Third, for rainfall metrics with predominantly significant coefficients,

we look at the number of coefficients that are negative and positive. A good instrument

would be the one that has a vast majority of coefficients of the same sign (consistent).

Finally, we examine if the coefficients come from a particular remote sensing product and if

the sign and significance depends on the country. This allows us to give recommendations

and guidance both about which rainfall variables are potential good instruments for a broad

context and which are only applicable in a narrow set of circumstances.

4.3.1 Ethiopia

Looking at the pattern of coefficient grouping in Figure 4.4, we can see that mean, median,

and variance have coefficients of similar sign and size. Similarly, total rainfall and its devia-

tion form a group centered around zero. Rainy days (and its deviation) and the percentage

of rainy days (and its deviation) form two groups of similarly sized positive coefficients. Not

surprisingly, the number of days without rain (and its deviation) mirror rainy days by form-

ing a group of similarly sized negative coefficients. The remaining variables (skew, z-score,

longest dry spell) fit into no obvious group because the size and sign of the coefficients on

these metrics are widely dispersed from large and negative to large and positive. We con-

clude that, at least for Ethiopia, mean, median, and variance could be used as substitute

IVs, while rainy days, no rain days, and percent rainy days (and their deviations) could be

used as substitutes with the understanding that no rain days would give the opposite sign

of the others.

We next turn to examine the number of significant coefficients for the rainfall metric.

In Ethiopia, seventy-two coefficients are significant (43%). Each rainfall metric appears

in twelve regressions and, in Ethiopia, all have around 40%-50% of coefficients that are

significant. The lone exception is skew, with only two of twelve significant coefficients (17%).

This suggests that, except for skew, no rainfall metric is particularly more relevant (stronger

IV) than any other metric in Ethiopia.
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As we cannot distinguish between a potentially good IV and a potentially bad IV based on

relevance, we next look at the sign on the significant coefficients for each metric. This helps

us understand what rainfall metrics may give mixed or inconsistent results when predicting

agricultural productivity. The significant coefficients for the grouping of mean, median, and

variance are nearly all negative, suggesting they might make good instruments. Median, in

particular, is always negative and is the only variable among the 14 that always has a con-

sistent sign. For mean and variance, there is an exception to the consistency of their sign. If

the data for calculating these metrics come from ERA5, the sign switches so that their rela-

tionship with agricultural productivity becomes positive. Similar to mean/median/variance,

total rainfall and deviations in total are relevant and consistent, making them good IV can-

didates. Each are significant in half of their regressions and the coefficients are negative in

all but one case: when the data comes from ERA5. Among the remaining variables with five

or six of twelve significant coefficients (rainy days, no rain days, percent rainy days, and their

deviations), none have a consistent relationship with agricultural productivity. For each of

these variables, about half of their significant coefficients express a positive relationship with

agricultural productivity, and half express a negative relationship. The positive coefficients

on these metrics tend to come from TAMSAT, while the negative coefficients tend to come

from ARC2, but these relationships are not absolute nor without their exceptions.
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Figure 4.4: Ethiopia

−4

−2

0

2

4

Quantity
Value

*Dependant Variable*

CHIRPS
CPC

MERRA−2
ARC2
ERA5

TAMSAT
*Remote Sensing Product*

 
Mean Daily Rainfall

Median Daily Rainfall
Variance of Daily Rainfall

Skew of Daily Rainfall
Total Rainfall

Deviation in Total Rainfall
Z−Score of Total Rainfall

Rainy Days
Deviation in Rainy Days

No Rain Days
Deviation in No Rain Days

Percent Rainy Days
Deviation in Percent Rainy Days

Longest Dry Spell
*Rainfall Variables*

 

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160 168

n.s. p < 0.05

 

Note: The figure presents a specification curve of 168 regressions. It is divided into two sections: on the left of the red line are those coefficients less
than zero, whereas on the right of the red line are those greater than zero. Significant and non-significant coefficients are designated above, where +
signifies that the negative or positive coefficients are significant at 0.05, whereas ∆ signifies that coefficients are not significant. There are fourteen
rainfall variables, six remote sensing products, and two outcome variables on the y-axis. Our x-axis represents each individual regression, sorted by
coefficient size.
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4.3.2 Malawi

