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Abstract

Throughout the arid American West, agriculture is the dominant consumptive use of water,

with farming operations dependent on groundwater or surface flows for necessary irrigation.

Although surface flows are limited in the region, widespread availability of groundwater has

allowed agricultural economies to develop in otherwise dry areas. However, groundwater

withdrawals have outpaced natural aquifer recharge throughout much of the twentieth and

twenty-first centuries, and as water tables decline in elevation, surface flows are adversely

affected.

This study seeks to model the climatic and economic factors that contribute to farm-

ers’ water use decisions in central Arizona, a region that has been historically dependent

on groundwater to satisfy the water demands of agriculture, urban expansion, and heavy

industry. Today, the area’s water needs are met through a combination of groundwater, Col-

orado River water delivered via the Central Arizona Project, and additional surface flows.

The modeling approach presented is applicable to a wide range of agricultural communities

that are at least somewhat dependent on irrigation for agriculture. This study specifically

examines the effect of climatic, economic, and remote sensed land cover variables on wa-

ter deliveries to and irrigation intensity within irrigation districts in Central Arizona. The

study’s panel data set is enumerated the level of irrigation districts annually from 2008 to

2019, and incorporates remote sensed land cover data as well as a set of economic variables

and climate measures. Econometric analysis finds that climate, the prices of December Cot-

ton Futures, CAP water costs, and fallowed area have significant impacts on water deliveries

to irrigation districts. It is also found that climate, the prices of December Cotton Futures,

and CAP water costs significantly impact the intensity of irrigation water application (wa-

ter applied/planted area). Understanding irrigators’ water use decisions is useful to those

concerned with the impact of water availability on local economies, ecosystems, and aquifers.
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1 Introduction

The American West has a water problem. The vast majority of the region is arid or semi-

arid, and water scarcity has driven the course of human habitation throughout its history.

Irrigated agriculture in the desert southwest appears among indigenous cultures very early

in the historical record (Bayman, 2001). The Mormons, the most successful early American

settlers in the region, were able to thrive at the base of the Wasatch Mountains due to

their implementation of complex community-based irrigation companies (Alexander, 2002).

Los Angeles would never have become the sprawling metropolis it is today were it not for

the controversial seizure of water rights in the Owens Valley and the construction of a 420

mile aquaduct to deliver Owens River water to the city (Reisner, 1986; Libecap, 2007). The

20th century saw the construction of dozens of federally funded water reclamation projects

throughout the region, designed to capture every last drop of rainfall or snowmelt in order

to put this water to economic use. The most well known include the Hoover Dam and Glen

Canyon Dam on the Colorado River, and the Grand Coulee Dam on the Columbia (US

Bureau of Reclamation, 2021). The Colorado River, a vital lifeline in the desert Southwest,

has been fully commoditized, its waters statutorily portioned between seven western states

and Mexico (Bickel et al., 2019).

Today, a shifting climate is driving less predictable rain patterns, decreased mountain

snowpack, and unprecedented summer temperatures throughout the region (MacDonald,

2010). The effects of changing weather patterns and widespread water withdrawals for

irrigation have brought us to a point in time where “half of Western U.S. rivers have lost

more than 50% of their summer flow (Richter et al., 2019).” In addition to this, since the end

of World War II, the West has seen a dramatic increase in population. In the Southwest, the

combined populations of the cities of Los Angeles, San Diego, Las Vegas, and Phoenix have

increased from 2,409,037 in 1950 to 7,129,411 in 2010 (US Census Bureau, 2021). A direct
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consequence of these factors is the depletion of water stored at Lake Mead, the reservoir

created by the Hoover Dam. In 2019, anticipating water shortages, Arizona, California, and

Nevada adopted a Drought Contingency Plan which triggers cuts to their Colorado River

water allotments based on water levels in the reservoir (York et al., 2020). The Bureau of

Reclamation currently projects water levels in Lake Mead dropping to below an elevation of

1,075 feet in 2021, low enough to trigger the first round of cuts to states’ water allotments

(Central Arizona Project, 2021a). The bulk of these cuts will be to water intended for

agricultural purposes (Ferris and Porter, 2021).

With all this in mind, an out-of-state visitor driving down I-10 from Phoenix to Tucson

would perhaps be surprised to see pecan orchards and fields of cotton growing alongside

the saguaro and arid mountain ranges of Central Arizona. In fact, since the late 1800s,

for-profit irrigated agriculture has flourished in Arizona. The year round sunshine and warm

temperatures make the state an ideal place to grow a wide variety of crops as long as water

is available. Today, many communities throughout the state are economically dependent on

irrigated agriculture. Much of the water for Central Arizona irrigation is sourced either from

underground aquifers or from the Colorado River via the Central Arizona Project (CAP)

canal network (Lahmers et al., 2018). This makes the notion of Colorado River water cuts

especially alarming. In 2021, with the level of Lake Mead sitting at 1,066 feet above sea level,

the U.S. Secretary of the Interior declared the first ever Tier 1 shortage along the Colorado.

This shortage declaration means that CAP water deliveries in 2022 will be reduced by around

30% (Central Arizona Project, 2021a). At greatest risk of economic loss due to these cuts

are agriculturally oriented communities in Pinal and Maricopa Counties (Bickel et al., 2019).

Rather than face diminished profits, growers in these areas may choose to offset the reduction

in Colorado River water with increased groundwater extraction. While this might maintain

local economies in the short run, groundwater supplies do not replenish themselves quickly,

and aquifer depletion is known to drastically restructure the hydrologic landscape (Condon
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and Maxwell, 2019). Increased groundwater withdrawals would at best be a stop-gap solution

for these agricultural communities.

This study is concerned with addressing drivers of agricultural water use in Central

Arizona. A 2014 Arizona Department of Water Resources (ADWR) report described agri-

cultural water use as accounting for 68% of water use in the state. In 2017, agriculture

contributed $23.3 billion to Arizona’s economy (Lahmers et al., 2018). As water supplies

become more and more scarce, the question of what motivates irrigators’ water use deci-

sions becomes increasingly salient. This analysis considers the impact of economic factors,

climate, alternative land cover, and regulatory policy on water use. Identifying what moti-

vates increased or decreased agricultural water use has the potential to aide policy makers

and water managers in anticipating growers’ water needs. This sort of analysis is especially

relevant given the looming cuts to Arizona’s allotment of Colorado River water.

This study begins with a short history of agriculture in Arizona and brief descriptions of

the study area, data used, analysis methods, and findings. Next comes a review of existing

economic literature concerned with agricultural water demand. This is followed by the

presentation of a set of conceptual models based on the literature designed to inform a later

econometric exploration of agricultural water use in Central Arizona. After this comes a

discussion of the data and methods employed in the study’s econometric analysis, before

going on to present findings. The study then concludes by considering the implications of

these findings.

1.1 A Short History of Irrigation and Groundwater Management

in Arizona

Irrigated agriculture is a fundamental feature of human habitation in the Southwestern

United States, and irrigation infrastructure has likely existed in Arizona for over 3,000 years.
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Archaeological evidence suggests that indigenous peoples maintained irrigation canals along

the Santa Cruz River as early as 1200 BCE in order to grow corn, tobacco, and squash.

Between 300 BCE and 1450 CE, the Hohokam constructed complex irrigation networks

along the Salt and Gila Rivers in and around what is now the City of Phoenix. By the

1800s, American settlers were expanding on the original Hohokam canals to irrigate fruit

trees, alfalfa, and grain in the Salt River Valley. Federally funded dam projects, such as the

Roosevelt Dam on the Salt River and the Hoover Dam on the Colorado, would follow in the

early 20th century. Around this same time, the first irrigation districts began operation in

the state, with the Yuma Auxillary Project beginning water deliveries to member farmers

in 1905. In 1917, the Salt River Project (SRP) in Central Arizona would follow suit and

begin delivering around a million acre-feet of water to subscribers each year (Lahmers et al.,

2018).

Throughout this period, as sophisticated canal systems and massive dam projects cap-

tured an ever increasing share of Arizona’s scarce surface flows in order to apply them to

economic uses, a huge amount of freshwater sat buried underground in essentially untapped

aquifers. This groundwater supply, the product of millions of years of natural accumulation,

remained almost entirely intact, as the technology necessary to lift quantities capable of sus-

taining farm level agriculture did not yet exist (Silber-Coats et al., 2017). The 1937 invention

of the high-speed centrifugal turbine pump changed this, allowing groundwater dependent

agriculture to expand to areas removed from existing canals or streams. As a result, the

region saw “...a major boom in irrigated farming [which] drove a tripling of groundwater

extraction rates” (McGreal et al., 2021). Irrigation districts were established in areas that

previously had no access to surface flows, with water supply portfolios almost entirely built

on groundwater (Lahmers et al., 2018). All of this led to a major decline in groundwater lev-

els in many parts of the state, as groundwater was put to use supporting not only agriculture,

but also rapidly increasing municipal needs. The year 1968 saw withdrawals from Central
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Arizona aquifers outpace natural recharge by an estimated 2.5 million acre-feet (McGreal

et al., 2021).

By the 1970s, lawmakers recognized that, absent some statewide management scheme,

this vital resource would be at risk of total depletion. 1980 saw the passage of the Arizona

Groundwater Management Act, a package of reforms that established ADWR and introduced

a multi-tiered groundwater management scheme throughout the state. The areas of greatest

concern were designated as Active Management Areas (AMAs) and were subject to the most

stringent regulations contained in the act. Initially, AMAs were established in and around

the cities of Phoenix, Tucson, and Prescott, as well as in the largely rural but heavily

agricultural Pinal County. Most AMAs (with the exception of Pinal) were tasked with the

goal of achieving “safe-yield”, a balance between groundwater extraction and replenishment,

by 2025. These areas contain 80% of Arizona’s population, as well as approximately half

of the state’s irrigated farmland (McGreal et al., 2021). Within the AMAs, the legislation

restricted the expansion of irrigated agriculture and required measurement and reporting of

groundwater pumping for non-domestic wells. All existing water rights would be fixed at this

time, with groundwater rights based on pumping in the five years preceding the Groundwater

Management Act’s passage. These grandfathered rights to pump water are fairly generous, as

groundwater use had been at an all time high prior to the act’s passage. Crucially though,

the act ensured that, from this point on, new water rights would not be granted within

the AMAs, meaning that in these areas there exists a legally mandated upper-bound on

groundwater extraction (Megdal, 2012). Additionally, in the years since the act’s passage,

Arizona’s groundwater code has been amended to allow holders of these grandfathered water

rights to accumulate “flex credits” by not withdrawing their full allotment of groundwater in

a given calendar year. These credits may then be conveyed or sold to another grandfathered

water right holder within the same AMA, with some restrictions (Arizona Revised Statutes,

2016).
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Around this same time, another potential lifeline for Arizona’s imperiled aquifers was

in the offing. Approved by the US Congress as part of the Colorado River Basin Project

Act of 1968, the Central Arizona Project (CAP) was intended to deliver water from the

Colorado River to the population centers of Central Arizona via a system of pumping stations

and canals. CAP would allow the AMAs more flexibility in the effort to achieve “safe-

yield” conditions, as water users could now choose to forego pumping any amount of their

groundwater allotments in exchange for CAP water (McGreal et al., 2021). Administered by

the US Bureau of Reclamation, the project would begin water deliveries in the late 1980s,

with delivery costs structured only to cover expenses (Central Arizona Project, 2016). In the

years to come, the introduction of water banking schemes (the Underground Water Storage

and Recovery Act of 1986 and the Underground Water Storage and Replenishment Act of

1994) would assure that any disused CAP water could be stored in aquifers until some later

date (Colby, 2016).

As a result of the 1980 Groundwater Management Act, irrigation districts in Central Ari-

zona must annually report all water received and delivered to ADWR. It is this requirement

which makes this study of irrigators’ water use decision making possible. Today, irriga-

tion districts’ water portfolios are largely composed of some mixture of groundwater, CAP

deliveries, “in-lieu” water (referring to CAP water delivered in exchange for growers limit-

ing their groundwater use), and surface flows (Fleck, 2013). A more detailed discussion of

specific irrigation districts in my study area follows in the next section.

1.2 Study Area

This study is focused on irrigation districts located in the Phoenix and Pinal AMAs, with

twelve districts included in this works’ empirical analysis. These represent the largest and

most significant districts in each AMA, both in terms of planted area and water deliveries.

Figure 1 provides an illustration of the differences in scale and spatial distribution of the
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irrigation districts in the study area.

Irrigation districts are responsible for delivering water to subscribers within their bound-

aries. However, these districts are each unique in their approach to fulfilling this respon-

sibility. Figure 1 clearly shows large differences in scale between irrigation districts, but

they are also dissimilar in their policy structure, water sourcing, and in the composition of

their end users (i.e., agricultural, municipal, industrial, et cetera). This being said, there

are a few important common characteristics present in the districts chosen for this analysis.

