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ABSTRACT

The potential benefits of cover crops have been highlighted in the literature, yet there is a

limited understanding of their impact on crop yield risk. This study investigates the impact

of cover crop adoption on crop yield risk. Specifically, a parametric moment-based approach

is utilized to evaluate how cover crops affect the moments of crop yield distribution (i.e., mean

yield, yield variance, skewness, and kurtosis). For this study, we utilize a unique county-level

panel dataset containing information on cover crop adoption rates, corn and soybean yields,

and weather variables. The dataset spans the period from 2005 to 2018 and covers three main

corn and soybean production regions in the United States (US) Central Corn Belt (CCB)(i.e.,

Illinois, Indiana, and Iowa). Along with the parametric moment-based estimation method,

several robustness checks in the empirical analysis (e.g., recently developed instrumental

variable procedures, long-difference approach, and alternative empirical specifications) are

employed. Our estimation results indicate that the counties with higher cover crop adoption

tend to lower the production risk.

Keywords: Cover crops, Yield risk, Production Risk, Moment-based approach
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INTRODUCTION

Inherited risk in production, rising production costs, climate change, and growing environ-

mental consciousness have increased the interest in the potential benefits of cover crops in

crop production. Due to the on-farm economic benefits and off-farm environmental ben-

efits, farmers are encouraged to adopt sustainable practices that can mitigate the adverse

impact of farming (e.g., chemical and fertilizer runoff, soil compaction, and erosion). Cover

crops—typically legumes, grasses, or brassicas—are thought of as such practices that pro-

vide many benefits to the farm operation such as boosting soil productivity, improving the

climate resilience of cash crops, reducing soil erosion levels, suppressing weeds, reducing fer-

tilizer usage, improving nutrient cycling (Snapp et al., 2005; Myers and Watts, 2015; Wittwer

et al., 2017; Kaye and Quemada, 2017; Myers et al., 2019; Giri et al., 2020; Hunter et al.,

2021; Rejesus et al., 2021; Chen et al., 2022; Aglasan et al., 2023b; Won et al., 2023). Cover

crops, typically non-commodity crops, cover the soil in the “off” period between the grow-

ing seasons of the cash crop (e.g., winter months) primarily for the purpose of protecting

and improving the soil in between periods of regular crop production (Schnepf et al., 2006;

Arbuckle and Roesch-McNally, 2015)

Despite elevated interest through agronomic discussions, government payments, and policy

incentives, such as the USDA’s Environmental Quality Incentives Program (EQIP) and the

Risk Management Agency’s Pandemic Cover Crop Program, cover crop adoption remains

relatively low, accounting for only around 4.7% of cropland area according to the 2022 Census

of Agriculture (AgCensus). This low adoption rate highlights the importance of further

research to better understand the potential benefits of cover crops to integrate them more

into mainstream agricultural practices. There is a growing literature that has documented

the impacts of cover cropping on mean yields for a variety of cash crops (e.g., among others,

Munoz et al., 2014; Belfry et al., 2017; Marcillo and Miguez, 2017; Blanco-Canqui et al.,

2020). In general, the literature indicates that cover crops increase mean crop yield. For
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example, Miguez and Bollero (2005) finds that winter cover crops resulted in a 21% increase in

corn yield. Furthermore, Munoz et al. (2014) illustrates the beneficial influence of cover crop

biomass on increasing corn yields. It’s worth noting, however, that some existing literature

presents opposite results. For instance, in their review of cover crop studies, Abdalla et al.

(2019) analyzed 106 studies across 372 sites, finding an average yield reduction of 4 percent

due to cover crop adoption. Furthermore, Leslie et al. (2017) suggests that cover crops do

not yield any positive effects on soybean yield. Moreover, Deines et al. (2023) demonstrates

that cover crops negatively affect both corn and soybean yields.

Although there is a larger body of research on the analysis of cover cropping impacts on

crop yields, there is little research investigating the effects of cover crops on crop yield risk

(Duzy et al., 2014; Smith et al., 2014; Florence et al., 2019; Anderson et al., 2020; Leuthold

et al., 2020). These predominantly field-level studies use the coefficient of variation (CV)

and/or the yield variance to measure the impact of cover crops on yield risk or yield variability

( yield risk is often called ‘yield stability’ by agronomists). Note that the existing literature

on the effects of cover crops on mean yield and yield risk is mostly based on field-level

studies usually for a narrower geographical area (i.e., specific locations ) and for shorter time

periods. In the limited research on cover crop-yield risk literature, it is worth noting that

there exists mixed results. Some studies indicate that cover crops increase crop yield risk

(see, for example, Li et al. (2019)).

In light of these discussions, this study investigates whether counties with higher cover

crop adoption rates experience lower corn and soybean yield risk in three US Central Corn

Belt (CCB) states (i.e., Illinois, Indiana, and Iowa). In particular, parametric moment-

based estimation procedures (see Antle, 1983; Antle and Goodger, 1984; Chavas, 2004) are

employed to estimate stochastic production functions. This analysis aims to examine the

relationship between cover crop adoption rates and all four moments of the yield distribution

(e.g., mean, variance, skewness, kurtosis) for both corn and soybean. To achieve this aim,

we utilize a large-scale dataset containing information on corn and soybean yields. These

yield data are then merged with satellite-based data on cover crop adoption percentage by

county. Along with county-level data on weather variables, we construct a comprehensive

county-level panel dataset covering the years 2005 to 2018 for the following CCB states:
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Illinois, Indiana, and Iowa. To estimate the effect of cover crops on all four moments of

the yield distribution, linear panel fixed effects (FE) models that can help address potential

endogeneity due to time-invariant unobservables is employed. Several robustness checks using

alternative empirical specifications and alternative estimation methods (e.g., the moment-

based instrumental variable (IV) procedure and the kinky least squares (KLS) method) are

employed to validate the strength of the results from the linear panel FE models and address

other identification issues.

Findings from this study suggest that counties with higher cover crop adoption rates

tend to have lower yield risk measured by variance, skewness, and kurtosis of yield (e.g.,

the variance and kurtosis of yields decrease). Hence, we provide empirical evidence that

cover crops reduce year-to-year temporal variability of yields and decrease the likelihood of

extreme events in the tails of the yield distribution. Our study contributes to the literature

by specifically examining the risk reduction benefits of cover cropping with a parametric

moment-based empirical approach, thereby offering additional insights into the advantages

of cover cropping for the agricultural sector.
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DATA

The unique county-level panel data used in this study come from several sources and are dis-

cussed in turn below. The data spans the period from 2005 to 2018 and covers the following

states in the US Midwest: Illinois, Indiana, and Iowa. These ‘I’ states constitute the heart

of the Corn Belt, known for high-yielding, commercial-scale agriculture primarily focused

on maize-soybean rotation (Green et al., 2018; Deines et al., 2023). The main dependent

variables of interest in this study—the county-level corn and soybean data on yields—for

the same period (i.e., from 2005 to 2018) are drawn from the National Agricultural Statis-

tics Service (NASS) database. The main independent variable of interest of this study—the

county-level cover crop adoption—is sourced from the Operational Tillage Information Sys-

tem (OpTIS), a satellite-based system developed by ReGrow Ag® for the period 2005–2018.1

OpTIS generates timely, spatially comprehensive, and accurate annual data on the adoption

of winter cover crops by utilizing multi-temporal optical satellite observations from various

platforms.2 In OpTIS, a crop year extends from November 1 of the preceding year to October

31 of the year when the subsequent main (or cash) crop is planted. For example, the 2005

crop year extends from November 1, 2004, to October 31, 2005. The cover crop adoption

data corresponds to the winter months following the harvest of the previous year’s main crop

and preceding the planting of the subsequent main crop. Therefore, the OpTIS cover crop

adoption data for the crop year 2005 reflects cover crops detected by the satellites beginning

in November 2004, after the fall harvest of the main crop in 2004.