Turning to Malawi (Figure 4.5), we see that median and variance have coefficients of similar

size and sign. Unlike in Ethiopia, mean in Malawi does not provide similar predictions as

median and variance. Instead, mean produces mostly positive coefficients. Total rainfall (and

its deviation) are centered around zero and mostly positive. Rainy days (and its deviation),

and the percentage of rainy days (and its deviation), like Ethiopia, are two groups of similarly

sized positive coefficients. The number of days without rain (and its deviation) are a mirror

of rainy days (and its deviation), forming a group of similarly sized negative coefficients. The

remaining rainfall metrics (skew, z-score, and the longest dry spell) do not form groups with

any other rainfall metrics, as they have different sizes and signs for their coefficients. We

conclude that, in Malawi, apart from rainfall metrics with deviations, median and variance

could be used as substitute IVs.

Malawi only has forty-six significant coefficients (27%) for the rainfall metrics, far fewer

than Ethiopia. Most rainfall metrics have significant coefficients only 15%-25% of the time.

The exceptions to this are median daily and the longest dry spell, both of which have six

of twelve significant coefficients (50%), and skew of daily rainfall, which has seven of twelve

significant coefficients (58%). The z-score of total rainfall has no significant coefficients in

Malawi that could predict agricultural productivity.

To distinguish between a suitable and a weak IV, we look at the sign on the significant

coefficients of rainfall metrics. Mean has an inconsistent relationship with agricultural pro-

ductivity. The six significant coefficients for median are all negative, and thus, it might

make a good instrument. The exception is if median is calculated from MERRA-2 data,

which results in the coefficients switching sign from negative to positive. While variance

forms a group with median, it performs worse in that only three of the twelve coefficients are

significant. Skew of daily rainfall is the most relevant predictor of agricultural productivity

in Malawi, with 58% of the coefficients being significant, as well as being among the most

consistent, with all being negative. Longest dry spell also performs well, as it has mostly

positive significant coefficients unless data comes from CHIRPS, which switches the coeffi-
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cient sign from positive to negative. Coefficients of all of the remaining metrics are rarely

significant, making them weak instruments in Malawi.
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Figure 4.5: Malawi
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Note: The figure presents a specification curve of 168 regressions. It is divided into two sections: on the left of the red line are those coefficients less
than zero, whereas on the right of the red line are those greater than zero. Significant and non-significant coefficients are designated above, where +
signifies that the negative or positive coefficients are significant at 0.05, whereas ∆ signifies that coefficients are not significant. There are fourteen
rainfall variables, six remote sensing products, and two outcome variables on the y-axis. Our x-axis represents each individual regression, sorted by
coefficient size.
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4.3.3 Niger

Looking at the pattern of coefficient grouping in Figure 4.6, we can see that mean and

variance have mostly positive coefficients with similar sizes. Unlike in Ethiopia and Malawi,

median is not a part of a group. Most of its coefficients are precisely estimated zeros as the

median value of rain in Niger is zero. Other groupings of similarly sized positive coefficients

include total rainfall (and its deviation), rainy days (and its deviation), and percent rainy

days (and its deviation). The number of days without rain (and its deviation) gives a similar

size but different sign coefficients as the number of days with rainfall (and its deviation).

The remaining variables (skew, z-score, and the longest dry spell) are not part of any group

as the size and the sign of the coefficients on these metrics vary from positive to negative. We

conclude that in Niger, mean and variance, and other rainfall metrics with their deviations,

could be used as substitute instruments.

For the rainfall metrics in Niger, seventy-six coefficients are significant (45%). This value

hides what is a nearly bimodal distribution, with six of the fourteen rainfall metrics being

significant at least 50% of the time while the remainder are significant less than 30% of the

time. Among the candidates for a strong IV are mean (9 of 12 significant), median (6 of 12),

total (9 of 12) with its deviation (8 of 12), z-score (6 of 12), and the longest dry spell (10 of

12). This means in Niger, unlike Ethiopia and Malawi, we have a large pool of potentially

strong IVs.