Firstly, as shown in Figure 1, each district in this analysis is located within an AMA. This

means each of these districts must annually report water sourcing and deliveries to ADWR,

which in turn makes these reports available to the public. This reporting requirement is

(happily) what makes this analysis possible, and (unhappily) what disallows the inclusion of

any irrigation districts outside these AMA boundaries. Secondly, each of these districts are

constrained in their groundwater use according to water rights fixed at the time of the 1980

Groundwater Management Act. Even when groundwater is the cheapest source of water

available to districts, this constraining factor means that districts’ water supply portfolios

are often composed of water from multiple sources. Finally, each of these districts has ac-

cess to Colorado River water delivered by CAP. This allows districts latitude in their water

sourcing decisions.

The Pinal AMA is home to only four irrigation districts: Central Arizona Irrigation and

Drainage District, Hohokam Irrigation District, Maricopa-Stanfield Irrigation and Drainage

District, and San Carlos Irrigation and Drainage District. These districts manage 87% of

water deliveries in the county, with water use in excess of 800,000 acre-feet per year (Lahmers

et al., 2018).

The San Carlos Irrigation and Drainage District structurally differs from the other dis-

tricts within the Pinal AMA, as its primary function is to deliver Gila River water stored

in San Carlos Lake. Water storage in the reservoir has declined drastically in recent years,
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leaving many irrigators in the district faced with a choice between attempting to grow crops

in the face of uncertain water availability, or accepting Catostrophic Risk Protection (CAT)

payments due to failure of irrigation supply before ever planting crops (United States Ge-

ological Survey, National Water Dashboard, 2021; Bickel, 2021). CAT coverage is available

to growers at subsidised rates through the Federal Crop Insurance Reform Act of 1994 (Sall

and Tronstad, 2021). While groundwater and CAP deliveries are available to the district,

growers receiving water from the San Carlos Irrigation and Drainage District may have their

planting decisions affected by this limited water supply and opportunity to receive CAT

payments (Bickel, 2021). The theoretical and empirical models presented in Chapters 3 and

5 of this work assume constraints on water deliveries are not binding. This assumption can

be held within the arid study area due to CAP’s ability to deliver Colorado River water

to Central Arizona irrigation districts, as well as the system of flex credits and generous

groundwater rights established by the 1980 Groundwater Management Act. Due to CAT

coverage allowing farmers to opt out of planting in the face of declining reservoir storage,

the San Carlos Irrigation and Drainage District is in essence constrained by water supply,

even though alternate sources of irrigation water are available. As such, it is omitted from

this work. The other three Pinal County districts are included in this analysis, although

this is not without some complication which is discussed further in Chapter 4. Even with

the San Carlos Irrigation and Drainage District omitted, the remaining districts account for

over 87% of the total planted area within the Pinal AMA.

In sharp contrast to the Pinal AMA, the Phoenix AMA contains thirty-nine irrigation

districts, ranging in size from small owner-operated cooperatives to the massive Salt River

Project (Arizona Department of Water Resources, 2020). This analysis focuses on the nine

largest irrigation districts by average annual water deliveries. Taken together, these nine dis-

tricts include over 95% of the total planted area in all irrigation districts within the Phoenix

AMA. In order of size, these are: Salt River Project, Roosevelt Water Conservation District,
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Roosevelt Irrigation District, Maricopa Water District, New Magma Irrigation and Drainage

District, Buckeye Water Conservation and Drainage District, Queen Creek Irrigation Dis-

trict, Arlington Canal Company, and the Tonopah Irrigation District. In 2019, these nine

districts delivered almost 925,000 acre-feet of water to end users, with the Salt River Project

alone having delivered over 550,000 acre-feet. It must be noted that much of this water goes

to serving municipal needs as opposed to agricultural uses, as many districts established

early in the 20th century on what had then been rural land today find themselves subsumed

by the Phoenix metro area.

Planting in Central Arizona is largely centered around two crops: alfalfa hay and cot-

ton. Figure 2 presents annual planted acreage in different common crops in Maricopa and

Pinal Counties from 2008 through 2019. It is easy to see at a glance that alfalfa and cot-

ton dominate Central Arizona cropping. Alfalfa is consistently the most copiously planted

crop throughout the two county area, and only in 2011 does cotton acreage come close to

matching alfalfa acreage. Alfalfa is considered a fairly water intensive crop for the region,

with consumptive water needs averaging around 6 acre-feet per acre per year (Erie et al.,

1982). Owing to the fact the fact that some irrigation water applied will be lost to evapora-

tion and evapotranspiration, this means that growers need to apply more than that average

consumptive minimum to bring an alfalfa crop to harvest. How much more depends largely

on weather and irrigation efficiency. It is worth mentioning that, unlike cotton, alfalfa crops

are not planted annually. Instead, a stand of alfalfa typically lasts from 3 to 7 years, with

growers able to take multiple cuttings in a season. This means that alfalfa stands must be

irrigated year round to maintain the health of the crop. Despite this perennial character,

alfalfa stands do not represent the same sort of structurally fixed investment as tree crops.

If a grower had a strong enough reason to plant something different, an alfalfa stand could

be removed without accruing significant financial losses.

Cotton is consistently the second most planted crop in the study area, with the excep-
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tion of 2015, when durum wheat acreage exceeded cotton by about 13,000 acres. Cotton’s

consumptive water needs average around 3.5 acre-feet per acre per year, significantly less

than alfalfa’s (Erie et al., 1982). It should be mentioned that, unlike alfalfa, cotton is not

grown year round, leaving the possibility for cotton to be rotated with other crops in the

same growing season. Cotton is rotated most frequently with wheat and other small grains,

with wheat crops in the region estimated to consume about 2 acre-feet of water per acre per

year (Ottman, 2015; Erie et al., 1982). If these crops were planted on the same field in the

same year, around 5.5 acre-feet of water per acre per year would need to be consumed for

both harvests to be healthy. Assuming that many growers who decide to plant cotton will

also plant wheat in the same field after their cotton crop is harvested, then this consumptive

water use value may be compared to the year-round consumptive needs of alfalfa stands,

meaning the two crops’ annual water needs are fairly similar to one another.

Along with alfalfa, cotton, and durum wheat, corn and barley make up the five most

common crops in the region. Figure 3, showing the percentage of overall planted area in

each crop, reinforces the prevalence of alfalfa and cotton in Maricopa and Pinal Counties. In

2008, alfalfa and cotton taken together represent 66.5% of planted acreage in the study area.

This is the only year these two crops together do not compose over two-thirds of planting

in the region, and in seven out of twelve of the years presented these crops account for over

75% of planting. Another interesting trend notable in Figure 3 is cropping patterns moving

away from the previously mentioned “top five” crops. All other crops make up more than

10% of planting in each year from 2016 onward.

One of these other crops worth mentioning briefly are pecan trees. Pecan orchards, and

to a lesser extent pistachio orchards, have been planted with increasing frequency in recent

years (Duval et al., 2019). These orchards are very different in character than annual crops,

as they represent a substantial upfront investment to plant, followed by a period of many

years before the trees will begin to bear fruit. Additionally, orchards require water to be
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applied year round, and some minimum amount of water to be applied to maintain the

health of an orchard, even in a season where a grower might not intend to bring their trees

to harvest. Mature pecans intended to bear fruit generally consume around 11.5 acre-feet

of water per acre per year inches of water throughout the year, making them a very water

intensive crop in an arid region (Sammis and Herrera, 1999). For these reasons, tree crops

will be treated as a category of interest in this research.

Water Supply Considerations

As alluded to at the beginning of this section, water delivered to members by irrigation

districts comes from a variety of sources. The districts discussed in this study all have some

level of access to Colorado River water deliveries through CAP, as well as groundwater, the

opportunity to participate in “in-lieu” water sourcing, and in some cases surface flows as

well.

Prior to the passage of the 1980 Arizona Groundwater Management Act and the com-

pletion of the Central Arizona Project, groundwater was the most widely used water source

in much of Central Arizona. While a few of the oldest districts in the state were established

to deliver surface flows to their members, the relative ease with which groundwater could

be pumped by the mid-20th Century meant that irrigated agriculture could expand to areas

of the state far removed from rivers and streams (Lahmers et al., 2018; Silber-Coats et al.,

2017). By the time the Groundwater Management Act was enacted, groundwater use in

Central Arizona was at an all time high. Quantification of grandfathered water rights within

the AMAs was based on pumping in the years between 1975 and 1980, meaning the amount

of water allocated to each right is quite generous (McGreal et al., 2021). The later imple-

mentation of the “flex credits” system described in the previous section provided further

flexibility in the use of these grandfathered water rights (Arizona Revised Statutes, 2016).

Taken together, these factors lead to legal constraints on groundwater supplies not often
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binding groundwater use. However, physical access to groundwater may be constrained in

some cases by deteriorated well infrastructure (Seasholes, 2021).

Given generous groundwater allotments which may be further supplemented through the

purchase of flex credits, one might reasonably ask why well infrastructure in some cases

might be deteriorated to the point of constraining groundwater use. The answer lies in the

opportunity CAP provides growers to substitute groundwater pumping for surface water

delivered from the Colorado River. With the introduction of CAP, irrigation districts (along

well as other entities within the delivery) were given the option to purchase Colorado River

water directly from the Bureau of Reclamation at cost (Central Arizona Project, 2016). In

addition to purchasing water directly, grandfathered water rights holders are also able to

enter into “in-lieu” contracts. Facilitated by ADWR as part of their on-going efforts to

manage groundwater levels within the AMAS, “in-lieu” contracts allow water rights holders

to receive some additional amount of Colorado River water delivered by CAP in exchange for

reducing their permitted groundwater pumping by the same extent (McGreal et al., 2021).

Well infrastructure has deteriorated in some cases due to rights holders taking advantage of

these “in-lieu” contracts rather than physically withdrawing their groundwater allotments.

In addition to the water sourcing options described above, some districts, such as the Salt

River Project, the Roosevelt Water Conservation Project, and the San Carlos Irrigation and

Drainage District, are able to provide surface water flowers captured in reservoirs to their

members throughout the season (Klawitter, 2021; Bickel, 2021; Fleck, 2013) It is important

to note that most districts’ water portfolios are composed of some combination of these

sources, as opposed to meeting all of their members’ water needs through a single water

source (Fleck, 2013).
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1.3 Methods and Data

This study involves data on water deliveries and key economic variables (such as crop prices

and input costs) from 2008 through 2019. Water delivery data is sourced from the reports

described above filed by irrigation districts with ADWR. These reports break down water

deliveries by source type and category of end use. This distinction between end uses is

what makes it possible for this analysis to specifically focus on water intended for irrigated

agriculture. Crop price and input cost data are sourced from a number of different federal

agencies, including the United States Department of Agriculture’s National Agricultural

Statistics Service (USDA NASS), the United States Department of the Interior’s Bureau

of Reclamation (USBR), as well as privately owned agencies such as the New York Cotton

Exchange. Land cover data is sourced from USDA NASS’s Cropland Data Layer (CDL), a

satellite remote sensing product available to the public. The CDL contains satellite recorded

information on land cover throughout the entire continental United States from 2008 onward.

While CDL has data in some regions for years prior to 2008, Arizona was only added to the

product in that year. As a result, the study period is restricted to years beginning in 2008.

Climate data is sourced from the Global SPEI Database, a project based in Spain which

provides Standardized Precipitation-Evapotranspiration Index data for any region in the

world. The SPEI provides a measure of rainfall and temperature, with values ranging from

-3 (hotter and drier than average) to 3 (cooler and wetter than average). These data, their

sources, and steps taken to compose the data set used in this study will be discussed in much

greater detail in Chapter 4.

This study assumes non-binding constraints on water availability and employs irrigation

district level fixed effect regressions with robust standard errors to estimate the effects of

various explanatory variables on water deliveries and irrigation intensity. The use of fixed

effect regressions is necessitated by the heterogeneous nature of irrigation districts’ water

sourcing and policy structure. In order to preserve a high number of degrees of freedom,
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fixed effects are captured by “de-meaning” variables at the irrigation district level, rather

than including a set of district level dummy variables. Exact model specifications and the

decisions that lead to these specifications will be discussed at length in Chapter 5. Results

will be evaluated for statistical significance beginning with those that can be said to be

non-zero values with 90% confidence.

The econometric analysis presented in Chapter 5 finds that climate, cotton futures prices,

CAP water costs and fallowed lands each have a statistically significant effect on water deliv-

eries to Central Arizona agriculture. Meanwhile, irrigation intensity is significantly affected

by climate, cotton futures prices, and CAP water costs. The marginal effects observed in

both models for cotton futures prices and CAP water costs and for fallowed lands in the wa-

ter deliveries model fall in line with economic intuition, while the marginal effects of climate

runs contrary to expectations. These results are discussed extensively in Chapters 5 & 6.
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2 Literature Review

This study is underwritten by a thorough review of recent economic literature regarding

motivating factors behind irrigators’ water withdrawals. Broadly speaking, the literature

has informed this research in three ways. The first comes from background and insight into

the specific history of irrigated agriculture and regulatory policy structure in Central Ari-

zona. This background information has allowed for the sound application of broad economic

principles (derived from studies performed in other parts of the world) to this specific study

area. The second way the literature informs this research is in supporting the construction

of a conceptual model of water demand. This model, described in detail in the next chapter,

is built based on drivers of water demand observed in numerous instances throughout the

literature. This grounding is important, as the model in Chapter 3 will be used to form the

foundation of the econometric analysis presented in Chapters 5. The third and final way the

literature contributes to this research is by providing examples of econometric analyses that

further support the econometric analysis in this thesis.