The OpTIS data undergo calculation and validation on a farm-field level, prioritizing the

confidentiality of individual producers by only disclosing spatially aggregated findings on

1ReGrow Ag® developed the OpTIS system that enables the use of satellite images to estimate the
adoption of winter cover crops over time. The company partnered with several organizations, like the
Conservation Technology Information Center (CTIC), in order to develop OpTIS.

2Cover crop adoption is assessed using a time series of the Normalized Difference Vegetation Index (NDVI).
Subsequently, each pixel is categorized into one of two classes: (1) no cover crop—where less than 30% of
the field exhibits green cover during winter, and (2) cover crop—where at least 30% of the field area displays
green cover in the winter.
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broader scales such as county, watershed, and state levels (Hagen et al., 2020). Addition-

ally, for validation purposes, the OpTIS data is rigorously compared with field-level photos

and roadside survey data gathered from various representative counties spread across the

Corn Belt region (see Hagen et al., 2020 for detailed validation methodologies). Through

this validation process, Hagen et al. (2020) concluded that the satellite-based cover crop

adoption data demonstrated a fairly high accuracy rate (87.9%). OpTIS data is accessible

for all counties within the states of Illinois, Indiana, and Iowa, providing complete statewide

coverage.3

Following the collection of winter cover crop adoption data, we proceeded to gather in-

formation on various weather variables. Weather data were sourced from the ‘Parameter

Elevation Regression on Independent Slopes Model’ (PRISM) climate dataset. PRISM, a

gridded dataset with a resolution of 4 km, has been extensively employed in prior climate

change research (e.g., Schlenker and Roberts, 2006, 2009; Annan and Schlenker, 2015; Ortiz-

Bobea, 2021; Wang et al., 2021) and is considered one of the premier sources of weather and

climate-related data in the US. The relevant weather variables used in the study encompass

the number of growing degree days (GDD) (8-29°C), heating degree days (HDD) (above

29°C), precipitation, and a squared precipitation term. The degree day measures provide

information about the number of days a crop is exposed to certain temperature ranges and

allow for capturing the nonlinear relationship between temperatures and yield. Note that the

degree day and precipitation variables are aggregated over the May to September growing

season months (Schlenker and Roberts, 2009). The county-level aggregates of these weather

variables are then merged with the NASS and OpTIS datasets to produce the final data set

used in this study.

Table 1 presents summary statistics for all variables utilized in the empirical analysis.

The average cover crop adoption percentage per county over our data period stands at

3.18%. Throughout the study period, the county-average cover crop adoption rate is 3%.

The average corn yield is 165 bushels per acre (bu/acre) and the average soybean yield is

50 bu/acre. Figures 1 and 2 show trends of yield variables over time. Figure 3 illustrates

3It’s also important to note that we specifically concentrate on the ’I’ states to align with one notable
paper in the literature (i.e., (Deines et al., 2023)).
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the average yearly cover crop adoption, indicating an upward trend over time, particularly

notable in the last three years (2016–2018). Figure 4 shows trends in the weather variables

used in this study.



EMPIRICAL FRAMEWORK

3.1 Parametric Moment-based Estimation Method

To investigate the relation between cover crops and yield risk, we use the parametric moment-

based framework of Antle (1983) and Antle and Goodger (1984) for estimating stochastic

production functions for corn and soybean. Let’s represent the crop production process with

the stochastic production function:

y = µ(X) + ε, (3.1)

where y is crop (i.e., corn or soybean) yield; X is a vector of control variables, which includes

cover crop adoption and weather variables; and ε is the idiosyncratic error term (which is

mean zero conditional on the explanatory variables).

Our analysis assessing the risk linked with any element in X relies on a moment-based

approach by evaluating the mean, variance, skewness, and kurtosis of crop yields. The first

moment, representing the mean yield can be expressed as M1(X) = E[µ(X)]. The higher

moments of the production function (i.e., variance, skewness, and kurtosis) that characterize

the associated risk exposure are expressed as:

ε̂i = [y − µ(X)]i = Mi(X) + ui, ∀i = 2, 3, 4 (3.2)

where ε̂i is the ith power of the predicted residuals from the regression specified in Equation

(3.1), Mi(X) is the ith moment function, and ui is the error term. Equation (3.7) represents

the variance of y, M2(X) when i = 2, the skewness of y, M3(X) when i = 3, and the kurtosis

of y, M4(X) when i = 4.

Control variables in the vector X affect the variance, skewness, and kurtosis of yield (

i.e., M2(X), M3(X), and M4(X), respectively). For instance, x1 can increase, maintain

neutrality, or decrease variance (i.e., ∂M2/∂x1 > 0, = 0, or < 0, respectively). Similarly,

a particular variable in X can induce an increase, exhibit neutrality, or cause a decrease

in skewness, and the same applies to kurtosis. A negative (positive) skewness indicates a

16
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distribution skewed to the left (right), with negative skewness suggesting a higher exposure

to downside risks, such as unexpected low yield or crop failure. Conversely, high kurtosis

may suggest a higher likelihood of extreme events in the tails of the yield distribution. In

other words, in the context of crop yield, lower kurtosis implies a more uniform distribution

of yields, reducing rare events in the tails of the yield distribution. Notably, equation (3.7)

surpasses the conventional mean-variance approach commonly employed in past studies.

This extension becomes particularly relevant in scenarios where exposure to downside risk

(i.e., asymmetric risk effects).

Antle (1983)’s Linear Moment Method (LLM) is employed to estimate equations (3.1) and

(3.7). In this approach, the moments of the yield distribution are assumed to be parametric

linear functions of independent variables, such as:

y = Xβ1 + ε, (3.3)

ε̂i = Xβi + ui, ∀i = 2, 3, 4 (3.4)

It is important to note that equations (3.3) and (3.4) demonstrate heteroscedasticity,

necessitating the use of heteroscedasticity-robust standard errors in the estimation process.