For a candidate metric to be a suitable IV, it must be both relevant and consistent. The

significant coefficients of the grouping of mean and variance in Niger are nearly all positive,

suggesting they might make good instruments. The lone exception is if mean is calculated

using ERA5, which switches sign to negative. Total rainfall, along with its deviation and

z-score, are relevant and consistent, making them good IV candidates. The exception to

this is if the data come from ERA5, which again switches the sign on significant coefficients

from positive to negative. The longest dry spell in Niger is the most relevant predictor of

agricultural productivity in any country and for any metric. Its coefficients are significant

in ten out of twelve regressions. However, it is an inconsistent predictor. Six of the ten

coefficients are positive, suggesting that the longest dry spell increases output. Only in four
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regressions is the longest dry spell negatively correlated with output as expected. Despite

this inconsistency of the longest dry spell, Niger has a stronger and more consistent set of

candidate rainfall instruments than either Ethiopia or Malawi.
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Figure 4.6: Niger
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Note: The figure presents a specification curve of 168 regressions. It is divided into two sections: on the left of the red line are those coefficients less
than zero, whereas on the right of the red line are those greater than zero. Significant and non-significant coefficients are designated above, where +
signifies that the negative or positive coefficients are significant at 0.05, whereas ∆ signifies that coefficients are not significant. There are fourteen
rainfall variables, six remote sensing products, and two outcome variables on the y-axis. Our x-axis represents each individual regression, sorted by
coefficient size.
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4.3.4 Nigeria

Figure 4.7 presents the specification curve for Nigeria, where we can see that mean and

median have coefficients of similar sign and sign. This breaks from the patterns in Ethiopia,

Malawi, and Niger, where we saw median and variance always paired. Total rainfall and

deviation in total rainfall form a group centered around zero. Unique to Nigeria, rainy days

(and their deviations), days without rain (and their deviation), and the share of rainy days

(and their deviation) all form groups. These groupings are divided into two clusters, one

of negative coefficients and one of positive coefficients. The remaining variables (variance,

skew, z-score, and the longest dry spell) conform to no group and have signs and sizes

widely from large and positive to large and negative. We conclude that in Nigeria, mean and

median could be used as substitute instruments, as well as total and its deviation. For the

other rainfall variables, the groupings appear split between showing positive and negative

relationship with agricultural productivity.

Of the regressions in Nigeria, seventy-one coefficients are significant (42%). Each rainfall

metric appears in twelve regressions, and like Ethiopia, all perform about the same (40%-50%

significant coefficients). This differs from Malawi, which had almost no strong predictors of

agricultural productivity, and Niger, which had a number of metrics highly correlated with

agricultural productivity. We conclude that in Nigeria, like Ethiopia, no metric is particularly

more relevant than another.

Turning to the sign of the significant coefficients, we try to determine which rainfall metrics

are consistent predictors of our outcome. Of the six significant coefficients on median five are

negative. The sole exception is if data comes from ARC2, which results in median switching

signs from negative to positive. Rainy days (and its deviation) and no rain days (and its

deviation) form two groups which have five of six of their significant coefficients on one side

of zero (positive for rainy days and negative for no rain days). The exception in all four

metrics is when data come from CPC, which switches the dominant signs. The remaining

rainfall metrics do not have a consistent relationship with agricultural productivity. Half

the coefficients of these metrics show a positive relationship with outcomes, and half show

a negative relationship. While Nigeria has about the same number of relevant metrics as
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Ethiopia, there is much less consistency in the sign on these metrics. This means that there

are few rainfall metrics that are good (relevant and consistent) potential IVs.
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Figure 4.7: Nigeria
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Note: The figure presents a specification curve of 168 regressions. It is divided into two sections: on the left of the red line are those coefficients less
than zero, whereas on the right of the red line are those greater than zero. Significant and non-significant coefficients are designated above, where +
signifies that the negative or positive coefficients are significant at 0.05, whereas ∆ signifies that coefficients are not significant. There are fourteen
rainfall variables, six remote sensing products, and two outcome variables on the y-axis. Our x-axis represents each individual regression, sorted by
coefficient size.
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4.3.5 Tanzania

Turning to Tanzania (Figure 4.8), we see many of the same patterns as in other countries.