This chapter discusses those studies which have directly contributed to this work. The

literature is discussed in the order described in the previous paragraph: 1) those works pro-

viding background on irrigated agriculture in Central Arizona, 2) research which contributes

to the conceptual model presented in Chapter 3, and 3) research which further informs the

econometric analysis presented in Chapters 5. Often the same article falls into more than

one of these groupings. When this is the case, the paper is discussed in parts, meaning the

article is mentioned more than once in this chapter.

2.1 Understanding Irrigation in Central Arizona

Literature which has studied irrigation in Central Arizona is particularly valuable to this

analysis. While some general economic principles are universally applicable, a sturdy under-
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standing of the unique characteristics of the study area in question is a necessary component

in any research. As briefly described in Chapter 1, Central Arizona’s regulatory policy and

water infrastructure are complex and elaborate. Both state and federal agencies are involved

in water supply management. The 1980 Groundwater Management Act introduced a multi-

tiered system of regulatory policies. The region also has policies allowing for water banking

programs and the ability for in-lieu water exchanges, along with other idiosyncrasies not

relevant to this research but present nonetheless. Prior academic research, both qualitative

and quantitative, which is based in this study area has proven to be an invaluable asset.

Bickel et al. (2019) examine the economic impact reductions in water allocations would

have on agricultural communities in Pinal County, Arizona, describing the water challenges

currently facing the study area. These challenges include an increasing demand for water

caused by population growth, a limited and declining supply caused by the initial 1922

over-allocation of Colorado River water in the southwest, declining water levels throughout

the Colorado Basin driven by climate change, and resistance to the expansion of retention

infrastructure due to concerns over its environmental impact. The study also details the

structure of Pinal County’s agricultural sector and distribution of water use, as well as

describing the typical climate in the county. Bickel et al. (2019) also provide valuable insight

into drivers of irrigators’ profit-maximizing decision making, and so will be discussed further

in the next section of this chapter.

Colby (2016) provides a broad overview of water banking programs throughout the United

States and elsewhere in the world. While water banking is not specifically considered in

any conceptual or econometric models presented in this study, background on the Arizona

Water Banking Authority (AWBA), Arizona’s public water banking agency, is useful in

establishing a complete picture of Central Arizona’s water management structure. The

AWBA was created in order to fully utilize Arizona’s annual Colorado River water allotment

of 2.8 million acre-feet. Banking water in Arizona’s aquifers assures supply reliability for
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Indian Water Rights, helps to satisfy Arizona’s groundwater use regulations, and even allows

for interstate water banking. The AWBA purchases excess CAP water or treated effluent

and transfers storage credits to ADWR or the Central Arizona Groundwater Replenishment

District (CAGRD). These entities are able to use these credits to recover stored water in

order to meet supply obligations or satisfy groundwater regulatory requirements at a later

date. Colby also makes mention of the problem of spatial mismatch between groundwater

storage sites and recovery wells, an issue which is likewise considered by Silber-Coats et al.

(2017) and may be of particular interest to researchers concerned with localized shifts in

groundwater elevation.

Fleck (2013) is a primary source of inspiration and information for this research. Fleck ex-

amines water use by many of the same irrigation districts as this analysis. Fleck’s background

on individual irrigation districts is extremely thorough and detailed, although additional ir-

rigation districts are included in this study. While this means that the background Fleck

provides on irrigation districts cannot be relied on exclusively, it is still a valuable source

of information. Fleck’s thesis is somewhat more limited in scale than this analysis, as his

study contains data from ten irrigation districts between 1995 and 2011. Fleck also does not

use remote sensed crop coverage data, which allows this work to expand on the framework

he establishes, rather than just recapitulating his analysis with a few extra irrigation dis-

tricts and more recent data. Like Bickel et al. (2019), Fleck’s study includes conceptual and

econometric elements which have also informed this study. These are discussed in greater

detail later in this chapter.

Frisvold and Konyar (2012) compare multiple models’ predictions of the effect of a re-

duction in irrigation water supplies in six southwestern US states. The study area includes

California, Nevada, Arizona, Utah, New Mexico, and Colorado, states in which irrigation

accounts for 82% of all water withdrawals and which collectively are facing declining flows in

the Colorado River. The modeling approach involves a sophisticated nonlinear mathematical
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programming model which will not inform any part of this paper. However, this study does

provide valuable background in terms of the large-scale water supply problems facing the

southwestern US.

The University of Arizona’s Water Resources Research Center publishes The Arroyo, an

annual review of some particular facet of water management in Arizona. These publications

are an extremely valuable source of background information regarding specific regulatory

policy and management practices, both throughout the state and in Central Arizona. Three

specific issues have informed this research. Arroyo 2017 concerns water banking, ground-

water recharge, and the recovery of water stored in Arizona’s aquifers (Silber-Coats et al.,

2017). Arroyo 2018 takes a close look at irrigated agriculture in Central Arizona and else-

where (Lahmers et al., 2018). Finally, Arroyo 2021 discusses the history of the 1980 Arizona

Groundwater Management Act and how state policymakers and water managers are prepar-

ing to meet Arizonans’ water needs in the future (McGreal et al., 2021).

Arroyo 2017 provides an in-depth look at water banking in Arizona. This study supports

and develops ideas mentioned in Colby (2016). The study touches on the 1980 Arizona

Groundwater Management Act, and gives detailed descriptions of the CAGRD and the

AWBA. Arizona’s system of Active Management Areas and Irrigation Non-expansion Areas

is also carefully explained, a topic of particular relevance to this study, since the effects of

AMAs on irrigators’ water use decisions are considered (Silber-Coats et al., 2017).

Arroyo 2018 examines irrigated agriculture throughout Arizona, with large sections de-

voted to the structure of agriculture in the central part of the state. The paper details

the history of indigenous agriculture, the formation of the first irrigation districts (some of

which even precede Arizona’s statehood), and the economic importance of agriculture in

Arizona today. The authors also describe how irrigated agriculture functions specifically

in Central Arizona, where most irrigation districts are subject to restrictions imposed by

the Groundwater Management Act. This provides useful information on irrigation districts’

24



scales, water sourcing, and the scope of overall water use (Lahmers et al., 2018).

Arroyo 2021 describes the AMA regulatory structure mandated by the Groundwater

Management Act. This study provides a detailed explanation of the requirements growers

within the AMAs must adhere to, including the non-expansion of irrigated lands and the

system of fixed water rights described in Chapter 1. Arroyo 2021 is also useful in its de-

scription of the water challenges faced throughout Arizona today. Factors like the decline in

Colorado River flows and shifting and unpredictable climate patterns are discussed in detail

(McGreal et al., 2021). These challenges underscore the need for a better understanding of

growers’ water use decision making.

Megdal (2012) provides further explanation of the 1980 Groundwater Management Act,

water banking in Central Arizona, and the important role that CAP plays in helping the

AMAs meet their goals. The study pays particular attention to the operations of various

entities within Arizona’s water management structure, as the system has drawn considerable

worldwide attention from those seeking to supply water in similarly arid areas. Megdal goes

on to provide detailed information on groundwater storage and recovery in the Central

Arizona AMAs. As in the cases of Colby (2016) and Silber-Coats et al. (2017), this level

of detail regarding water banking does not pertain directly to this analysis, but could be

potentially valuable for future researchers attempting to model how, when, and in what

quantities stored water will be recovered.

Hanak et al. (2019) examine the water challenges facing not Arizona, but California.

While the issues each state are faced with today differ slightly in their character, there also

exist many similarities, indicative of the general degree of uncertainty surrounding water

supply in the Western US. The study discusses various strategies and adaptations that

could be implemented to address a future with diminished and less predictable flows in

addition to strained aquifers. While this study does not seek to model the impact of various

conceptual management schema on water use, future work on the topic in Arizona and other
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southwestern states would be well informed by Hanak et al.’s ideas and recommendations.

Condon and Maxwell (2019) further underscore the drastic dangers posed by allowing

aquifers to decline unchecked. This hydrologic analysis provides important support for the

primacy of groundwater use in irrigated agriculture globally. The authors also underscore

the interdependance between groundwater levels, surface water flows, and climate, and assert

that diminished groundwater levels can and will influence future climate equilibria. Condon

and Maxwell make clear the fact that mismanagement of groundwater supplies could lead

to drastic changes in the future availability of all water resources.

Ferris and Porter (2021) tie together many of the ideas described above. This sobering

report examines the idea of “safe-yield” within the Arizona AMAs and finds it to be 1) likely

unachievable given the current regulatory framework, and 2) likely inadequate in its goal of

assuring water supply for future generations of Arizonans. In their analysis, Ferris and Porter

point to the limits of conservation efforts’ ability to outpace growing water demand, the

existence of long-term rights to pump groundwater, and the hydrologic disconnect between

recharge and storage. The authors see these factors as major hindrances to sustainable

management of Arizona’s water supplies. Ferris and Porter (2021) further support the need

to understand irrigators’ water use behavior, but also leaves the reader with the disquieting

feeling that water managers throughout the state may already be a day late and a dollar

short.

2.2 Models of Agricultural Water Demand

Chapter 3 of this thesis focuses on developing two conceptual models, one describing growers’

profit maximizing behavior which pays special attention to water as an input, and the other

describing climatic, economic, and policy factors that the literature has shown to drive

demand for irrigation water. This section describes the economic literature that supports

the construction of these models.
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Being that Fleck (2013)’s analysis parallels this study’s, it seems a fitting place to start

this section. Fleck begins his conceptual modeling by constructing a simple one-input one-

output profit maximizing model for a grower choosing how much water to apply to crops.

This fundamental approach to first showing an individual grower’s profit maximizing behav-

ior before going on to describe factors that influence aggregate water demand has directly

informed the analysis presented in Chapter 3, although the profit maximizing model pre-

sented in that chapter concerns two inputs and one output. The profit maximization model

presented in Chapter 3 draws further inspiration from Griffin (2016). This text outlines a

classic profit maximization model specifically concerned with water as a primary production

input.

Fleck then goes on to define a function for water demand based on precedent found in the

existing literature. His demand function includes crop acreage, the cost of irrigation water,

and climate variables. He defines crop acreage as a function of the price of crops, a vector

of other input prices, and once again the cost of water. This description of water demand

as being motivated by choice of crop acreage reflects extensive/intensive decision making,

where growers first choose to what extent they will plant crops before deciding how intensely

they will irrigate. This approach will be seen in multiple studies reviewed here, as well as

in the water demand model presented in Chapter 3. Fleck’s demand model serves as a basis

for the model in the next chapter, although this study’s water demand model will include

other water use drivers supported by the literature described below.

The extensive/intensive decision making model presented by Fleck is supported by Bickel

et al. (2019). The study framework involves rationing models based on ”the ‘putty-clay’

production function approach to modeling production relationships,” an approach originally

pioneered by Moffitt et al.. This approach allows for flexibility in terms of production

relationships in producers’ planning stages (malleable “putty”), before being constrained by

their initial decisions in the next stage of production (hardened “clay”). This approach is very
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applicable to agricultural production, as growers have tremendous freedom to choose what

to plant and to what extent before committing to some specific crop mix. After that point,

farms’ production becomes restricted by their earlier cropping decisions. The only choice

that remains is how intensely to apply water and other inputs like pesticides or fertilizer

(intensive choices). Incorporating this approach into the conceptual model presented in

Chapter 3 is beneficial, being that it captures the constraining effect a grower’s cropping

decisions have once a commitment is made.

Once a water use model is established, Bickel et al. (2019) go on to quantify the effect

of a 300,000 acre-foot reduction in water delivered to Pinal County agriculture based on

data from 2017. The authors compare estimates from three different rationing models, each

with varying degrees of complexity and therefore varying input requirements, although each

considers expected profits per acre-foot of water applied for various crops. The study then

quantifies the economic impacts that would result from the loss of revenue associated with

such a reduction in cropped acreage. This study does not allow for growers to offset the

initial 300,000 acre-foot reduction in water deliveries by pumping groundwater or through

any other alternate source. While this is a likely outcome of any reduction in CAP deliveries

in the county, a large-scale shift to groundwater use would be accompanied by its own set of

costs, as many wells would have to be recommissioned or installed from scratch (Seasholes,

2021).

Whipple (2019) includes a profit maximizing model designed to determine a Pinal County

cotton farmer’s optimal profit and irrigation levels, based on water cost. This is especially

relevant as Arizona is currently facing cutbacks to its allocations of Central Arizona Project

water deliveries, which by design will impact growers in the central part of the state the

hardest. Whipple’s research is doubly valuable in this literature review, as Pinal county

is within the study area observed in later chapters. Much of the background Whipple has

gathered on groundwater levels, pumping costs, and the structure of the county’s agriculture
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sector has been helpful in informing this analysis.