Given the absence of endogeneity issues, one can straightforwardly estimate equations (3.3)

and (3.4) using ordinary least squares (OLS), along with heteroscedasticity-robust standard

errors.

3.2 Empirical Specification

3.2.1 Main Specification and Estimation Method

We utilize a linear panel fixed effects (FE) model to estimate the county-level impact of

cover crop adoption on yield risk by implementing the parametric moment-based estimation

method above using the following empirical specification:

yjt = β11CCjt + β12HDDjt + β13GDDjt + β14Precjt + β15Prec2jt + α1j + λ1Tt + εjt (3.5)

The dependent variable, yjt, represents the corn or soybean yield (in bu/ac) for the jth

county in year t, with t ranging from 2005 to 2018. CCjt stands for the cover crop adoption

variable (percentage of planted crop acres with cover crops). HDDjt denotes heating degree

days (in hundred Celsius); GDDjt represents growing degree days (in thousand Celsius); and
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Precjt denotes cumulative precipitation during the growing season (in m). Tt accounts for

a linear time trend, capturing unobserved technological growth over time. α1j represents

county-level fixed effects, controlling for unobserved time-invariant factors at the county

level, and εjt is the error term (which is mean zero conditional on the explanatory variables).

Standard errors are clustered by county to account for heteroscedasticity and potentially

correlated county-year observations within each county.4

The risk implications of cover crop adoption are assessed through the higher moments

of the production function. Following Equation 3.5, the higher moments of yield are as

follows:

ε̂ijt = βi1CCjt + βi2HDDjt + βi3GDDjt + βi4Precjt + βi5Prec2jt + αij + λiTt + ujt (3.6)

where i = 2, 3, 4 refers to ith power (i.e., the second, third, and fourth power) of the residual

ε̂jt, representing the variance, skewness, and kurtosis of the yield distribution, respectively.

The predicted higher order moments ε̂ijt are calculated using the estimated parameters in

Equation 3.5 and the actual values of the independent variables for each county-year in

the data set (i.e., predicted moments are conditional on actual values of the independent

variables, including the time trend and county fixed effects). For the variance of yield (i = 2,

ε̂2jt in our case), a positive (negative) parameter estimate indicates an increase (decrease)

in yield variability. For the skewness of yield (i = 3), capturing the tail asymmetry of

a yield distribution around its mean, a positive (negative) parameter estimate suggests a

reduction (increase) in exposure to downside yield risks. Similarly, kurtosis (when i = 4)

measuring thickness (fatness) in the tails of the yield distribution, a positive (negative)

parameter estimate suggests an increase (decrease) in production risk associated with the

corresponding variable.5

In this study, our objective is to assess the impact of cover crop adoption on yield risk,

focusing on the parameter of interest, βi1. After estimating the relevant parameters in

4In addition, we implemented a robustness check that clusters standard errors both by county and by
year (i.e., a “two-way” clustering procedure). See Appendix Tables A.1 and A.2. Clustering standard errors
by county and by year can be regarded as robust to heteroscedasticity, spatial correlation of the error terms
across counties, and serial correlation of the errors within each county (Cameron et al., 2011).

5Note that reducing variance and increasing skewness are favorable, as they lead to reduced risk exposure
due to lower variance and a decreased likelihood of unfavorable events found in the lower tail of the yield
distribution resulting from higher skewness. Additionally, decreasing kurtosis is also favorable, as it might
indicate a reduction in rare events in the tails of the yield distribution.
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equations (3.5) and (3.6), we analyze the effect of cover crop adoption on the moments of

the crop yield distribution by examining the sign and significance of βi1. For example, a

negative and statistically significant value for the parameter, say β21, would indicate that

adopting cover crops decreases yield variability. This finding suggests that farmers with

higher cover crop adoption experience lower yield risk.

3.2.2 Robustness Checks: Alternative Empirical Specifications and Estimation

Methods

To verify the stability and strength of our parameter estimates, we perform several robustness

checks. First, we employ an alternative model specification accounting for county-level per-

acre expenditure data on inputs—fertilizer and chemicals, labor, fuel, and other production

costs—sourced from the Bureau of Economic Analysis (BEA). These expenditure variables

serve as proxies for actual fertilizer and chemical usage and other managerial inputs, aiming

to mitigate omitted variable bias and enhance identification (Park et al., 2022). It’s worth

noting that some scholars argue that these control variables themselves might be endogenous,

potentially adding noise to the estimation. Nevertheless, we chose to include them as part

of our robustness checks. For our second robustness check, we include an additional control

variable representing no-till adoption in Equations (3.5) and (3.6). As with the previous

alternative specification, it is argued that no-till variable may also suffer from endogeneity

issues, potentially influencing the estimates and conclusions drawn from our models.

In addition to robustness checks using alternative specifications, we also evaluate the ro-

bustness of our results from the traditional linear FE estimation procedure by using three

other estimation strategies. The first two are recently developed “external-instrument-free”

instrumental variable (IV) approaches (i.e., one by Lewbel, 2012, and the other by Kiviet,

2013, 2020). Lastly, we employ a “long-difference” approach. The two external-instrument-

free procedures can help further sharpen identification by addressing possible residual endo-

geneity due to time–county-varying unobservables. The long-difference approach allows us

to explore the longer-term effects of cover crops.

As our first robustness check using an alternative estimation method, we utilize a moment-

based IV procedure (Lewbel, 2012). While the incorporation of county fixed effects and
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linear time trends in equations (3.5) and (3.6) is intended to alleviate substantial sources of

potential endogeneity, residual endogeneity may still persist due to unobserved variables that

vary both spatially and temporally, thereby potentially threatening the model identification.

For instance, unobserved cooperative extension efforts that vary across counties and time

could represent one such example.

Although the linear panel FE approach employed in equations (3.5) and (3.6) leverages

the advantages of panel data, there is a potential drawback in that it falls short of adequately

addressing residual endogeneity stemming from unobservable factors that vary across both

time and counties. Traditional instrumental variable (IV) methods, such as two-stage least

squares (2SLS), are typically utilized to counteract this issue by employing IVs correlated

with the potentially endogenous primary independent variable while remaining uncorrelated

with the outcome variable, thus satisfying the traditional IV exclusion restrictions. How-

ever, the absence of IVs meeting these criteria necessitates the exploration of an alternative

approach. Therefore, we implement a recently developed moment-based IV approach (see

Lewbel, 2012) to address the potential residual endogeneity due to time-county-varying un-

observables that affect county-level yield and higher-order moments, and county-level cover

crop adoption rates.