Mean and median have coefficients of similar sign and size. Coefficients on total rainfall and

its deviation are nearly all positive and grouped around zero. Other groupings include rainy

days (and its deviation) with mostly positive coefficients and no rain days (and its deviation)

with mostly negative coefficients, with all four having similar sizes. Percentage of rainy days

(and its deviation) has mostly large and positive coefficients. As is the case in other countries,

the remaining variables (variance, skew, z-score, and the longest dry spell) do not fit into

any obvious groups because of their varied sizes and different signs. We conclude that in

Tanzania, mean/median and other rainfall variables/their deviations would be appropriate

substitutes as they would not change the relationship with agricultural productivity.

Of our six countries, Tanzania has the least number of significant coefficients for rainfall

metrics at thirty-five (21%). Some rainfall metrics (skew, deviations in total rainfall, and

the z-score) do not produce any significant coefficient. Half of the remaining rainfall metrics

(mean, median, variance, total, and the longest dry spell) are significant around 10%-15% of

the time, and the other half (rainfall days, no rain days, the percentage of rainy days, and

their three deviations) are significant around 30%-40% of the time. No metric is significantly

correlated with outcomes, even 50% of the time. Relative to rainfall in other countries,

rainfall lacks relevance (weak IV) in Tanzania.

While there appear to be a few potentially suitable IVs in Tanzania, we still categorize

metrics based on the consistency of their significant coefficients. In this respect, Tanzania,

too, is an outlier. All the rainfall metrics with significant coefficients have consistent signs.

That is, if the rainfall metric in Tanzania has significant coefficients, the signs are either

always positive (mean, median, total, rainy days and its deviation, and percent rainy day

and its deviation) or always negative (variance, no rain days, and its deviation, and the

longest dry spell). There is no rainfall metric that produces both significantly positive and

significantly negative coefficients. While most rainfall metrics in Tanzania are not relevant,

when a metric is relevant, it has a consistent relationship with agricultural productivity.
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Figure 4.8: Tanzania
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Note: The figure presents a specification curve of 168 regressions. It is divided into two sections: on the left of the red line are those coefficients less
than zero, whereas on the right of the red line are those greater than zero. Significant and non-significant coefficients are designated above, where +
signifies that the negative or positive coefficients are significant at 0.05, whereas ∆ signifies that coefficients are not significant. There are fourteen
rainfall variables, six remote sensing products, and two outcome variables on the y-axis. Our x-axis represents each individual regression, sorted by
coefficient size.



58

4.3.6 Uganda

Consider the pattern of coefficient grouping for Uganda presented in Figure 4.9. While

Tanzania has the fewest relevant rainfall metrics, Uganda has the most. However, like

Tanzania, rainfall metrics in Uganda are consistent predictors of agricultural productivity.

Uganda, unlike other countries, does not have any groupings between mean, median, and

variance. Mean has nearly all coefficients greater than zero, median has six negative and six

positives, and variance has three negative and nine positive. As with most other countries,

total rainfall and its deviation are clustered around zero. Rainy day (and its deviation) and

percent rainy days (and its deviation) form two groups of similarly sized positive coefficients.

Whereas no rain days and its deviations form a group of similarly sized negative coefficients.

The remaining rainfall metrics (skew, z-score, and the longest dry spell) form no groups

with other rainfall variables in terms of sign and size. We conclude that apart from rainfall

metrics with their deviations, no other rainfall metrics can be used as a substitute that would

produce coefficients with consistent sign and size.