Whipple distinguishes between the costs of CAP water and groundwater pumping and

optimizes his model based on both cost structures. He also includes a two-crop model which

allows for farms’ ability to split production between cotton and alfalfa. He is also able to

optimize his choice variables under various water constraints. The study finds that, given a

reduction in CAP deliveries, farmers will convert their water use to groundwater and irrigate

at almost the exact same levels whenever possible. Whipple does note that some growers

may not have the available pumping capacity (or resources to expand pumping capacity)

necessary to replace all lost CAP deliveries with groundwater. Whipple’s model also predicts

an increased percentage of cotton acreage (relative to alfalfa) in any water shortage scenario.

Haacker et al. (2019) set out to determine the drivers of change in depth-to-water table

measurements from wells on the Ogallala Aquifer. Specifically, the study is set on determin-

ing the effect of various comparable groundwater management schemes throughout the states

which overly the aquifer. Smith et al. (2017) similarly examine the effect of policy on water

use, which will be discussed in the next paragraph. It should be reiterated that Haacker

et al.’s analysis is using change in groundwater levels to determine the impact of said poli-

cies, while this thesis involves agricultural water delivered as the variable to be explained, at

both the conceptual and empirical levels. Because Haacker et al. (2019) are concerned with

the effects of policy intervention, this supports the inclusion of policy programs as a driver

of water use in a conceptual model.

Smith et al. (2017) analyzes the effects of a bottom-up attempt at groundwater manage-

ment among growers in Colorado’s San Luis Valley. In 2010, growers in the valley instituted

a self-imposed groundwater pumping fee in an effort to forestall government regulation of

groundwater resources. Again, this is an instance where the authors have been able to cap-

ture the effect of a policy intervention on groundwater pumping, in this case a direct tax on

withdrawals. It should be noted that this study is made possible by all wells in the San Luis
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Valley having had meters installed prior to the 2009 growing season.

Because the fee system was introduced gradually in different years throughout the valley,

the authors are able to make use of a difference-in-difference framework to assess the impact

of the intervention. The authors model groundwater pumping, both within and outside of

the intervention area, at two enumeration levels: the well level and the parcel level. The

parcel level analysis allows for the inclusion of parcel-specific explanatory variables, as one

well may provide water to many parcels.

Another instance of policy analysis, Zeff et al. (2019) seek to model a novel groundwater

management policy being considered by growers in Diamond Valley, Nevada. Growers in

the region have drastically overdrawn the local aquifer since the 1960s, leading to Diamond

Valley being declared a ”Critical Management Area” by the state. Similar to the situation

described in Colorado by Smith et al. (2017), growers in Diamond Valley are attempting to

prevent curtailments by instituting a homegrown groundwater management plan. The idea

involves a gradual transition to universal water-rights cuts (rather than priority-based cuts),

and/or transitioning to shares-based water allocations. This work provides further evidence

of impact of anthropogenic choices on groundwater use, only in this instance rather than

focus on irrigators’ groundwater pumping, the study models the aquifer itself.

The study’s modeling is hydroeconomic, as the authors are seeking to capture both the

effect of the proposed interventions on the local economy and on Diamond Valley’s aquifer.

The model is run under five different water management scenarios and finds that many of the

proposals would achieve the Valley’s groundwater management goals while mitigating the

economic decline associated with immediate priority-based curtailment. The findings here

could be useful in making recommendations as to how Central Arizona growers (especially

in Pinal County) might better manage their groundwater resources if CAP allocations one

day become a thing of the past.

Another study from the Ogallala aquifer, Pfeiffer and Lin (2014) examine the effect
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of energy prices on groundwater use in Kansas. Like Haacker et al. (2019), this study

is examining the impact of anthropogenic choices on water use, only in this case it is an

economic driver that is the explanatory variable of interest. The study treats annual water

pumped by individual farmers in a year as its outcome variable, which doesn’t include any

irrigation water from precipitation or surface sources, but allows for an incredibly granular

statistical analysis.

The analysis once again consists of modeling designed to capture decisions made at

the extensive and intensive margins. The first (extensive) model involves two simultaneous

equations with crop choice and acres planted to each crop treated as dependent variables. The

second (intensive) model treats groundwater extracted as the dependent variable, controlling

for crop choice predicted by the first. In the empirical stage of their analysis, the authors find

the total marginal effect of energy prices by summing the marginal effects from both models.

Pfeiffer and Lin find that changes in energy prices result in a significant restructuring of crop

planting patterns, with a small accompanying shift in acreage. They also find that change

in energy prices results in significant decrease in groundwater pumping. This last result is

robust across their principle model and two alternative specifications intended as robustness

checks.

Kahil et al. (2015) take an approach somewhat similar to that presented in Bickel et al.

(2019), but with a twist. The authors construct a simple but intricate hydroeconomic model

of Spain’s semiarid Jucar River Basin. The model is primarily concerned with the effect of

droughts on the welfare of local economies and natural areas throughout the region, although

crop choice, irrigation technology, land constraints, and the availability of other agricultural

inputs are also considered. The authors are able to constrain their model by requiring that

some baseline level of surface flows are put to environmental uses. This research illustrates

the role that climate and water availability play in determining the fortunes of agricultural

economies and natural spaces. Similarly to Bickel et al. (2019), the drought represented in
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Kahil et al. (2015) could be taken as a proxy for a reduction in water allocated to Arizona

growers from the Colorado River. Future researchers would certainly find this a useful

foundation for any modeling that seeks to measure the impact of these reductions.

2.3 Econometric Approaches to Agricultural Water use

Chapter 5 of this thesis is devoted to constructing an econometric model of growers’ water

use based on the conceptual model of water demand outlined in Chapter 3. As such, much of

the material described in the previous section has a direct impact on this empirical analysis

by way of influencing this conceptual foundation. However, the conceptual model does not

lend support to a particular econometric model. Instead, prior econometric studies provide

inspiration for Chapter 5’s modeling choices.

Once again, this discussion will begin by looking into Fleck (2013)’s econometric ap-

proach. Fleck’s empirical modeling approach uses fixed-effects regressions, with total water

used for irrigation treated as the dependent variable and a set of crop prices, water prices,

weather measures, and land-use measures used as explanatory variables. Fleck includes ir-

rigation district level fixed effects to account for heterogeneity across study subjects. Fleck

uses a measure of retired irrigated acreage as reported to ADWR to track land use within

each district.

Fleck finds that weather variables vary in significance across different functional forms,

while crop prices and land use measures are almost always found to have significant effects on

agricultural water use. The R2 measure of fit is very high across many of the specifications

in this analysis, which Fleck attributes mainly to the explanatory power of the fixed effect

variables.

Deryugina and Konar (2017) seek to capture the effect of crop insurance on freshwater

withdrawals throughout the United States (with some counties dismissed due to insufficient

data). The study makes use of an instrumental variable approach which allows causal de-
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termination to be made. The authors treat water withdrawn for agriculture as an outcome

variable subject to economic drivers, making it very relevant to this research.

The study first models water withdrawals as a function of insured acres using a standard

ordinary least squares regression model, before making use of a two-stage least squares ap-

proach to establish a causal relationship. The instrumental approach makes use of ”variation

created by the 1994 Federal Crop Insurance Reform Act,” which ”had a large and immediate

effect on insurance coverage.” Treated as a variable, the policy change is found to have a

high correlation with insured crop acreage and no significant correlation with agricultural

water withdrawals.

Results vary widely between the two models, although both find that an increase in

insured acreage results in an increase in water withdrawals. The OLS model estimates

that a 1% increase in insured acreage is associated with a 0.051% increase in irrigation

water use, while the 2SLS model estimates that a 1% increase in insured acreage leads to a

0.223% increase in water withdrawals. Using this instrumental approach to establish a causal

relationship between crop insurance and agricultural water use can inform a researcher’s

initial modeling or provide a method for checking on a model’s robustness. In addition to

the masterful econometric approach, the establishment of crop insurance as a driver of water

withdrawals supports the idea that economic factors can directly influence agricultural water

use, which is vital to the conceptual model presented in Chapter 3.

As mentioned in the preceding section, Smith et al. (2017) uses Ordinary Least Squares

regressions with a difference-in-difference framework to determine the effect of a new ground-

water pumping tax on demand for water in Colorado’s San Luis Valley. The study finds that

the imposition of a pumping tax caused a significant decrease in groundwater pumping within

the intervention area, consistent across both well-level and parcel-level models. The authors

also make use of a Tobit model to assess the impact of the new policy on crop choice. The

result of the crop choice modeling is less conclusive, in part because historic crop choices
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within the intervention area are not consistent with those elsewhere in the valley. The pro-

gram in the San Luis Valley has led to a significant reduction in groundwater pumping and

has thus far been successful in its goal of eliminating the need for state intervention. This

straightforward and convincing study further underscores the need to include regulatory

policy in both conceptual and empirical analyses of irrigators’ water use.

Finally, while Larsen et al. (2015) do not directly influence the empirical analysis pre-

sented in Chapter 5, they do provide important support for the inclusion of land cover

measurements drawn from USDA NASS’s Cropland Data Layer. Specifically, Larsen et al.

examine the accuracy of fine-scale spatial data with regard to the arrangement of crop types

by comparing the CDL to data from the USDA Census of Agriculture. USDA NASS did not

originally create the CDL to be used for precise statistical research, making work like Larsen

et al. (2015) important support for any research depending on land cover measures taken

from the CDL. The study finds that accuracy for individual crops is high in regions where

that crop is predominant. In areas with many crops, large discrepancies can be commonplace

between the CDL and the Census of Agriculture. This result is encouraging for the purposes

of this research, as Central Arizona agriculture is largely dominated by two major crops:

cotton and alfalfa. It is important to note that, given the timing of this study, the authors

were only able to compare the CDL to the Census of Agriculture on a national scale for the

year 2012, as the CDL was not expanded to the entire continental US until 2008 and the

Census of Agriculture is only taken in years ending in 2 or 7.

2.4 Contributions

The body of work presented above represents many accomplished economic researchers in

the field of agricultural water use and its implications. While the work presented throughout

the rest of this thesis is only possible due to the foundations established by these and other

authors, this analysis provides several contributions to the existing literature.
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Of the studies mentioned above, only Fleck (2013) is concerned specifically with model-

ing demand for irrigation water in Central Arizona. As such, Fleck’s work is an important

foundation for this research. However, Fleck is not able to incorporate the land cover vari-

ables included in this analysis, as the CDL has only been available in Arizona from 2008 and

his study period ends in 2011. The inclusion of land cover variables provided by the CDL

builds on Fleck’s existing econometric analysis, and the analysis of more up-to-date data

will further develop understanding of agricultural water use choices. As precipitation and

temperature patterns in the Colorado Basin continue to change, and CAP cuts loom, there is

every reason to continue to develop our understanding of what factors motivate agricultural

water use.

Remote sensed land cover data has not been commonly used in research involving agricul-

tural water use. Over the past decade, these data products have become more readily avail-

able and increasingly accurate. The work presented here may encourage future researchers

to incorporate remote sensed data products into their agricultural economic analyses.

Finally, many (although by no means all) of the studies mentioned above are primarily

interested in the effect of a reduction in available water on agricultural economies. This

work is essentially interested in the inverse: how does anthropogenic activity (including

climate change) influence the water used to maintain and maximize farm profits? This line

of questioning is particularly critical with CAP cuts on the horizon, as growers in Central

Arizona may choose to replace a large part of these reduced deliveries with groundwater.

As Condon and Maxwell (2019) points out, a significant reduction in aquifer storage would

contribute to some new environmental equilibrium in the region, which could in turn make

the maintenance of agricultural economies and water supply that much more difficult. Like

Smith et al. (2017) and Deryugina and Konar (2017), this work seeks to better understand

the effect of human activity on nature, an increasingly necessary area of research.

The content of the coming chapters owes everything to the works presented above. Ideally,
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this research will be a reflection of the consideration and ingenuity on display in these studies.
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3 Theoretical Models

This study’s conceptual modeling is presented in two parts. The first section describes

a simplified version of an individual grower’s water use decision making with the goal of

maximizing profits. While Chapter 5’s empirical analysis will be enumerated at the irrigation

district level, it is important to bear in mind that irrigation districts’ water delivery decisions

are based upon said district’s constituent members’ water needs, along with any constraints

(either legal or physical) on water availability. The second section describes a conceptual

model of demand for water at the irrigation district level in a given year, based on existing

literature. This conceptual model will provide foundational support for choices made in the

empirical model specifications described later in this thesis.

3.1 Individual Profit-Maximization Model

The profit-maximizing model presented describes a circumstance where a grower concerned

with a single crop is faced with the choice between applying water and and other inputs in

order to bring crop yields to profit maximizing levels. This model then assumes that cropped

acreage is already established. It may seem to some that this simple model is skipping a

crucial step, as choice of crop mix and planted acreage is a vital part of growers’ profit

maximizing behavior. However, consider an alfalfa grower, whose stands are already planted

and established at the beginning of a season. This agent would then only have the choice

of what inputs to employ in order to bring yields to maximize profit. Thus, the first model

presented is a one-output, two-input model.