The moment-based IV estimator utilizes the heteroscedasticity observed in the error terms

of first-stage regressions (i.e., regression of the potentially endogenous variable on observable

covariates) to estimate the coefficients of endogenous variables in the main equations even

in the absence of valid instruments. As outlined by Lewbel (2012), the model is identified if

the error terms in the first-stage are heteroskedastic, and a subset (or all) of the exogenous

variables are uncorrelated with the covariance between the first-stage error term and the

error term in the second-stage equation (e.g., equation (3.5)). Then mean-centered covariates

multiplied by the residuals from the first-stage equation serve as valid instruments.6

6More formally, with Equation (3.5) as one of the main estimating equations and the cover crop adop-
tion variable (CCjt) as the potentially endogenous variable, the first-stage regression in the Lewbel (2012)
approach can be written as follows:

CCjt = W′
jtγw + ejt (3.7)

where, Wjt is a k-vector of weather variables (e.g., GDD, HDD, precipitation, and precipitation squared),
and ejt is the error term for county j in year t. In the presence of heteroscedasticity in Equation (3.7) (i.e.,
Cov(W′

jt, e
2
jt) ̸= 0), Lewbel (2012) has shown that (W′

jt − W̄′
jt)êjt can be used as a valid IV.
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To validate the presence of heteroscedasticity in our first-stage regressions, we utilize the

Breusch-Pagan (BP) test (Breusch and Pagan, 1979). The BP test rejects the null hypothesis

of homoscedasticity (i.e., the BP test statistic is 2973.96, and the p-value < 0.0001). This

result supports using the moment-based IV approach of Lewbel (2012) as an alternative

estimation procedure to potentially address residual endogeneity due time–county-varying

unobservables. Aside from the Breusch–Pagan test, we also conducted a series of diagnostic

tests to assess the robustness of the Lewbel (2012) IV approach. Firstly, we utilized the

Kleibergen–Paap rk LM test to ascertain if the IV approach employed is underidentified

Kleibergen and Paap (2006). The Kleibergen–Paap rk LM test rejects the null hypothesis

that the IV model is underidentified. Furthermore, we employed both the Cragg-Donald

Wald F statistic and the Kleibergen-Paap rk Wald F statistic to evaluate the strength of the

instruments used in estimation. Both tests indicate that we can reject the null hypothesis

that the IVs used are weak.

To further verify our results obtained from both the linear FE and the Lewbel (2012)

moment-based IV methods, we also utilize a recently developed ”external-IV-free” approach,

so-called “kinky least squares” (KLS) regression by Kiviet (2013, 2020). The instrument-

free KLS approach attains set identification of regression coefficients by constraining the

permissible correlation of regressors with the error term within reasonable limits (Kripfganz

and Kiviet, 2021). External instruments are not necessary. Instead, potential bias in non-

IV, ordinary least squares (OLS) procedures (such as our baseline linear FE approach) is

systematically adjusted across a spectrum of endogeneity correlations that the analyst spec-

ifies. This yields a range of coefficient estimates for varying levels of endogeneity. In our

empirical analysis, we hypothesize that the residual endogeneity range in our baseline spec-

ifications (3.5) and (3.6) would be minimal, given our control for unobserved heterogeneity

through county FE and time trends. Additionally, we assert that endogeneity correlations

are positive, suggesting that the potentially endogenous cover crop variable is likely pos-

itively correlated with the remaining time-county-varying unobservables in the error term

(i.e., unobserved extension efforts that may be positively correlated with cover crop adop-

tion). Hence, we implement the KLS procedure to estimate Equations (3.5) and (3.6), where

the endogeneity correlation is assumed to be 0.1 and 0.2.
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Lastly, as our third alternative estimation method, we examine the longer-term effects

of cover crops on yield risk (i.e., yield variance, skewness, and kurtosis) by utilizing the

long-difference approach (see Hsiang, 2016).7 We construct long-term variables for yield

risk measures, cover crop adoption, and weather variables at two different points in time

for each county. Subsequently, we calculate changes in the average yield risk measures as

a function of changes in cover crop adoption and weather variables. In our long-difference

approach, we divide the data into two seven-year periods; the variables are then averaged for

the two periods. The first period (τ1) spans from 2005 to 2011, while the second period (τ2)

spans from 2012 to 2018. As in the traditional linear FE model, the long-difference model

is estimated by OLS.

7Note that if the beneficial impacts of cover crops on soil health take time to materialize fully (i.e.,
accumulate over time), then the estimated short-term impacts might understate the long-term benefits of
continuous cover crop use on mean yield, yield variance, skewness, and kurtosis.
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RESULTS AND DISCUSSION

4.1 Main Estimation Results

Our main model—linear panel FE regression—results are presented in Table 2 for corn and

Table 3 for soybean. The results in Table 2 indicate that cover crop adoption for the variance

and kurtosis functions are statistically significant (at the 5% significance level). However,

cover crop adoption is statistically insignificant in the mean and skewness functions. It is

important to note that although cover crop adoption is statistically insignificant in the mean

and skewness functions, the sign of these parameter estimates is positive.8 Negative and

statistically significant parameter estimates for variance and kurtosis suggest that cover crop

adoption reduces the risk associated with corn yield by diminishing year-to-year variability

and the likelihood of extreme events in the tails of the yield distribution.

The findings presented in Table 3 indicate that counties with a higher adoption rate of cover

crops tend to exhibit higher mean yield, lower yield variance, and lower kurtosis for soybean,

all significant at the 1% level. These findings suggest that increased cover crop adoption

reduces soybean yield risk. Similar to the findings in the corn regression runs, the parameter

estimates indicate negative and statistically significant variance and kurtosis, along with

positive but not significant skewness. However, unlike the corn case, the parameter estimate

for mean yield is positive and statistically significant, suggesting that an increase in cover

crop adoption leads to an increase in the mean yield of soybean.

These findings suggest that cover crop adoption significantly influences the variance and

kurtosis of yield for both corn and soybeans, indicating a risk-reducing effect. These results

align with the notion that cover crop adoption can enhance soil health sufficiently to mitigate

production loss events and reduce yield variability. As indicated in previous literature,

cover crops contribute to soil organic matter, improving nutrient cycling and soil structure;

help control excess water in the soil through improved water infiltration; bolster resilience

8Note that an increase in skewness suggests a lower exposure to downside risks.
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to extreme weather events (such as droughts or floods); control pest and diseases; and

mitigate soil erosion levels (Pathak and Diaz-Perez, 2007; Steenworth and Belina, 2008;

Basche and DeLonge, 2019; Chen et al., 2021; Won et al., 2023; Aglasan et al., 2023b).

These factors collectively can contribute to a decreased probability of yield losses and year-

to-year variability.

With regard to the weather variables presented in Tables 2 and 3 that serve as controls

in our baseline models, the estimated effects generally follow a priori expectations. Specif-

ically, we observe a nonlinear effect of the degree days measures, suggesting that optimal

plant growth requires heat up to a certain threshold, beyond which damage occurs. While

the negative impact of HDD (e.g., yield-reducing and risk-increasing effects) is statistically

significant for corn (i.e., parameter estimates of HDD are significant for the mean, variance,

skewness, and kurtosis of corn yields), the impact of HDD is only statistically significant on

mean yield for soybean, although the parameter sign follows the expected direction. Parame-

ter estimates for GDD exhibit positive and statistically significant coefficients for mean yield

and skewness for both corn and soybean; and negative, statistically significant coefficients

for variance and kurtosis for corn, indicating that moderate temperatures reduce production

risk. The parameters associated with the precipitation variables generally demonstrate a

“U-shaped” behavior (e.g., mean yield increases and risk reduces as precipitation increases,

but after a certain point, higher levels of precipitation decrease mean yield and increase risk

measures).