Uganda has the highest number of significant coefficients among the countries we ana-

lyze, with eighty-one (48%). Eleven of the fourteen rainfall metrics have coefficients that

are significant 50%-60% of the time. The exceptions are median, variance, and skew. Rel-

ative to other countries, rainfall appears to be a relevant (strong) instrument in predicting

agricultural production.

In Uganda, rainfall metrics tend to be not just relevant but consistent. As in Tanzania,

the rainfall metrics with significant coefficients have a consistent sign. Significant coefficients

of every metric, with the exception of the median, always carry the same sign. If a metric

has one positive and significant coefficient, then all significant coefficients are positive (mean,

variance, skew, total rainfall and its deviation, rainy days and its deviation, and percent rainy

day and its deviation). Similarly, if a metric has one negative and significant coefficient, then

all are negative (no rain days and its deviation, and the longest dry spell). Compared to

Tanzania and all other countries in the analysis, rainfall in Uganda is the most relevant and

consistent predictor of agricultural productivity, suggesting that many rainfall metrics are

good IV candidates in this setting.
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Figure 4.9: Uganda
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than zero, whereas on the right of the red line are those greater than zero. Significant and non-significant coefficients are designated above, where +
signifies that the negative or positive coefficients are significant at 0.05, whereas ∆ signifies that coefficients are not significant. There are fourteen
rainfall variables, six remote sensing products, and two outcome variables on the y-axis. Our x-axis represents each individual regression, sorted by
coefficient size.
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4.4 Discussion

Having examined the results of 3,024 first-stage IV regressions across six countries, we draw

conclusions and make recommendations for best practices. These relate to our three headline

findings: one, there is substantial heterogeneity in the performance of rainfall metrics in

predicting agricultural productivity; two, this heterogeneity is often a function of remote

sensing sources; and three, most rainfall metrics are weak instruments once we control for

household unobservables.

The following are our three conclusions and related recommendations. First, we find

evidence that not all rainfall metrics are equally strong instruments, as not all rainfall metrics

are significant predictors of (relevant to) agricultural productivity. Whether a rainfall metric

is relevant often depends upon the remote sensing product the data comes from and the

country it is used in. In other words, there is a large amount of heterogeneity in the way

rainfall metrics perform across remote sensing products and countries. In Ethiopia, mean,

total, deviation in total, and deviations in rainy days, no rainy days, and percent rainy

days are good candidate instruments, as they are all relevant at least 50% of the time. The

exceptions arise when some metrics (mean, total, and deviations in total) are calculated using

ARC2 or TAMSAT. Another exception is when the deviation in metrics comes from CHIRPS

or MERRA-2. What this means is that using data from these products in Ethiopia can result

in inconsistent and unpredictable results. In Malawi, median, skew, and longest dry spell

are good potential instruments. There are some exceptions to this, but these exceptions do

not appear to be a function of selecting a particular remote sensing product. In Niger, mean,

variance, total rainfall, deviation in total rainfall, the z-score of total rainfall, and longest

dry spell are all strong and consistent predictors of agricultural productivity. The exception

is when variance, deviation in total rainfall, and the z-score come from ERA5 or TAMSAT

data. In those cases, these metrics are no longer relevant. In Nigeria, z-score, rainy days

(and its deviation), no rain days (and its deviation), and percent rainy days are all good

candidates for an IV. The exceptions arise when metrics are calculated using data from ARC2

and ERA5. In Tanzania, no rainfall metric is relevant even 50% of the time. However, in the

rare case that a coefficient is significant, it has a consistent relationship to outcomes. Finally,
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in Uganda, a large number of metrics are relevant to predicting agricultural productivity.

As with Malawi and Tanzania, relevant metrics appear not to be a function of the source of

the precipitation data.

Second, there exist few rainfall metrics that are consistent predictors of agricultural pro-

ductivity. In Ethiopia, mean, total rainfall, and deviations in total are consistent predictors

and could be used as substitutes for each other. The exception to this consistency is if the

data comes from ERA5, in which case the signs of all three metrics switches from positive

to negative. In Malawi, median, skew, and longest dry spell are consistent, though median

is negatively correlated with outcomes while the other two metrics are positively correlated.