In this model, W will represent water applications and X will represent some other

choice input (labor, fertilizer, et cetera). In practice, X could be denoted as X, a vector

of multiple agricultural inputs, but for simplicity’s sake this model will be restricted to two

inputs. The model assumes yield to be a function of water applied and the other choice
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input, Y = f(W,X), and that a grower may choose to apply varying quantities of either

input. This crop production function is assumed to be “well behaved”, meaning that at

some point, as W and X increase, f(W,X) will begin to increase at a decreasing rate and

eventually begin to diminish. It is important to note that there may be some degree of sub-

stitutability and complementarity between water and other inputs, depending on the nature

of the production function f(W,X). Finally, the model assumes that no water is applied to

or removed from the crop beyond the grower’s chosen level of irrigation. Consequently, vari-

ations in rainfall effects (water applied to crops) and in temperature effects (water removed

from crops via evapotranspiration) are not considered. Alternatively, one could make the

assumption that typical variance in rainfall and temperature is already incorporated into

the production function. Later, in the empirical work, rainfall and temperature effects are

considered through the Standardized Precipitation-Evapotranspiration Index.

Define a producer’s profits (π) as total value of a producer’s output (TV P ) less total

operating costs (TC).

π = TV P − TC (1)

Applying this very simple framework to a one-crop grower: quantity of output is given

as a function of water applied and the other choice input, f(W,X). The expected output

price is given as P , and the total value product therefore is found by multiplying output by

expected price. The cost of water, c(W ), is here specified as a function of water used. This

could be due to a tiered cost structure for water. For example, a grower might only have

access to some limited quantity of water from a low cost source. If this is exhausted, the

grower would have to turn to a more high-cost alternative. If the cost of water is assumed

to be a static unit price, than c(W ) would be replaced by some fixed value (r) multiplied by

water applied. Finally, the cost of the other choice input is here represented as CX . Total
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costs then are merely the sum of the cost of water applied and the cost of the other choice

input.

TV P = Pf(W,X)

TC = c(W ) + CXX

(2)

Having established these relationships, the next step is to substitute prices and quantities

into the initial profit function, yielding the following:

π = Pf(W,X) − c(W ) − CXX (3)

Being that this profit function is now described fully in terms of only two variables, it can

now be maximized by choosing optimal levels of W and X.

max
W,X

π = Pf(W,X) − c(W ) − CXX (4)

At this point, constraints can be introduced if applicable. For example, a grower might

be limited by the amount of water available. This constraint o available water could be due

to either regulatory policy or physical availability, or some combination of the two. If this

were the case, then W ≤ Wmax, with Wmax representing the maximum water available.

In order to maximize this profit function, first order necessary conditions must be found

by taking the partial derivatives of profits with respect to each input.

∂π

∂W
=
∂[Pf(W,X) − c(W ) − CXX]

∂W
∂π

∂X
=
∂[Pf(W,X) − c(W ) − CXX]

∂X

(5)

By setting these partial derivatives equal to zero, the profit function is forced to some

extrema. Because of the previous assertion that f(W,X) is a “well behaved” function, it

can be assumed that this extrema will be a maximum. Once these partial derivatives are set
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equal to zero, W and X are no longer variables, but some optimal fixed quantities. These will

be represented with W ∗ and X∗. Taking the derivatives outlined above yields the following:

PfW − c′(W ∗) = 0

PfX − CX = 0

(6)

These functions can now be rearranged with the output price (P ) on the left hand side of

each.

P =
c′(W ∗)

fW

P =
CX

fX

(7)

At this point, the equations can be set equal to each other, as the ratio of marginal cost

to marginal productivity of each input is equal to the output price under profit maximizing

conditions.

c′(W ∗)

fW
=
CX

fX
(8)

Rearranging this equation reveals the following:

fX
fW

=
CX

c′(W ∗)
(9)

Here, it can be seen that the rate of technical substitution, the ratio of the marginal

productivities of two units involved in the production of one output, is equal to the ratio

of the marginal prices of these two inputs. Recall that CX is some fixed value, and that if

the cost of water were defined as a fixed value as well (say r), the ratio of these marginal

input prices would merely be the ratio of the market prices of the two inputs (CX

r
). This

relationship between the rate of technical substitution and the input price ratio is to be

expected when profits are maximized.
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It is also at this stage of profit maximization that, if f(W,X) were defined, an expansion

path could be solved for. The expansion path is a function of one input in terms of the other,

which provides all optimal input combinations as the scale of production expands. Solving

Equation 9 for one or the other choice variable would provide this expansion path, but this

is only possible if f(W,X) were defined.

Instead, Equation 9 can be rearranged as such:

fX =
CX

c′(W ∗)
fW (10)

This can now be substituted into the first order condition described in Equation 6 (recall,

PfX − CX = 0).

P [
CX

c′(W ∗)
fW ] − CX = 0 (11)

This equation can be rewritten to isolate fW on the left hand side, which, after some ad-

ditional operations, is found to be equal to the ratio of marginal cost of water to output

price.

fW =
CX

P

c′(W )

CX

=
c′(W ∗)

P
(12)

Rearranging this once again reveals the following:

PfW = c′(W ∗) (13)

Output price (P ) multiplied by the marginal product of water (fW ) provides the marginal

value of product of water (MV PW ), while c′(W ) is definitionally the marginal cost of water

(MCW ). So, when optimal profit-maximizing choices are made, the marginal value product

of water is equal to the marginal cost of water.
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MV PW = MCW (14)

This relationship between marginal value product and marginal cost can be expected to exist

for all choice inputs.

3.2 Irrigation District Water Demand Function

In this section, a conceptual model of irrigation districts’ water demand is presented, identi-

fying drivers of water demand based on existing economic research. This approach informs

the econometric modeling in Chapter 5 of this thesis.

Modelling begins by introducing the idea that total water applied in an irrigation district

in a given year is a function of two factors: the number of acres of each crop planted in

the district in that year, and the overall average intensity of water applied throughout the

district throughout the year. Crucially, this modelling approach assumes that any constraints

on water supply are non-binding. Moore and Dinar (1995) demonstrate that often water

supply does act as a binding constraint in the Western US, and so this assumption must

be applied carefully. The Central Arizona irrigation districts have historically had access

to large amounts of Colorado River water (via the Central Arizona Project), limited but

plentiful groundwater resources, and in some cases surface water from the Salt and Gila

Rivers. If a fixed amount of water is available to a grower, the work presented in this

Chapter and in Chapter 5 is potentially not applicable, depending on whether or not the

constraint binds.

A water demand function based on planted area and intensity of water application is

described mathematically below. Wit represents the total water delivered by an irrigation

district (i) to member growers in a given year (t). This is a function of acres planted in

each crop (c), represented by Acit, and intensity of irrigation (acre-feet applied per acre),
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represented by Iit.

Wit = f(Acit, Iit) (15)

Much of the agricultural economics literature describes growers’ planting decisions as

a two stage process. Before the growing season, growers decide what crops to plant and

how many acres to devote to each. This is sometimes referred to as decision making on the

extensive margin, (as in “To what extent should I plant my crops this year?”). Once crops are

planted, the principal remaining decision is how intensely water and other production inputs

will be applied throughout the growing season. This is sometimes referred to as decision

making on the intensive margin (as in “How intensely should I irrigate my crops?”). This

two stage characterization of growers’ decision making process can be seen in Deryugina and

Konar’s 2017 study of crop insurance’s effect on irrigation water withdrawals, in Frisvold and

Konyar’s 2012 examination of reduced water availability in the Southwestern US, and in Zeff

et al.’s 2019 modeling of various water trading scenarios in Nevada. These are only a few

of many examples that apply this approach. The water demand function described above

essentially describes water demand as a function of decision making along these margins.

This demand function is definitional: water demand will be driven by what is planted,

how much of it is planted, and how intensely water is applied. The process of identifying

drivers of water demand then becomes a question of identifying drivers of these contributing

factors. The remainder of this chapter will be dedicated to addressing extensive and intensive

water use decisions.

Extensive Decisions - What Crops to Plant and How Much?

Factors determining a grower’s crop mix and planted acreage are much discussed in the

literature, which supports the inclusion of key variables in any function designed to model
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these extensive decisions. These variables include (but may not be limited to) crop prices,

climate, input costs, regulatory policy, and irrigation and pumping technology. Each is

discussed in greater detail below.

Expectations about crop prices are a foundational driver of planting decisions. It is

intuitive to assume that a grower’s expectations about the profitability of various crops will

inform their decisions of what to plant in what quantities. Profitability depends on both

revenues (crop prices, crop yields) and on production costs. Haacker et al. (2019) identifies

crop prices as a primary driver of irrigation demand, and includes them in a Classification and

Regression Tree analysis of drastic changes in groundwater levels in the High Plains Aquifer.

Pfeiffer and Lin’s 2014 study of the effect of energy price on groundwater withdrawals in

the same region likewise includes expected crop prices in its econometric analysis. Smith

et al. (2017) includes crop prices in their analysis of groundwater use in Colorado’s San Luis

Valley. Additionally, Deryugina and Konar (2017), Frisvold and Konyar (2012), and Zeff

et al. (2019), all briefly described in the preceding section, each incorporate crop prices in

their modeling. It is worth noting that pre-season expectations of revenues earned for a

particular crop are often influenced by crop insurance or crop-specific federal commodity

programs (Deryugina and Konar (2017), Yu et al. (2018)).

Expectation of the growing season’s climate is another factor that research indicates

can affect extensive decision making. Climate is included as a driver of regional irrigators’

water demand in Kahil et al.’s 2015 hydroeconomic modeling of water use in Spain’s Jucar

Basin. Haacker et al. (2019) incorporate a drought index in their econometric analysis.

Qiao (2018) describes climate as an important driver of farm profits, which themselves are

a direct result of crop mix and planted acreage. Smith et al. (2017) includes surface water

availability in their analysis of groundwater use, which is partially the result of temperature

and precipitation in the region. While this could be seen as somewhat of a proxy for climate,

it is also important to note that regulatory policy and physical water delivery infrastructure
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would also have some role to play in the availability of surface water.

Input prices are also considered in econometric modeling of crop mix and water demand.

This study specifically focuses on the cost of water as an input of interest, and the cost of

energy, a necessary component of surface water delivery and groundwater pumping. Haacker

et al. (2019), Kahil et al. (2015), and Zeff et al. (2019) each include some measure of the cost

of water in their analyses. Zeff et al. (2019) includes groundwater lift costs in the study’s

hydroeconomic optimization model, a function of energy prices and depth-to-groundwater.

This provides a price for water that is a function of the price of energy. Smith et al. (2017)

likewise incorporates pumping costs in it’s empirical analysis. As briefly mentioned above,

Pfeiffer and Lin (2014) is focused specifically on the effect of energy prices on groundwater

use, and so energy prices are of course incorporated into their empirical modeling. Taking

a different approach in their 2012 study, Frisvold and Konyar consider not the direct cost

of water or energy, but the elasticity of substitution between various agricultural inputs,

including irrigation water and energy. This is a valuable alternative to including direct

measures of input costs in an explanatory model if data regarding input prices is difficult to

come by.

Finally, the literature suggests that any effort to model water demand at the irrigation

district level should include a set of district-specific characteristics, such as regulatory policy,

and irrigation and pumping technology. Federal, state, and local policies can have a major

effect on water demand. Haacker et al. (2019), Smith et al. (2017), and Zeff et al. (2019) each

involve examining water policy’s effect on water use in one way or another. While policy

isn’t necessarily a district-specific characteristic, it can potentially differ between irrigation

districts. For example, the Central Arizona Irrigation and Drainage District and the Mari-

copa Stanfield Irrigation and Drainage District are each located in the Pinal AMA and thus

subject to the same regulatory policies, while the Central Arizona Irrigation and Drainage

District and the Buckeye Water Conservation and Drainage District are located in different
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AMAs and thus subject to differing water regulations. In addition to considering policy,

Haacker et al. (2019) also includes available technology as a driver of crop mix and acreage.

Frisvold and Deva’s 2012 study of the adoption of new irrigation technologies in the Western

US tells us that “improving irrigation efficiency is seen as key to reducing water pollution

and easing competition for scarce water in the west” (italics added for emphasis). Any of the

aforementioned studies which include some measure of lift costs, such as Smith et al. (2017)

and Zeff et al. (2019), must know or assume what pumping technologies are present in their

study areas. In fact, due to not knowing the prevalence of specific pumping technologies

in their study area, Pfeiffer and Lin’s 2014 study includes multiple model specifications in

order to account for a range of possible technologies being present.

With all this in mind, a function that captures choice of crop mix and planted acreage

would include the following:

Acit = f(Pt, C
exp
it , rit, eit, Dit) (16)

Here (as above) Acit represents acreage planted in each crop c in irrigation district i in year

t. Pt is a vector of all crop prices (including the price of crop c and the price of crops not

planted) in year t. Cexp
it is some measure of the expected climate in district i in year t, as

extensive decisions occur before the start of the growing season. As in the profit maximization

model, rit represents the cost of water for district i in year t, while eit represents the cost of

energy for district i in year t. Finally, Dit is a vector of characteristics specific to district i

in year t, including regulatory policy and the prevalence of different irrigation and pumping

technologies.