4.2 Robustness Check Results: Alternative Empirical Specifications and Esti-

mation Methods

As discussed in the robustness checks section, we assess the strength and stability of our main

linear panel FE results by conducting several robustness checks that consider alternative em-

pirical specifications and estimation methods. First, we estimated an empirical specification

with additional county-level per-acre expenditure variables—fertilizer and chemicals, labor,

fuel, and other production costs. The results of this robustness check are presented in Tables

A.3 and A.4. The main conclusions drawn from these runs remain consistent with our main

linear panel FE results. The signs and magnitudes of the cover crop parameter estimates



25

for this robustness check closely mirror those found in our main linear panel FE model,

indicating the risk reduction effects of cover crops.

Secondly, we extend our baseline specification in Equations (3.5) and (3.6) by incorporating

no-till variable as an additional control variable. The main findings from this regression

(presented in Tables A.5 and A.6) remain consistent with our base model.

In addition to testing robustness with alternative specifications, we further validate the

strength of our findings by employing alternative estimation methods. For our first alter-

native estimation method, we utilize the Lewbel (2012) moment-based IV procedure. The

parameter estimates from this robustness check are presented in Tables A.7 and A.8. The

results of this approach which aims to address residual time–county-varying unobservables

are still consistent with those obtained from our primary model. Specifically, the param-

eter estimates indicate that counties with higher levels of cover crop participation exhibit

statistically lower yield risk.

Additionally, we utilize the KLS regression by Kiviet (2013, 2020). The results obtained

from the KLS approach under assumed endogeneity correlations of 0.1 and 0.2 are presented

in Tables A.9, A.11, A.10, and A.12. Our findings are fairly consistent with those of our main

model, especially for the assumed endogeneity correlations of 0.1, indicating that counties

with higher cover crop acres tend to experience lower yield risk. This consistency suggests

that the findings of our baseline model are robust, even when subjected to modest levels

of residual endogeneity arising from time–county-varying unobservables. However, some

variations are observed in specific estimates for both main crops. In the case of corn, the sign

of the mean yield exhibits alterations, while for soybean, the sign of mean yield and skewness

is altered, and mean yield also loses significance in the cover crop adoption estimates.

Lastly, we conduct a long-difference analysis (see Hsiang, 2016). This approach allows

us to assess whether the longer-term utilization of cover crops yields. The results of this

analysis are presented in Table A.13 and Table A.14. The long-difference analysis provides

evidence suggesting that an increase in cover crop adoption over the longer term period

reduces yield risk. Compared to the findings of the short-term base model (refer to Tables

2 and 3), the long difference model demonstrates more substantial results, particularly for

corn mean yield.
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CONCLUSION

Conservation groups, agronomists, and agriculture-related government agencies advocate

for cover cropping as a sustainable practice offering numerous benefits to soil and farmers,

including risk reduction. These claims about risk reduction benefits are typically grounded

in farmers’ past experiences and short-term agronomic field studies. In this study, we aim to

examine the impact of cover crop adoption on yield risk. To achieve this objective, we employ

a parametric moment-based empirical approach, as outlined by Antle (1983). In particular,

we investigate the relationship between cover crop adoption and the moments of crop yield

distributions (i.e., mean, variance, skewness, and kurtosis of corn and soybean yields). We

construct a county-level panel dataset by integrating novel satellite-based information on

cover crop adoption with publicly accessible information on corn and soybean yields, and

weather variables. The dataset spans three states in the Central Corn Belt from 2005 to

2016. Our empirical analysis employs traditional linear panel fixed effects (FE) models and

various robustness checks, including a moment-based instrumental variable (IV) model, a

KLS approach, and a long-difference approach.

Results from our empirical analysis indicate that a higher level of cover crop adoption tends

to decrease crop yield risk, as measured by variance, skewness, and kurtosis. Specifically, our

findings demonstrate that counties with higher cover crop adoption exhibit lower variance

and kurtosis in both corn and soybean yields. The insights from our study offer valuable

insights for both farmers and policymakers. To the best of our knowledge, this study is one

of the first to explore how adoption affects yield risk, employing higher-order moments of

crop yields and county-level data information on cover crop adoption. We strongly believe

that our findings contribute to strengthening the empirical evidence base in this field.

While the empirical findings from our study contribute to enhancing our understanding

of the impact of cover cropping on crop yield risk, it is essential to acknowledge the study’s

limitations and highlight promising opportunities for future research. Firstly, our empirical
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approach primarily relies on a traditional parametric moment-based methodology. Although

this approach has been widely used in various agricultural economics studies, recent re-

search has explored more flexible econometric approaches for investigating higher moment

yield effects. For instance, studies by Tack et al. (2012) and Li et al. (2021) have employed

entropy-based and non-parametric approaches, respectively. Aglasan et al. (2023a) incorpo-

rate crop insurance measures as a risk indicator in their analysis. Utilizing these advanced

methodologies and employing alternative risk measures may offer further insights into the

risk effects of warming under crop insurance. Secondly, despite our efforts to control for

all sources of endogeneity, further investigation of this issue using alternative instruments

and instrumental variable (IV) approaches may also be warranted. We leave this for future

research.
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Table 1: Description and summary statistics of variables

Variable Name Description Mean SD Min Max
Corn Yield Total Corn Yield (bu/acre) 165.148 31.151 19.000 246.700
Soybean Yield Total Soybean Yield

(bu/acre)
50.166 7.777 19.000 80.400

Cover crop adoption Percent of cropland acres
planted with cover crops
(%)

3.009 6.123 0.000 66.900

HDD Heating degree days (in
hundred ◦C)

0.318 0.246 0.005 1.64

GDD Growing degree days (in
thousand ◦C)

1.957 0.183 1.361 2.525

Precipitation Precipitation ([mm] in’000) 0.547 0.142 0.196 1.146
N 3851 3851 3851 3851
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Table 2: Impact of Cover Crops on Mean, Variance, Skewness and Kurtosis of Corn Yield

Mean Yield Variance Skewness Kurtosis
CC adoption 0.126 -5.418∗∗ 231.228 -22475.226∗∗

(0.095) (2.237) (176.100) (10615.197)
HDD -1.196∗∗∗ 5.747∗∗∗ -148.095∗∗∗ 12541.451∗∗∗

(0.032) (0.816) (52.918) (2737.460)
GDD 0.092∗∗∗ -0.248∗∗∗ 14.321∗∗∗ -702.276∗∗∗

(0.004) (0.079) (4.993) (223.643)
Precipitation 0.167∗∗∗ -1.814∗∗∗ -26.984 -3240.420∗∗∗