Here, using MERRA-2 data to calculate median or CHIRPS to calculate longest dry spell

switches the sign of each metric. In Niger, mean, variance, total rainfall, and deviations in

total rainfall, z-score are consistent predictors in that they are all positively correlated with

outcome, making them good substitutes for one another. The exceptions are few, and all

arise when ERA5 data is used to calculate a metric. In Nigeria, only rainy days (and its

deviations) and no rain days (and its deviations) are consistent, though they have opposite

signs. However, when CPC data is used, rainy days become negatively correlated with agri-

cultural productivity, while no rain days become positively correlated. In Tanzania, while

no metric is relevant, all are consistent in that when a metric is significant, it always carries

the same sign. Finally, in Uganda, all eleven relevant metrics are consistent. If a metric is

positive/negative and significant, then it always is regardless of what remote sensing data

source is used. Thus, there are heavy potential substitutes for rainfall IVs in Uganda. While

rainfall metrics are relevant and consistent in Uganda, Uganda is not the norm. The impli-

cation of this is that even though a researcher may use a rainfall metric in one country that

is relevant and consistent, using that metric in another country, or even calculating it from

a different remote sensing source, can produce a weak instrument or flip the relationship

between that instrument with agricultural productivity.

Third, the inclusion of household fixed effects has a large impact on the relevance of

weather metrics in the first stage IV regression. While all our takeaways speak to the

relevancy assumption, one of the four major identification assumptions for an instrumental

variable, our last takeaway also has implications for the exogeneity assumption. The rainfall
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metrics are significant 80% of the time without household fixed effects. However, with

the introduction of household fixed effects, rainfall as a significant predictor of agricultural

productivity falls to 35%. Clearly, including household fixed effects creates a weak instrument

problem. But not including them means that the time-invariant unobservable household

characteristics are part of the error term violating the exogeneity assumption. The most

likely unobservable household characteristic that correlates with weather is the household’s

geographic location.

Combined, our three takeaways place the user of rainfall IVs in an unenviable position.

Controlling for household fixed effects or location fixed effects satisfies the exogeneity as-

sumptions of the IV while likely violating the relevancy assumption. Outside of abandoning

the use of rainfall as an IV altogether, users of rainfall IVs will need to provide strong evi-

dence that their chosen IV is among the small set of metrics that we have found both relevant

and consistent when controlling for household (location) fixed effect. Of particular import

will be to demonstrate the robustness of results to different data sources to ensure results

do not reflect, at best, spurious correlation or, at worst, p-hacking.
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CHAPTER 5

Conclusion

Given the low and declining cost of using remote sensing data, weather, in various mea-

surements, has become a commonly used instrumental variable in economics. In this thesis,

we have reviewed 174 papers and documented the ad-hoc nature of IV use in the field. To

further examine the effects, we investigate the appropriateness of this ad-hoc approach, by

combining six remote sensing weather products with the LSMS-ISA data from six countries.

We looked for three elements in order to assess weather as an IV, specifically focusing on

rainfall. First, we look for rainfall metrics that are consistent across remote sensing prod-

ucts and countries; next, we consider weather metrics that show a consistent relationship

with agricultural productivity; and finally we seek to understand a degree of substitutability,

weather metrics that have similar signs and significance to other weather metrics. Further,

we considered the assumptions for IV use, focusing on an examination of the exogeneity of

rainfall.

In this thesis, we found three things. First, we determined that a large amount of het-

erogeneity exists in the manner rainfall metrics perform across remote sensing products and

countries. Next, we found that few metrics act as substitutes. We find that there is in-

consistency in rainfall metrics in predicting agricultural productivity. And finally, we find

that when controlling for household fixed effects, we encounter a weak instrument problem.