Having specified this extensive function, the next step in assessing a function of overall

water demand is to examine intensive decision making.
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Intensive Decisions - How Much Water to Apply?

Recall that intensive decisions refer to the intensity of water applied to planted acres over

the course of a growing season. Like the extensive decision making process, decision mak-

ing regarding irrigation intensity is frequently discussed in agricultural economic literature.

While there is not complete agreement on which factors are the most important drivers of

these decisions, there are common threads throughout existing research. These include crop

mix and acreage, crop prices, climate, and input costs, each of which is discussed in greater

detail below.

Crop mix and acreage, i.e. a grower’s extensive decisions once made, are the primary

drivers of that same grower’s intensive decision making. This relates to the putty and clay

approach descried by Moffitt et al.. Once a crop is planted in the ground the malleable putty

has set in to clay, meaning a course has been set for that growing season. The specific water

needs of a growers’ planted crops must now be met to a greater or lesser extent. These crop

water needs are marginally driven by climate and a grower’s desired yield. Deryugina and

Konar (2017), Haacker et al. (2019), Kahil et al. (2015), and Smith et al. (2017) all highlight

acres planted in each crop as a key driver of irrigation water demand.

Of particular interest to this analysis is the presence of fruit and nut trees in Central

Arizona. Orchards represent a long term investment, as trees are expensive to plant and

take some years before they begin to fruit and are expected to be productive for decades.

As long term investments, it is import for growers to maintain the health of these trees. In

any given year, orchards would require some minimum amount of water applied in order to

remain healthy and able to produce crops in the future (Fereres et al., 2003). Remember

that this modelling approach assumes that constraints on water availability for irrigation

are non-binding. Were a binding constraint on water introduced, tree crops minimum water

needs would act to further reduce the amount of water available to irrigate annual crops, as

ceasing to irrigate tree crops entirely would typically lead to higher losses for a grower than

47



would ceasing to irrigate annual crops. For this reason, tree crops will be treated separately

from the annual cropping decisions represented in the extensive model.

As in the extensive model, crop prices again play a role in intensive decision making. This

is shown in Frisvold and Konyar (2012), Haacker et al. (2019), Kahil et al. (2015), Pfeiffer

and Lin (2014), and Zeff et al. (2019). As the growing season progresses, expectations of crop

prices at the time of harvest may shift, leading growers to potentially alter their irrigation

decisions. Also included once again are any changes in the costs of water and energy. In some

cases, irrigation districts have established contracts for water and power which would not

be subject to change throughout the growing season, but this cannot be taken for granted.

Also, a shift in expected crop prices relative to these input costs may trigger some change in

a grower’s water application decisions. The inclusion of these variables in an intensive model

is supported by Haacker et al. (2019), Kahil et al. (2015), Pfeiffer and Lin (2014), and Zeff

et al. (2019).

Given all this, a model of an irrigation district level intensive decision making process

can now be constructed. Formally, this function would resemble the following:

Iit = f(Acit, P
o
cit, Cit, rit, eit, Tit) (17)

Where Iit represents the intensity of irrigation in district i in year t. Acit represents the

outcome of district growers’ extensive choices, including acreage planted in each crop present

in district i in year t. P o
cit represents a vector of only the prices for crops (c) planted in district

i in year t, as extensive decisions have been made by this point and crops are now in the

ground. The climate is included once again, although Cit now represents the true climate

during the growing season, as opposed to grower’s expectations. As in the extensive model,

rit, and eit represent the costs of water and energy in district i in year t. Finally, Tit is

included to indicate acreage of tree crops present in district i in year t.
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Final Water Demand Model

Now that conceptual models have been established which include drivers of crop planting

decisions and irrigation intensity, these can be substituted into the water demand model

specified in Equation 15. The final form is shown below.

Wit = f(Acit, Iit) = f(Pt, C
exp
it , rit, eit, Dit, Cit, Tit) (18)

Acit is omitted from this final specification as it can be generated by other variables contained

within. P o
cit is also omitted as any price information it contains would also be included in Pt.

This model accounts for all factors seen commonly throughout recent agricultural eco-

nomic literature examining irrigation water use and informs the econometric analysis in

Chapter 5.
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4 Data

Data used in the upcoming empirical analysis comes from multiple sources and has been

compiled with guidance taken from existing literature and consultations with experienced

researchers. Data is chiefly sourced from state and federal agencies, with additional data

coming from one foreign public agency and one private entity (discussed in greater detail

below). The end product is a set of panel data with each observation representing a Central

Arizona irrigation district in a given year. As previously stated, this analysis includes data

from twelve Central Arizona irrigation districts, all located within either the Phoenix or

Pinal AMA. Annual observations occur between 2008 and 2019. 2008 is necessarily the lower

threshold for observations due to the fact that the source for cropland data, USDA NASS’s

Cropland Data Layer (CDL), does not have information on agriculture in Arizona prior to

2008. Similarly, 2019 is the upper threshold since 2020 water delivery data for irrigation

districts has been published by the Arizona Department of Water Resources (ADWR) at

the time of this writing. The result is a total of 144 observations, annual observations from

twelve districts over the course of twelve years.

The rest of this chapter will discuss data sourcing and procedures used in compiling the

data set, as well as the characteristics of the data itself.

4.1 Water Use Variables

Data on water use by irrigation districts in a given year are taken from reports filed annually

by irrigation districts with ADWR each year. Under the 1980 Groundwater Management

Act, irrigation districts located within an Active Management Area are compelled to file

reports listing water use by water right, which are in turn published by ADWR. This provides

information on both end use (agricultural, municipal, industrial, etc.), and water source

(groundwater, surface water, CAP, etc.), with water accounted for in acre-feet. Most districts
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summarize water usage by water right into these grouped categories, and these summary data

serve as the primary source for district water use data.

Regressions in this analysis consider two dependent variables: water deliveries to agri-

cultural uses, and the intensity of water applied to crops. Summary statistics describing

these dependent variables are provided in Table 1. This table also describes overall water

deliveries (including but not limited to those intended for agricultural use), the percentage of

districts’ water use intended for agriculture, and the natural log of deliveries to agriculture.

Figure 4 presents agricultural water deliveries to irrigation districts included in this study,

with overall average annual deliveries, as well as average annual deliveries to districts in each

AMA plotted. The actual values plotted are the natural log of water deliveries, in order

to make the higher volume Pinal AMA districts and the lower volume Maricopa AMA

districts comparable. It is plain to see that water deliveries to Central Arizona agriculture

have generally been in decline since 2008. This is likely a result of the GMA’s regulations

involving the non-expansion of irrigated area (within the AMAs, existing agricultural lands

can fall permanently out of production but new lands can not be brought under irrigation).

Another explanation for this general decline could be the expansion of developed area in

and around Phoenix diverting more water away from agricultural uses. However, the Pinal

AMA’s average annual agricultural water use would seem to dispute this last idea, as the

general trend of reduced agricultural water use is similar in both the Phoenix AMA and

the much less developed but faster growing Pinal AMA (World Population Review, 2021).

Table 2 clearly illustrates the large differences in agricultural water deliveries across districts.

Because of these substantial differences in delivery volumes, the regression models pre-

sented in Chapter 5 are specified with the natural log of agricultural deliveries as the depen-

dent variable (as opposed to the raw value). Water deliveries to agricultural uses are reported

in acre-feet directly, meaning the only data “cleaning” that is necessary is to take the natural

log of those values reported by the irrigation districts themselves. The natural log is chosen
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due to the wide range of values and high variance observed in deliveries to irrigation districts.

This high variance is due to the differences in scale between irrigation districts. In 2011, the

Central Arizona Irrigation and Drainage District delivered over 338,000 acre-feet of water

to agricultural end users, while in 2010, the Tonopah Irigation District delivered just under

13,800. These two values differ by orders of magnitude and are in no way outliers: of 144

agricultural water delivery values observed, 24 are over 200,000 acre-feet while 13 are under

20,000. Taking the natural log of these values “flattens” these scalar differences, allowing

regression model results to be more easily interpreted.

Figure 5 shows the natural log of water deliveries to agriculture in each year in each

irrigation district. A number of trends are apparent. Firstly, large districts such as the

Central Arizona Irrigation and Drainage District routinely deliver large quantities of water,

while small districts such as the Arlington Canal Company deliver less. This is a product of

the amount of cropland available in these districts. Some districts show substantial variation

from year to year, while others are relatively stable in their water deliveries. Certain districts

also seem to be gradually reducing their water deliveries over the course of the study period,

such as the Hohokam Irrigation District.

Irrigation intensity is a measure of the average volume of water (acre-feet) applied to

every 900m2 planted area in an irrigation district. To find this value, it is necessary to divide

agricultural water deliveries by planted area in each district in each year. Planted area is

found by summing the area of all crops planted in an irrigation district in a given year, and is

listed in Table 2. These cropped areas are found using CDL data, described in much greater

detail later in this chapter. CDL’s pixel resolution is 30 meters by 30 meters, or 900m2,

which is why this unit of measure is chosen for land area. However, this could easily be

scaled up (to an acre or hectare) without altering the fundamental information the variable

conveys.

Figure 6 describes irrigation intensity by irrigation district across the study period. When
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examining Figure 6, some notable trends are apparent. Due to irrigation intensity being the

ratio of agricultural water deliveries and planted area, this measure is not bound by the

amount of planted area available in a district. District with small planted area can exhibit

high irrigation intensity and vice versa. Therefore, intensity can be more easily compared

across smaller and larger irrigation districts than raw delivery volumes. Generally, most

irrigation districts studied exhibit some decline in irrigation intensity over the course of the

study period. In some districts, such as the Hohokam Irrigation District, this decline is very

pronounced.

Finally, it is important to touch on the relationship between water deliveries and planted

area. Agricultural water deliveries and CDL planted area measures are highly positively cor-

related, returning a correlation coefficient of 0.9549. This is to be expected, as the amount

of planted area heavily governs water deliveries in arid regions where all planted acreage is

irrigated (an exception to this rule being if crops are abandoned mid-season). As mentioned

above, his high correlation is not observed with planted area and irrigation intensity. The

correlation coefficient is only 0.0153 between the two variables, indicating almost no correla-

tion whatsoever. Notice in Table 2 and Figure 6 that districts with relatively small planted

areas sometimes exhibit high irrigation intensity. Likewise, the very large Central Arizona Ir-

rigation and Drainage District exhibits relatively low irrigation intensity. Growers’ extensive

decision making in terms of planted acreage largely determines agricultural water deliveries

(as demonstrated in Chapter 5). The high correlation of 0.9549 still leaves some room for

other factors to influence overall water use, such as crop mix and economic variables. On

the other hand, it seems as though intensive decisions regarding irrigation intensity are not

influenced by planted area (per Figure 6). Exogenous factors (such as crop prices or climate)

may be playing a large role in determining this behavior. These relationships are further

explored in Appendix A.2.
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4.2 Land Cover Measures

Land cover measures are taken from the Cropland Data Layer (CDL), which is published

annually by USDA NASS. The CDL contains remote sensed land cover data covering the

contiguous United States at a 30m resolution (with roughly 4.5 of these 900 square meter

pixels equaling an acre). While the CDL’s primary purpose is measuring crop cover, it returns

some value for every 900m2 pixel within the area recorded. This means that developed area,

fallowed lands, open water, grassland, forest, and other non-cropped land covers are all

classified and recorded, some of which are used later in this analysis.

CDL raster data can be integrated with shapefiles from ADWR which define the bound-

aries of Arizona’s irrigation districts. In this way, one can determine the acreage of individual

crops within any given irrigation district, as well as fallowed area, developed area, and the

area of other land covers. The variables detailed in Table 3 are defined in this way, with a

measure taken for each irrigation district in the study area for each year in the study period.

These variables are used in this work in two ways: first, to examine the extent to which ir-

rigation districts’ water deliveries depend on crop mix and planted acreage (Appendix A.2),

and second, as explanatory variables in the empirical analysis.

Table 2 breaks down average planting behaviors by irrigation district, as well as including

average agricultural water deliveries and some fixed characteristics, such as district size and

which AMA a district falls within. Sometimes there is a large disparity between overall

district area and average planted area. For example, the Maricopa-Stanfield Irrigation and

Drainage District on average plants just over 50% of the total district area available. The Salt

River Project, in the heavily developed Phoenix metro area, regularly sees crops planted on

just over 6% of the district’s area. For this reason, when calculating any variables dependent

on area (such as irrigation intensity described above), planted area is used rather than total

area within the district. Fallowed or idle cropland will also be included in the empirical

analysis presented in Chapter 5, but will not be included in measures of planted area.
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Looking further at planted area reveals one of the major differences between the Phoenix

and Pinal AMAs. Although there are only three irrigation districts within the Pinal AMA,

taken together they make up 59% of the average planted area observed in this study. Among

irrigation districts in the Phoenix AMA, only the Roosevelt Irrigation District averages a

larger planted area than the smallest Pinal district. This speaks to a difference between

the two AMAs and their approaches to agricultural water management. Agriculture is a

key element of Pinal County’s economy, while the economy of the Phoenix metro area is as

largely diversified as one might expect a major American city to be (Lahmers et al., 2018).