(0.015) (0.375) (20.456) (860.081)
Precipitation sq. -0.179∗∗∗ 1.867∗∗∗ 15.250 3515.712∗∗∗

(0.014) (0.331) (18.822) (787.376)
Observations 3851 3851 3851 3851
Adjusted R2 0.634 0.079 0.008 0.031
AIC 32213.050 57275.830 88507.456 119820.589
BIC 32250.586 57313.367 88544.992 119858.126

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: County fixed effects and a linear time trend are included in the specification but are not
reported above. In each specification, standard errors are clustered by county.
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Table 3: Impact of Cover Crops on Mean, Variance, Skewness and Kurtosis of Soybean Yield

Mean Yield Variance Skewness Kurtosis
CC adoption 0.094∗∗∗ -0.331∗∗∗ 1.985 -39.125∗∗∗

(0.019) (0.091) (1.484) (11.947)
HDD -0.172∗∗∗ 0.040 -0.452 4.964

(0.006) (0.038) (0.487) (5.829)
GDD 0.024∗∗∗ -0.004 0.178∗∗∗ 0.504

(0.001) (0.006) (0.068) (0.864)
Precipitation 0.040∗∗∗ -0.073∗∗∗ 0.394 -7.544∗∗

(0.003) (0.025) (0.333) (3.810)
Precipitation sq. -0.037∗∗∗ 0.050∗∗ -0.226 5.238

(0.003) (0.021) (0.295) (3.347)
Observations 3851 3851 3851 3851
Adjusted R2 0.507 0.017 0.006 0.011
AIC 22109.482 35772.701 55129.367 73391.397
BIC 22147.019 35810.238 55166.904 73428.933

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: County fixed effects and a linear time trend are included in the specification but are not
reported above. In each specification, standard errors are clustered by county.
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Table A.1: Impact of Cover Crops on Mean, Variance, Skewness and Kurtosis of Corn Yield
(Two-Way, “County-Year” Clustering of Standard Errors)

Mean Yield Variance Skewness Kurtosis
CC adoption 0.126 -5.418∗ 231.228 -22475.226∗

(0.178) (2.970) (239.893) (11631.144)
HDD -1.196∗∗∗ 5.747∗∗∗ -148.095 12541.451∗∗

(0.138) (1.610) (165.761) (4947.484)
GDD 0.092∗∗∗ -0.248 14.321 -702.276

(0.017) (0.185) (17.788) (493.585)
Precipitation 0.167∗∗∗ -1.814∗∗ -26.984 -3240.420

(0.042) (0.883) (41.151) (2018.044)
Precipitation sq. -0.179∗∗∗ 1.867∗∗ 15.250 3515.712∗∗

(0.035) (0.737) (36.653) (1694.834)
Observations 3851 3851 3851 3851
Adjusted R2 0.720 0.074 -0.022 0.025
AIC 32215.050 57277.830 88509.456 119822.589
BIC 32258.842 57321.623 88553.248 119866.382

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: County fixed effects and a linear time trend are included in the specification but are not
reported above. In each specification, standard errors are clustered by county and by year.

34
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Table A.2: Impact of Cover Crops on Mean, Variance, Skewness and Kurtosis of Soybean Yield
(Two-Way, “County-Year” Clustering of Standard Errors)

Mean Yield Variance Skewness Kurtosis
CC adoption 0.094∗∗ -0.331∗∗∗ 1.985 -39.125∗∗∗

(0.038) (0.113) (2.220) (13.209)
HDD -0.172∗∗∗ 0.040 -0.452 4.964

(0.016) (0.066) (0.840) (7.342)
GDD 0.024∗∗∗ -0.004 0.178 0.504

(0.004) (0.012) (0.232) (1.463)
Precipitation 0.040∗∗∗ -0.073 0.394 -7.544

(0.011) (0.061) (0.742) (6.649)
Precipitation sq. -0.037∗∗∗ 0.050 -0.226 5.238

(0.009) (0.051) (0.614) (5.568)
Observations 3851 3851 3851 3851
Adjusted R2 0.674 0.036 -0.042 0.019
AIC 22111.482 35774.701 55131.367 73393.397
BIC 22155.275 35818.494 55175.160 73437.189

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: County fixed effects and a linear time trend are included in the specification but are not
reported above. In each specification, standard errors are clustered by county and by year.
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Table A.3: Impact of Cover Crops on Mean, Variance, Skewness and Kurtosis of Corn Yield
(Alternative Estimation Specifications: Managerial Input Expenditures)

Mean Yield Variance Skewness Kurtosis
CC adoption -0.030 -5.059∗ 303.388 -27720.133∗

(0.088) (2.589) (192.739) (14243.791)
HDD -1.104∗∗∗ 5.756∗∗∗ -147.171∗∗ 13752.127∗∗∗

(0.032) (0.849) (59.302) (3473.556)
GDD 0.074∗∗∗ -0.233∗∗∗ 16.520∗∗∗ -899.881∗∗∗

(0.004) (0.085) (5.765) (311.470)
Precipitation 0.169∗∗∗ -1.850∗∗∗ -20.757 -2972.028∗∗∗

(0.015) (0.356) (19.959) (797.544)
Precipitation sq. -0.178∗∗∗ 1.875∗∗∗ 10.132 3332.022∗∗∗

(0.013) (0.317) (18.278) (742.182)
Fertilizer & chemical -216.088∗∗∗ -437.911 2616.402 -2325396.298∗

(41.572) (376.305) (36011.977) (1187606.447)
Seed -26.697 1103.820 61917.474 -3596937.799

(68.760) (1003.519) (71825.064) (3596696.155)
Labor 56.285∗ -936.952∗ -5486.532 -1575891.643

(31.053) (476.641) (31148.508) (1251960.698)
Production 7.111 201.970∗∗ 1094.170 643832.852

(5.226) (102.150) (8007.001) (433379.312)
Observations 3851 3851 3851 3851
Adjusted R2 0.651 0.079 0.008 0.028
AIC 32034.773 57211.581 88591.697 120283.312
BIC 32097.333 57274.141 88654.257 120345.873

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: County fixed effects and a linear time trend are included in the specification but are not
reported above. In each specification, standard errors are clustered by county.