Taken together, these findings contribute to the body of empirical literature in economics

by examining the validity and exogeneity of instrumental variables, specifically weather and

rainfall as an instrument. By providing guidance regarding which rainfall metrics could be

used in lieu of another, depending upon the context. Our analysis confirms certain findings

by other researchers about the existence of potential exclusion-restriction violations.
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Figure A.1: Median Daily Rainfall
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Note: The figure presents the time series of the average value of the median daily rainfall for each year in each country, measured by different remote
sensing products. The y-axis has the median daily rainfall in mm, and the x-axis has the duration of the analysis from 1983 to current.
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Figure A.2: Variance of Daily Rainfall
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Note: The figure presents the time series of the average value of the variance of daily rainfall for each year in each country, measured by different
remote sensing products. The y-axis has the variance of daily rainfall in mm, and the x-axis has the duration of the analysis from 1983 to current.
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Figure A.3: Skew of Daily Rainfall
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Note: The figure presents the time series of the average value of the skew of the daily rainfall for each year in each country, measured by different
remote sensing products. The y-axis has the skew of daily rainfall in mm, and the x-axis has the duration of the analysis from 1983 to current.
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Figure A.4: Total Daily Rainfall
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Note: The figure presents the time series of the average value of the total rainfall for each year in each country, measured by different remote sensing
products. The y-axis has the total daily rainfall in mm, and the x-axis has the duration of the analysis from 1983 to current.
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Figure A.5: Deviations in Total Daily Rainfall
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Note: The figure presents the time series of the average value of the deviations in total rainfall for each year in each country, measured by different
remote sensing products. The y-axis has the deviations in total daily rainfall in mm, and the x-axis has the duration of the analysis from 1983 to
current.
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Figure A.6: Scaled Deviations in Total Daily Rainfall
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Note: The figure presents the time series of the average value of the z-score of the total rainfall for each year in each country, measured by different
remote sensing products. The y-axis has the z-score of the total daily rainfall in mm, and the x-axis has the duration of the analysis from 1983 to
current.



71

Figure A.7: Rainfall Days
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Note: The figure presents the time series of the average value of rainfall days for each year in each country, measured by different remote sensing
products. The y-axis has the number of days it rained more than 1 mm in a growing season, and the x-axis has the duration of the analysis from
1983 to current.
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Figure A.8: Deviations in Rainfall Days
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Note: The figure presents the time series of the average value of the deviations in rainfall days for each year in each country, measured by different
remote sensing products. The y-axis has the deviation in rainfall days from a long-run average in a growing season, and the x-axis has the duration
of the analysis from 1983 to current.
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Figure A.9: No Rainfall Days
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Note: The figure presents the time series of the average value of no rain days for each year in each country, measured by different remote sensing
products. The y-axis has the number of days it did not rain more than 1 mm in a growing season, and the x-axis has the duration of the analysis
from 1983 to current.
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Figure A.10: Deviations in No Rainfall Days
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Note: The figure presents the time series of the average value of the deviations in no rainfall days for each year in each country, measured by different
remote sensing products. The y-axis has the deviations in no rain days from the long-run average in a growing season, and the x-axis has the duration
of the analysis from 1983 to current.
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Figure A.11: Deviations in Share of Rainy Days
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Note: The figure presents the time series of the average value of the deviations in the share of rainy days for each year in each country, measured by
different remote sensing products. The y-axis has the deviations in the share of rainy days, and the x-axis has the duration of the analysis from 1983
to current.
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Figure A.12: Intra-season Dry Spell
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Note: The figure presents the time series of the average value of the intra-season dry spell for each year in each country, measured by different remote
sensing products. The y-axis has the longest dry spell, and the x-axis has the duration of the analysis from 1983 to current.
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S. Kalemli-Özcan, A. Nikolsko-Rzhevskyy, and J. H. Kwak. Does trade cause capital to flow?

evidence from historical rainfall. J. Dev. Econ., 147:102537, Nov. 2020.

J. F. Kiviet. Testing the impossible: Identifying exclusion restrictions. J. Econom., 218(2):

294–316, Oct. 2020.

https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation


80

G. Kling, U. Volz, V. Murinde, and S. Ayas. The impact of climate vulnerability on firms’

cost of capital and access to finance. World Dev., 137:105131, Jan. 2021.