This lends further weight to the inclusion of differences in AMA water regulatory policies in

econometric modeling of water use in Central Arizona, achieved through the inclusion of an

AMA indicator variable.

Table 2 also illustrates both the extent to which alfalfa and cotton dominate Central

Arizona’s agricultural landscape, and the degree to which irrigation districts differ in their

approach to the two crops. While alfalfa is the predominant crop in all but one irrigation

district, some districts split their planting of the two crops almost evenly, while others plant

almost no cotton at all. Districts within the Phoenix AMA heavily favor alfalfa in their crop

mix, while Pinal AMA districts’ cropping patterns are more diversified. Also notable is the

fact that the only instance of a district regularly planting more cotton than alfalfa comes

from the truly massive Central Arizona Irrigation and Drainage District. The average area

of cotton planted in this district is greater than the average area of alfalfa planted in any

district in the study area.

Moving away from alfalfa and cotton, it is evident from Table 2 that some districts favor

planting cereal grains over cotton, and in the case of the Maricopa Water District, over

alfalfa as well. The grains category is made up of five distinct cereal crops, not one of

which is nearly as common as alfalfa or cotton (recall Figure 2). Tree crops and irrigated

pasture are not particularly prevalent throughout the study area, with neither category
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regularly representing more than 3% of the planted area of any irrigation district. In terms

of raw area, tree crops are almost twice as common as irrigated pasture in each district

observed. This study is particularly interested in the effect of tree crops on water use,

as they are structurally unlike any other crop group defined in Table 3. Tree crops are

necessarily long term investments, and require substantial up-front costs to plant. While

specific characteristics vary depending on the species, tree crops generally take several years

after being planted to bear fruit, and require some minimum amount of water to survive

from year to year (Fereres et al., 2003). As a result, there exists something close to a fixed

lower bound for water needed to maintain an orchard’s health. Finally, the “other crops”

category makes up a significant portion of a few districts’ planting, although it represents

a small proportion of overall planting in the study area. Being that this grouping includes

over a dozen crops, it may be hard to assess the implications of any significant effect related

to this grouping observed in an econometric model.

In addition to the crop mix variables described above, the CDL provides data on fal-

lowed/idle croplands, described in the final column of Table 2. Whether fallowed area has a

significant effect on either water deliveries or irrigation intensity is explored in econometric

analyses presented in Chapter 5. One hypothesis is that the greater the extent of fallowed

area within a district, the less irrigation water need be delivered. However, fallowed area

may also play a role in driving growers’ irrigation intensity decision making. Under some

types of water entitlements, more fallowed area in a district might mean there is more water

available to irrigate those crops which have been planted. If the fallowing is due to water

leasing by growers to non-agricultural water uses, then fallowing generally does not create

unused water that can be applied to other crops on growers’ land. Table 2 also shows that,

like agricultural water delivery volumes, fallowed area differs substantially between districts,

so once again the natural log of fallowed area will be included in Chapter 5’s econometric

analysis.
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USDA NASS reports metadata for the CDL, including accuracy estimates for land use

variables reported by state for every year data is published. Figure 7 reports accuracy

estimates for cotton, alfalfa, and fallowed area measures in Arizona during the study period.

It is notable that accuracy or measurement for fallowed lands is consistently lower than

that of cotton and alfalfa. This is likely due to how the CDL trains its algorithm to process

remote-sensed data. USDA NASS uses self reported information from growers on what crops

are being planted in individual plots. In the case of fallowed area, growers report lands that

are not in production currently but have been recently and which they intend to plant again

in the future. This self reported information is then used to train processing algorithms to

interpret remote sensed satellite imagery. It is very likely that, in arid state like Arizona,

algorithmic processing may have a harder time distinguishing fallowed crop land from other

lands than it would distinguishing lands planted in crops like cotton or alfalfa (Willis, 2021).

4.3 Economic and Climatic Variables

In addition to water use data taken from ADWR reports and land cover data compiled from

the CDL, this analysis will consider a number of economic and climatic variables’ effect on

irrigation decisions. These include prices for alfalfa and cotton, the costs of Central Arizona

Project (CAP) water and electricity, and the Standardized Precipitation Evapotranspirtation

Index, a climate measure that incorporates both temperature and rainfall. Basic summary

statistics relating to each of these variables are presented in Table 4. The sources and

procedures used in compiling these data, as well as more detailed discussion of the variables’

behaviors, will be discussed in detail in this section.

Being that alfalfa planting is predominant throughout the Phoenix and Pinal AMAs,

the prices growers expect to receive for alfalfa are of particular interest. As there aren’t

many major federal commodity programs supporting alfalfa production, market prices for

alfalfa are generally seen as a fair measure of growers’ price expectations (Frisvold, 2021).
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Alflafa market prices used in this analysis are sourced from USDA NASS’s Quickstats service,

which provides annual prices paid for alfalfa in Arizona in dollars per ton. These prices are

then adjusted for inflation using the US Bureau of Labor Statistics Consumer Price Index

(CPI) for the year 2019 to generate real prices that are comparable across the study period,

henceforth referred to as 2019$. This same index will be used to adjust all other price

variables in this study.

Figure 8 illustrates change in real alfalfa prices in Arizona over the study period. There is

no immediately recognizable pattern or trend at work in the pricing pattern. The relatively

high standard deviation presented in Table 4 speaks to the high variability in price on display.

Like alfalfa, cotton is an extremely commonly grown commodity crop throughout Central

Arizona. Unlike alfalfa, cotton is subject to many federal commodity programs. This results

in a scenario where prices that cotton growers’ receive may differ considerably from the price

the cotton is ultimately sold for in the marketplace. Because of this, simply considering

market price of cotton as a motivator of growers’ cropping and irrigation decisions is likely

inadequate. Instead, a fair proxy for a grower’s expectation of price received must be found.

One such proxy variable commonly seen throughout the literature is the New York Cotton

Exchange December Futures (2021) price just prior to planting. The December Futures price

from the last Friday in February is seen most informative for grower’s planting decisions,

as this is provides some expectation of price as late in the year as possible before planting

decisions are made (Tronstad, 2021). While some research incorporates the end-of-February

December Futures price into larger functions which generate an expected price of cotton (Sall,

2019), other work has indicated that these data alone serve as a strong proxy for growers’

expectations of price (Frisvold, 2021). Along with other price variables, these December

Futures prices have been adjusted to 2019$.

Figure 9 illustrates change in the real price of December cotton futures over the course

of the study period. Generally, these prices seem to be on the decline since 2011, although
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this perceived trend could simply be due to the small sample of years pictured. December

cotton futures display substantial variability, although the standard deviation is not nearly

as high as the statistic reported for alfalfa prices.

CAP water prices are fortunately much more straightforward than cotton prices when it

comes to compiling useful data. The CAP, administered by the US Bureau of Reclamation

(BoR), provides low cost Colorado River water to Central Arizona end users. Water prices

for growers are available from from CAP, which publishes annual fee schedules that include

fees for the current year as well as projected prices in future years (Central Arizona Project,

2021b). These fee schedules are listed in dollars per acre-foot of water delivered and are

readily available through BoR. Once compiled, the typical adjustment to 2019$ makes these

prices comparable to each other as well as other economic variables.

Figure 10 illustrates change in the real price of CAP water deliveries over the course of the

study period. Unlike the behavior observed in Figures 8 and 9, CAP prices trend consistently

up over the eight year period between 2008 and 2015 (notwithstanding a small blip in 2012).

This trend has vanished in the last four years, as water costs first stagnated before dropping

substantially between 2017 and 2018. Variability is considerably lower than that observed for

alfalfa or cotton futures prices, which is consistent with Figure 10’s graphical representation.

Another economic factor considered but ultimately not included in this study’s empirical

analysis are energy costs. This may seem like a glaring omission, and indeed, existing

economic literature supports the inclusion of some measure of the cost of energy to account

for costs associated with groundwater pumping. Recall from Chapter 2 and 3 that Pfeiffer

and Lin (2014), Smith et al. (2017), and Zeff et al. (2019) each consider energy costs in some

form in their empirical analyses. So then, why are they omitted from the econometric models

specified in Chapter 5 of this study? Irrigation districts in Central Arizona often have their

power supplied through a state organization called the Arizona Power Authority (APA).

The APA contracts with the federal Western Area Power Administration to purchase energy
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generated at Hoover Dam, Parker Dam, and other BoR hydroelectric projects located along

the Colorado River. This energy is provided at extremely low cost, with rates being provided

to agricultural uses for as little as $0.06 per kilowatt hour. In addition, APA contracts with

irrigation districts and their subsidiary electrical districts are often very long term, meaning

these low rates for energy can be fixed for decades (Arizona Power Authority, 2021). Of

the twelve irrigation districts included in this study, eleven can be conclusively shown to

have their power provided through the APA (George Cairo Engineering, Inc., 2021; Arizona

Power Authority, 2021; Western Area Power Administration, 2021). Only the Arlington

Canal Company lacks available documentation linking them to the organization. While this

may mean that their power is supplied from other sources, it could also be the case that this

district is indeed an APA customer, and that documents indicating this are not forthcoming.

Therefore, at least eleven of twelve districts in this analysis are paying very similar if not

identical rates for energy which are also exceptionally low and do not vary from year to year.

These low costs likely have little impact on districts’ pumping decisions. Because energy

costs are low, nearly ubiquitous (with the possible exception of the one district mentioned

above), and unchanging, they have been omitted from the analysis presented in the next

chapter.

Finally, climate behavior in this analysis is captured through the Standardized Precipitation-

Evapotranspiration Index (SPEI). The SPEI is a publicly available data product developed

by Santiago Begueria, Borja Latorre, Fergus Reig, and Sergio Vicente-Serrano under the aus-

pices of Spain’s Climatology and Climate Services Research Center (Global SPEI Database,

2021). The SPEI is a statistically robust multi-scalar drought index which includes measures

of precipitation and temperature in the form of potential evapotranspiration (McEvoy et al.,

2012). The index is calculated at different time scales and standardized, returning values

between -3 and 3, corresponding to hotter, drier periods and cooler, wetter periods respec-

tively. Short time scales (between 3 and 6 months) are most efficient for assessing drought
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conditions related to soil water content, and so this analysis will use SPEI data standardized

over a moving three month period (Global SPEI Database, 2021). These data are further

compiled into variables representing own-year average, prior-year average, winter average,

growing season average, and prior rainy season average. The exploration of these various

weather measurements is detailed in Appendix A.3. Spatially, SPEI data is available through

the Global SPEI Database (maintained by the group listed above), at a pixel scale of 0.5°

squared. This is fortunate for the purposes of this analysis, as the Global SPEI Database’s

spatial scale roughly corresponds to the boundaries of Maricopa and Pinal counties (Global

SPEI Database, 2021). Model specifications presented in the next chapter will consider SPEI

in year t − 1 when predicting water deliveries in year t, as a grower would have no way of

knowing climate patterns in year t when making cropping decisions at the outset of the

growing season.

Figure 11 illustrates SPEI measures for Maricopa and Pinal Counties throughout the

study period. 2007 is included as a lagged measure will be employed in the following chapter.

The measures generally follow each other throughout the study period, but with significant

differences in some years. Pinal County tends to be cooler than Maricopa, with the exception

of 2007-08 and 2015. This could be attributable to monsoon patterns, changes in elevation,

and/or the growing urban heat island effect around the Phoenix metro area. In many years,

Maricopa County is considerably hotter and drier than its neighbor to the South. There

are a handful of observations with positive values (indicating a year that is cooler and

wetter than normal), but the study area is typically hotter and drier than average in these

years. Notable in Figure 11 is a semi-oscillating pattern of hotter, drier years followed by

cooler, wetter years in each county. This oscillation does not occur 100% of the time, but

is seen in 18 of the 22 year-to-year changes observed in the study period. Figures 12 & 13

illustrate annual precipitation and temperature in Maricopa and Pinal Counties, measured

in cumulative inches of rainfall and number of days with a high temperature at or above
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100 degrees Fahrenheit respectively. An inspection of Figures 12 & 13 shows a recurring

pattern of oscillating values in many years. This lends credibility to the behavior observed

in Figure 11. It is possible that, over a small sample of years, this oscillating behavior might

confound coefficient estimates obtained through regression analysis. Results obtained in the

next chapter relating to the effects of prior-year SPEI on outcome variables will therefore be

treated with additional scrutiny.
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5 Models and Results

Initial statistical analysis is conducted using simple Ordinary Least Squares (OLS) regres-

sions, which include much of the data described in Chapter 4. These OLS regressions provide

an important foundation for this research, but standard robustness checks indicate that the

variances of error terms returned by these regressions are potentially heteroskedastic. This

finding is not surprising, being that different irrigation districts vary in policy structure,

physical infrastructure, and constituent composition (as described in Chapter 2). Descrip-

tive analysis of Cropland Data Layer (CDL) variables also leads to some concern regarding

systemic measurement error in the remote sensed data. In order to compensate for these

issues, the final statistical models presented include variables demeaned at the district level

to account for district level fixed effects, as well as robust standard errors to compensate for

possible systemic measurement error occuring in the CDL data.