37

Table A.4: Impact of Cover Crops on Mean, Variance, Skewness and Kurtosis of Soybean Yield
(Alternative Estimation Specifications: Managerial Input Expenditures)

Mean Yield Variance Skewness Kurtosis
CC adoption 0.049∗∗∗ -0.334∗∗∗ 3.455∗∗ -45.208∗∗∗

(0.018) (0.104) (1.631) (16.954)
HDD -0.144∗∗∗ 0.065∗ -0.566 9.146

(0.007) (0.037) (0.526) (5.588)
GDD 0.018∗∗∗ 0.003 0.146∗∗ 1.139

(0.001) (0.006) (0.061) (0.905)
Precipitation 0.042∗∗∗ -0.085∗∗∗ 0.456 -8.654∗∗

(0.003) (0.025) (0.343) (4.176)
Precipitation sq. -0.037∗∗∗ 0.060∗∗∗ -0.294 6.283∗

(0.003) (0.021) (0.302) (3.622)
Fertilizer & chemical -93.200∗∗∗ -17.758 3631.248 -34478.408

(23.853) (64.265) (3254.604) (27349.760)
Seed 65.586∗ 108.867 -3998.424 49920.846

(36.152) (88.477) (4545.489) (37108.421)
Labor 1.463 -85.842∗ 1714.495 -23776.662

(14.538) (47.420) (1825.786) (17155.391)
Production -0.669 8.850 -197.325 3144.802

(1.996) (8.411) (234.066) (2472.891)
Observations 3851 3851 3851 3851
Adjusted R2 0.549 0.024 0.021 0.022
AIC 21763.436 35517.289 55382.803 74643.258
BIC 21825.997 35579.850 55445.364 74705.819

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: County fixed effects and a linear time trend are included in the specification but are not
reported above. In each specification, standard errors are clustered by county.
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Table A.5: Impact of Cover Crops on Mean, Variance, Skewness and Kurtosis of Corn Yield
(Alternative Estimation Specifications: No Till)

Mean Yield Variance Skewness Kurtosis
CC adoption 0.104 -5.216∗∗ 237.242 -22558.672∗∗

(0.094) (2.213) (181.756) (11059.548)
No till adoption -0.115∗∗∗ -1.029 -16.622 -1352.462

(0.031) (0.722) (40.327) (2105.690)
HDD -1.197∗∗∗ 5.839∗∗∗ -157.942∗∗∗ 13064.916∗∗∗

(0.032) (0.828) (54.208) (2845.670)
GDD 0.091∗∗∗ -0.270∗∗∗ 14.627∗∗∗ -767.661∗∗∗

(0.004) (0.082) (5.240) (244.003)
Precipitation 0.169∗∗∗ -1.765∗∗∗ -27.065 -3109.645∗∗∗

(0.015) (0.376) (20.337) (862.508)
Precipitation sq. -0.181∗∗∗ 1.825∗∗∗ 15.221 3403.136∗∗∗

(0.014) (0.332) (18.752) (786.969)
Observations 3851 3851 3851 3851
Adjusted R2 0.636 0.080 0.008 0.033
AIC 32200.000 57243.457 88452.434 119745.868
BIC 32243.793 57287.250 88496.227 119789.660

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: County fixed effects and a linear time trend are included in the specification but are not
reported above. In each specification, standard errors are clustered by county.
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Table A.6: Impact of Cover Crops on Mean, Variance, Skewness and Kurtosis of Soybean Yield
(Alternative Estimation Specifications: No Till)

Mean Yield Variance Skewness Kurtosis
CC adoption 0.087∗∗∗ -0.376∗∗∗ 1.967 -44.610∗∗∗

(0.019) (0.100) (1.552) (13.735)
No till adoption -0.041∗∗∗ -0.018 0.150 -7.035

(0.009) (0.044) (0.590) (5.151)
HDD -0.173∗∗∗ 0.052 -0.400 6.338

(0.006) (0.038) (0.497) (6.049)
GDD 0.023∗∗∗ -0.006 0.164∗∗ 0.234

(0.001) (0.006) (0.067) (0.869)
Precipitation 0.041∗∗∗ -0.068∗∗∗ 0.392 -6.776∗

(0.003) (0.025) (0.320) (3.598)
Precipitation sq. -0.037∗∗∗ 0.046∗∗ -0.213 4.538

(0.003) (0.021) (0.283) (3.137)
Observations 3851 3851 3851 3851
Adjusted R2 0.510 0.019 0.006 0.012
AIC 22085.233 35738.735 55089.013 73399.804
BIC 22129.025 35782.527 55132.806 73443.596

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: County fixed effects and a linear time trend are included in the specification but are not
reported above. In each specification, standard errors are clustered by county.
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Table A.7: Impact of Cover Crops on Mean, Variance, Skewness and Kurtosis of Corn Yield
(Lewbel’s Moment Based-IV Approach)

Mean Yield Variance Skewness Kurtosis
CC adoption 0.147 -10.217∗∗∗ 276.009 -36913.043∗

(0.146) (3.357) (300.640) (19359.686)
HDD -1.195∗∗∗ 5.699∗∗∗ -147.504∗∗∗ 12329.268∗∗∗

(0.032) (0.807) (51.652) (2605.290)
GDD 0.092∗∗∗ -0.230∗∗∗ 14.154∗∗∗ -639.926∗∗∗

(0.004) (0.079) (4.813) (199.225)
Precipitation 0.167∗∗∗ -1.802∗∗∗ -27.255 -3203.769∗∗∗

(0.015) (0.373) (20.478) (860.371)
Precipitation sq. -0.179∗∗∗ 1.850∗∗∗ 15.569 3458.855∗∗∗

(0.014) (0.330) (18.864) (791.002)
Observations 3851 3851 3851 3851
Adjusted R2 0.604 0.002 -0.074 -0.050
AIC 32213.155 57276.503 88491.788 119790.183
BIC 32250.691 57314.040 88529.325 119827.720

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: County fixed effects and a linear time trend are included in the specification but are not
reported above. In each specification, standard errors are clustered by county.

Table A.8: Impact of Cover Crops on Mean, Variance, Skewness and Kurtosis of Soybean Yield
(Lewbel’s Moment Based-IV Approach)

Mean Yield Variance Skewness Kurtosis
CC adoption 0.062∗∗ -0.489∗∗∗ 1.201 -65.565∗∗∗

(0.024) (0.131) (2.183) (22.130)
HDD -0.172∗∗∗ 0.041 -0.515 5.272

(0.006) (0.038) (0.492) (5.913)
GDD 0.024∗∗∗ -0.004 0.182∗∗∗ 0.529

(0.001) (0.006) (0.068) (0.870)
Precipitation 0.040∗∗∗ -0.074∗∗∗ 0.397 -7.639∗∗

(0.003) (0.025) (0.334) (3.826)
Precipitation sq. -0.037∗∗∗ 0.050∗∗ -0.231 5.252

(0.003) (0.021) (0.296) (3.364)
Observations 3851 3851 3851 3851
Adjusted R2 0.466 -0.062 -0.075 -0.070
AIC 22112.719 35795.343 55169.504 73461.511
BIC 22150.256 35832.880 55207.041 73499.047

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: County fixed effects and a linear time trend are included in the specification but are not
reported above. In each specification, standard errors are clustered by county.
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Table A.9: Impact of Cover Crops on Mean, Variance, Skewness and Kurtosis of Corn Yield(Kinky
Least Squares(KLS) with Correlation = 0.1)

Mean Yield Variance Skewness Kurtosis
CC adoption -0.532 -19.893∗∗ 13.493 -91239.845∗∗

(0.358) (9.855) (601.079) (39745.653)
HDD -1.205∗∗∗ 5.091∗∗∗ -155.519∗∗∗ 12715.474∗∗∗

(0.022) (0.613) (36.821) (2370.833)
GDD 0.095∗∗∗ -0.129 16.994∗∗∗ -469.193

(0.004) (0.105) (6.314) (407.744)
Precipitation 0.168∗∗∗ -1.735∗∗∗ -22.088 -3053.098∗∗

(0.012) (0.337) (20.241) (1301.610)
Precipitation sq. -0.182∗∗∗ 1.758∗∗∗ 10.801 3285.160∗∗∗

(0.010) (0.282) (16.931) (1089.141)
Observations 3851 3851 3851 3851
Adjusted R2

AIC . . . .
BIC . . . .