R. Levine and D. Renelt. A sensitivity analysis of Cross-Country growth regressions. Am.

Econ. Rev., 82(4):942–963, 1992.

J. T. Lind. Rainy day politics. an instrumental variables approach to the effect of parties on

political outcomes. Eur. J. Polit. Econ., 61:101821, Jan. 2020.

A. M. Mapulanga and H. Naito. Effect of deforestation on access to clean drinking water.

Proc. Natl. Acad. Sci. U. S. A., 116(17):8249–8254, Apr. 2019.

J. Mellon. Rain, rain, go away: 195 potential Exclusion-Restriction violations for studies

using weather as an instrumental variable. Apr. 2023.

J. D. Michler, A. Josephson, T. Kilic, and S. Murray. Empirically estimating the impact of

weather on agriculture. OSF registries. July 1, 2019.

V. Munley, A. Garcia-Rodriguez, and P. Redmond. The impact of voter turnout on referen-

dum outcomes: evidence from Ireland. Public Choice, 194(3):369–393, Mar. 2023.

M. S. Nasser, A. Baig, and D. Nasser. Child stunting and economic outcomes in SAARC

countries: The empirical evidence. Feb. 2022.

National Bureau of Statistics (NBS). Nigeria General Household Survey (GHS), panel 2010,

wave 1, 2012. Public Use Dataset. Ref: NGA 2010 GHSP-W1 v04 M. Downloaded from

https://microdata.worldbank.org/index.php/catalog/1002 on 6 September 2019.

National Bureau of Statistics (NBS). Nigeria General Household Survey, panel 2012-2013,

wave 2, 2014. Public Use Dataset. Ref: NGA 2012 GHSP-W2 v02 M. Downloaded from

https://microdata.worldbank.org/index.php/catalog/1952 on 6 September 2019.

National Bureau of Statistics (NBS). Nigeria General Household Survey, panel (ghs-panel)

2015-2016, 2019. Public Use Dataset. Ref: NGA 2015 GHSP-W3 v02 M. Downloaded

from https://microdata.worldbank.org/index.php/catalog/2734 on 6 September 2019.

https://microdata.worldbank.org/index.php/catalog/1002
https://microdata.worldbank.org/index.php/catalog/1952
https://microdata.worldbank.org/index.php/catalog/2734


81

National Statistical Office (NSO). Third Malawi Integrated Household Survey 2010-2011,

2012. Public Use Dataset. Ref: MWI 2010 IHS-III v01 M. Downloaded from https://

microdata.worldbank.org/index.php/catalog/1003 on 6 September 2019.

National Statistical Office (NSO). Malawi Integrated Household Panel Sur-

vey 2010-2013 (short-term panel, 204 EAs), 2015. Public Use Dataset. Ref:

MWI 2010-2013 IHPS v01 M. Downloaded from https://microdata.worldbank.org/index.

php/catalog/2248 on 6 September 2019.

National Statistical Office (NSO). Malawi Integrated Household Panel Survey

2010-2013-2016 (long-term panel, 102 eas), 2017. Public Use Dataset. Ref:

MWI 2010-2016 IHPS v02 M. Downloaded from https://microdata.worldbank.org/index.

php/catalog/2939 on 6 September 2019.

H. Ngoma, A. Finn, and M. Kabisa. Climate shocks, vulnerability, resilience and livelihoods

in rural Zambia. Climate and Development, pages 1–12.

N. S. Novella and W. M. Thiaw. African Rainfall Climatology Version 2 for Famine Early

Warning Systems. J. Appl. Meteorol. Climatol., 52(3):588–606, Mar. 2013.

T. Owens, J. Hoddinott, and B. Kinsey. The impact of agricultural extension on farm

production in resettlement areas of Zimbabwe. Econ. Dev. Cult. Change, 51(2):337–357,

Jan. 2003.
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