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: County fixed effects and a linear time trend are included in the specification but are not
reported above. In each specification, standard errors are clustered by county.

Table A.10: Impact of Cover Crops on Mean, Variance, Skewness and Kurtosis of Corn Yield
(Kinky Least Squares(KLS) with Correlation = 0.2)

Mean Yield Variance Skewness Kurtosis
CC adoption -1.244 -31.990 92.589 -165975.803

(0.796) (24.876) (1645.117) (126591.540)
HDD -1.214∗∗∗ 4.575∗∗∗ -173.842∗∗∗ 13775.872∗∗∗

(0.025) (0.784) (50.951) (3837.947)
GDD 0.098∗∗∗ 0.043 26.643∗∗∗ 268.177

(0.005) (0.153) (10.018) (759.861)
Precipitation 0.170∗∗∗ -1.551∗∗∗ -15.814 -2520.816

(0.013) (0.402) (26.023) (1951.130)
Precipitation sq. -0.184∗∗∗ 1.579∗∗∗ 7.184 2913.390∗

(0.011) (0.344) (22.273) (1672.518)
Observations 3851 3851 3851 3851
Adjusted R2

AIC . . . .
BIC . . . .

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: County fixed effects and a linear time trend are included in the specification but are not
reported above. In each specification, standard errors are clustered by county.
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Table A.11: Impact of cover crops on mean, variance, skewness and kurtosis of soybean yield
(Kinky Least Squares(KLS) with correlation = 0.1)

Mean Yield Variance Skewness Kurtosis
CC adoption -0.083 -1.515∗∗∗ -2.261 -216.847∗∗∗

(0.096) (0.587) (7.385) (82.426)
HDD -0.174∗∗∗ 0.047 -0.830∗ 7.542

(0.006) (0.037) (0.460) (5.100)
GDD 0.025∗∗∗ -0.002 0.193∗∗ 0.744

(0.001) (0.006) (0.079) (0.874)
Precipitation 0.041∗∗∗ -0.078∗∗∗ 0.408 -7.898∗∗∗

(0.003) (0.020) (0.253) (2.805)
Precipitation sq. -0.038∗∗∗ 0.051∗∗∗ -0.252 5.125∗∗

(0.003) (0.017) (0.211) (2.346)
Observations 3851 3851 3851 3851
Adjusted R2

AIC . . . .
BIC . . . .

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: County fixed effects and a linear time trend are included in the specification but are not
reported above. In each specification, standard errors are clustered by county.

Table A.12: Impact of cover crops on mean, variance, skewness and kurtosis of soybean yield
(Kinky Least Squares(KLS) with correlation = 0.2)

Mean Yield Variance Skewness Kurtosis
CC adoption -0.275 -2.375∗ -0.293 -432.382∗

(0.214) (1.425) (18.443) (231.722)
HDD -0.177∗∗∗ 0.072 -1.295∗∗ 15.796∗∗

(0.007) (0.045) (0.581) (7.253)
GDD 0.025∗∗∗ 0.004 0.219∗ 1.217

(0.001) (0.009) (0.114) (1.421)
Precipitation 0.041∗∗∗ -0.078∗∗∗ 0.448 -7.502∗∗

(0.003) (0.023) (0.298) (3.712)
Precipitation sq. -0.038∗∗∗ 0.048∗∗ -0.286 4.537

(0.003) (0.020) (0.255) (3.175)
Observations 3851 3851 3851 3851
Adjusted R2

AIC . . . .
BIC . . . .

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: County fixed effects and a linear time trend are included in the specification but are not
reported above. In each specification, standard errors are clustered by county.
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Table A.13: Impact of Cover Crops on Mean, Variance, Skewness and Kurtosis of Corn Yield
(Long-Difference Regression with Two Periods: 2005-2011 and 2012-2018)

Mean Yield Variance Skewness Kurtosis
CC adoption 0.142∗ -1.613∗∗∗ -5.576 -1059.736∗∗∗

(0.076) (0.556) (17.683) (365.706)
HDD -0.270∗∗ 0.254 -98.490∗∗∗ 915.231

(0.114) (0.938) (32.939) (602.973)
GDD 0.172∗∗∗ 0.226∗∗∗ -2.478 32.695

(0.007) (0.068) (2.203) (49.570)
Precipitation 0.129∗∗∗ 0.514 -8.366 522.140

(0.043) (0.347) (14.640) (329.840)
Precipitation sq. -0.124∗∗∗ -0.243 3.387 -301.188

(0.032) (0.237) (9.770) (215.342)
Observations 829 829 829 829
Adjusted R2 0.778 0.132 0.025 0.070
AIC 5742.641 9120.390 15039.553 20013.410
BIC 5766.242 9148.711 15067.874 20041.731

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: County fixed effects and a linear time trend are included in the specification but are not
reported above. In each specification, standard errors are clustered by county.

Table A.14: Impact of Cover Crops on Mean, Variance, Skewness and Kurtosis of Soybean Yield
(Long-Difference Regression with Two Periods: 2005-2011 and 2012-2018)

Mean Yield Variance Skewness Kurtosis
CC adoption 0.040∗ -0.138∗∗ -3.183∗∗∗ -7.022∗∗

(0.023) (0.067) (0.798) (2.983)
HDD -0.012 -0.220∗∗ -5.229∗∗∗ -8.711∗

(0.040) (0.106) (1.089) (4.706)
GDD 0.044∗∗∗ 0.054∗∗∗ -0.191∗∗∗ 2.724∗∗∗

(0.002) (0.011) (0.070) (0.713)
Precipitation 0.062∗∗∗ 0.007 0.404 1.631

(0.013) (0.033) (0.357) (1.504)
Precipitation sq. -0.055∗∗∗ -0.006 -0.399 -1.490

(0.010) (0.023) (0.266) (1.084)
Observations 829 829 829 829
Adjusted R2 0.665 0.089 0.122 0.066
AIC 4066.828 5709.096 9698.845 12485.143
BIC 4090.429 5737.417 9727.167 12513.464

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: County fixed effects and a linear time trend are included in the specification but are not
reported above. In each specification, standard errors are clustered by county.
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