This chapter explains the approach outlined above in fine detail. After describing the

basic OLS model specifications initially used, the process of implementing robustness checks

is discussed, before going on to specify the final fixed effect regression models. Finally, the

last section of this chapter describes and interprets the results returned by these fixed effects

models.

5.1 OLS Models

Initial statistical analysis involves the simple OLS regressions described below. As mentioned

in Chapter 4, regressions are run considering two dependent variables: water delivered to

agriculture and irrigation intensity. The deliveries model is specified as such:
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ln(Dit) = αD + β1Wat−1 + β2Alft + β3Cott + β4CAPt

+β5TrAit + β6ln(FaAit) + β7PlAit + β8Pini + eit

(19)

Here, Dit represents to deliveries to agriculture in district i in year t. Recall from Chapter 4

that the natural log operator is applied to water deliveries due to large differences in scale

and high variance of deliveries to irrigation districts. Wat−1 represents the annual average

Standardized Precipitation-Evapotranspiration Index (SPEI) metric in AMA a in year t−1.

As mentioned in Chapter 4, the prior year SPEI is the preferred explanatory variable for

weather, as a grower would have no way of observing weather patterns in year t when choosing

what crops to plant and in what quantity at the beginning of a growing season. The process

of evaluating alternative weather variables is described in detail in Appendix A.3. Alft, Cott,

and CAPt respectively represent real alfalfa prices, December Futures prices for cotton, and

Central Arizona Project (CAP) water costs in year t. Again recall from Chapter 4, all price

variables are adjusted for inflation and presented in 2019 dollars. TrAit and FaAit represent

area planted in tree crops and fallowed area in irrigation district i in year t as reported by

the CDL, with the natural log of fallowed area employed to account for large differences

in the scale of irrigation districts. PlAit represents all planted area in irrigation district i

in year t. This is included as a control variable to account for extensive decisions made at

the beginning of the growing season. As Appendix A.2 shows, extensive decision making

regarding crop mix and acres planted drives most (but, crucially, not all) water delivery

decision making, and so this variable is included to compensate for this effect. Pini is a

simple binary variable describing whether irrigation district i belongs to the Pinal AMA or

not. Recall that there are only two AMAs included in the study area, Pinal and Phoenix.

Therefore, Pini is equal to zero for those districts located in the Phoenix AMA and equal

to one for those located in the Pinal AMA. Finally, an error term (eit) is included.
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The irrigation intensity model presented below is similar to the water deliveries model in

many aspects, but includes a handful of crucial differences.

Iit = αI + δ1Wat−1 + δ2Alft + δ3Cott + δ4CAPt + δ5TrPit + δ6FtPit + δ7Pini + eit (20)

The most obvious difference is the dependent variable (Iit) representing irrigation intensity

in irrigation district i in year t. As discussed in Chapter 4, irrigation intensity is the measure

of water delivered to district i per planted area in district i in year t. The weather measure

(Wat−1) and the three price variables (Alft, Cott, and CAPt) remain unchanged from the

water deliveries model. The Pinal AMA binary variable (Pini) likewise remains unchanged.

Another major difference between the two models is in the inclusion of measures of planted

area. While the water deliveries model includes overall area measures for tree crops and

fallowed lands in order to account for the effect these areas have in districts of varying sizes,

the irrigation intensity models include ratios of these areas compared to total planted area.

TrPit represents the percentage of total planted area in district i in year t planted in tree

crops, while FtPit represents the ratio of fallowed lands to planted lands in district i in year

t. One characteristic of note is that, while area planted in tree crops can never exceed total

planted area, no such restriction exists regarding area left fallow, meaning that while TrPit

is bound between zero and one, FtPit is under no such constraint. Because planted area is

used in calculating the dependent variable, it is omitted from this specification in order to

avoid any issues with endogeneity. Finally, eit is once again included as an error term.

The results of these OLS models are presented in Table 5. In both models, alfalfa

prices and cotton futures are seen to be having a significant impact on water use. The

negative coefficient estimates interacting with alfalfa prices in both models are somewhat

confounding, as the law of demand would generally dictate that a higher output price should
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lead to increased input use. This may be due to the nature of alfalfa planting described

in Chapter 1, in which alfalfa stands have a productive life of three to seven years. Alfalfa

planting may be less subject to current prices than purely annual crops, as stands can

typically exist for up to seven years. Cotton futures’ impact on both water deliveries and

irrigation intensity fall in line with standard economic expectations: as prices rise, so too

does demand for an essential production input. CAP water costs are interacted with a

significant and negative coefficient estimate in both models, which also falls in line with

standard economic expectations.

Lagged SPEI is seen to have a significant effect on irrigation intensity, but not on overall

water deliveries to agriculture. The lack of significance in the water deliveries specification

could be the result of weather having little effect on growers’ planting decisions, as farm

operations in Pinal and Maricopa Counties likely expect lots of heat and little rainfall for

most of the growing season, and plan accordingly. Another possibility is that the Pinal

AMA variable may be picking up some of the effect of weather, as SPEI is recorded at

roughly the county level. This possibility is explored further when robustness checks are

applied. The coefficient estimate associated with lagged SPEI in the irrigation intensity

model is significant, but, similar to the alfalfa price variable, is of a sign that runs contrary

to expectations. Recall that the SPEI index returns negative values for time periods that

are hotter and drier than normal. The statistically significant and positive coefficient tells

the story that growers in the study area apply irrigation water less intensely following a hot,

dry, year. This confounding observed effect could be the result of the oscillating behavior of

the SPEI variable over the short study period, as discussed in Chapter 4.

Area planted in tree crops is seen to have a significant impact on both water deliveries

and irrigation intensity. This is perhaps due to tree crops’ water needs differing from field

crops, including irrigation water being required year round and some base level of water

required in order to maintain healthy orchards even when growers don’t intend to produce
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a crop. The significant effects observed may also be due to the tree crop variables ”picking

up” the effects of other irrigation district characteristics. Tree crop planting may change

more slowly than other land cover variables modeled in these specifications, as orchards are

expensive to plant and remove. If the area planted in tree crops in some irrigation district

remains relatively static throughout the study period, than this variable has the potential

to capture the impact of other district-level characteristics. Once again, this possibility will

be explored further once robustness checks are applied.

Fallowed area is seen to have a significant impact on both water deliveries and irrigation

intensity, although the observed effects are once again are somewhat confounding to interpret.

A large fallowed area significantly increases irrigation water deliveries, while a high fallow-

to-planted ratio significantly reduces irrigation intensity. These effects are vexing, as it does

not seem unreasonable to expect a district with more fallowed land would require less water

to be delivered, or that more lands left fallow relative to planted area would provide the

opportunity to intensify irrigation. Planted area is seen to have a highly significant and

positive effect on water deliveries. Like cotton futures prices, this is very much in line with

intuitive expectation.

Finally, districts in the Pinal AMA are shown to have significantly lower baseline expec-

tations for both water deliveries and irrigation intensity. The lower intensity may be due

to the slightly cooler climate of Pinal County, and the generally larger scale of irrigation

districts within the Pinal AMA. However, it is strange that these large-scale irrigation dis-

tricts would generally require fewer deliveries overall. As mentioned above, it is possible that

the AMA binary variable is picking up some effect of weather, and this will be investigated

further in the coming sections.

Some of the results described in the preceding paragraphs are a bit confounding. Due to

this, as well as the varied nature of Arizona irrigation districts, robustness checks must be

applied.
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5.2 Robustness Checks

As mentioned in the opening paragraphs of this chapter, the irrigation districts within the

study area structurally differ in many ways. It is for this reason that the OLS regressions

outlined above are likely to generate heteroskedastic error terms. In this section, checks for

heteroskedasticity are reported. Year-to-year change in the tree crops variable will also be

evaluated in an effort to determine whether tree crop area may be acting as an irrigation

district fixed effect in the agricultural deliveries model.

The first step in assessing heteroskedasticity is a visual inspection of the error terms

returned by the OLS regression models plotted against the fitted values of the dependent

variables. Figures 14 & 15 show these results for deliveries to agriculture and irrigation

intensity respectively. A visual inspection of Figure 14 seems to show clear signs of cluster-

ing, with groupings occurring when fitted values are between 11 and 12, and greater than

approximately 12.5. On the other hand, Figure 15 does not immediately show evidence of

heteroskedasticity. It could well be the case that the structural differences between irrigation

districts do not affect irrigation intensity to the same degree that they do water deliveries.

The next step involves performing statistical tests on the regression outputs themselves.

Bruesch-Pagan tests are run on both models to determine the likelihood of heteroskedastic

error terms. The Breusch-Pagan test for heteroskedasticity compares fitted values to residual

errors in an effort to validate a null hypothesis of constant variance. If this null hypothesis

can not be validated, it is likely that residual error terms are heteroskedastic. The results

of these checks are presented in Table 6. What was apparently evident in Figures 14 & 15

is now statistically quantified by these results. The agricultural deliveries model exhibits

a relatively high χ2 value of 2.66, corresponding with a p-value of 0.1028. This means the

null hypothesis can be rejected with some confidence, but 0.1036 is close to the typical

threshold of 0.05 and extremely close to a slightly less stringent threshold of 0.1. For this

reason, although the test would suggest controlling for heteroskedasticity could be foregone,
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a fixed-effects regression will be run for deliveries to agriculture. On the other hand, the

small χ2 value associated with the irrigation intensity model (0.02), and its corresponding

p-value of 0.8918, indicate that the null hypothesis of constant variance can be rejected with

confidence. This is once again consistent with a visual inspection of Figure 15. For this

reason, one could accept the OLS intensity model results as sound, although for the sake of

completeness, a fixed-effects regression will be run for irrigation intensity as well.

Rather than include a binary variable for each irrigation district in the study, fixed

effects models will instead demean variables at the district level in order to preserve as

many degrees of freedom as possible. This process involves subtracting the average value

of a given variable in a district from each individual observation recorded for said district.

This demeaning process works mathematically in the same way as including a set of binary

variables, but allows for increased degrees of freedom and avoids potential “overfitting” due to

dummy variables. The Pinal AMA binary variable will be dismissed in these specifications.

This serves two purposes. First, demeaning the Pinal AMA variable at the district level

will result in zero values being returned for all observations, as this is a fixed, district-level

characteristic. Secondly, dropping the Pinal AMA variable will address the potential issue

of the AMA binary capturing some effect of weather. SPEI will no longer be directly tied to

an existing binary variable.

The next robustness check to perform is an evaluation of the tree crop variable, specifically

focused on whether planting of trees in each irrigation district varies widely from year to

year. Figure 16 charts area planted in tree crops for each irrigation district throughout the

study period. Two notable trends seem to stand out. Firstly, for many of the irrigation

districts with relatively little area devoted to tree crops, the area measure seems to change

very little from year to year. Figure 17 highlights this further by omitting the two irrigation

districts with the most tree crops planted (Central Arizona Irrigation and Drainage District

and Maricopa-Stanfield Irrigation and Drainage District). Because some districts show so
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little variation in area planted in trees, this variable will be excluded from any fixed-effect

models, due to the potential for collinear relationships affecting results. As a result, tree

crops will be considered a fixed characteristic of irrigation districts for the purposes of this

study. The true effect of tree crops on agricultural water use in Central Arizona is therefore

a subject ripe for further research.

The second discernible trend is more concerning. Visual inspections of Figures 16 & 17

clearly show systemic peaks and troughs in the remote-sensed land cover data. Most notable

is the large spike across almost all districts in 2010, but also potentially evident are a peak

in 2014 and a trough in 2016. While tree crops do tend to be planted in batches, it seems

unlikely that many districts would see a huge spike in planted acreage in 2010 followed by a

huge reduction the following year. Instead, these peaks and troughs could be due to ongoing

refinement of the remote-sensed data collection process, either at the level of photographic

collection of data itself, or the algorithmic processing of said data (Willis, 2021). The first

question that must be answered is whether these systemic patterns are specific to the tree

crop variable, or if they are seen across all crops planted in the study area. Figure 18

shows all planted area by irrigation district throughout the study period. When charted,

the planted areas appear much smoother than the areas planted in tree crops, but evidence

of the same trends described above can still be seen in 2010, 2014, and 2016. Because

irrigation intensity is determined by dividing water deliveries by planted area, these CDL

remote-sensed variables cannot be dismissed completely without greatly reducing the scope

of this research. Instead, all fixed-effects regressions will employ robust standard errors in

order to account for the potential of systemic perturbations in the remote-sensed data.

5.3 Fixed-Effects Models

With these robustness checks in mind, presented below are the fixed effects models which

will be analyzed in this research. Beginning with water deliveries to agriculture, all variables
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described in the OLS model specifications are included, with the exception of area planted

in trees and the Pinal AMA binary variable.

ln(Dit) = αD + β1Wat−1 + β2Alft + β3Cott + β4CAPt + β5ln(FaAit) + β6PlAit + eit (21)

Here, shorthand for any variable specified in the OLS model remains unchanged. As de-

scribed in the previous section, two additions to this model are irrigation district level fixed

effects through demeaning and the inclusion of robust standard errors.

The model of irrigation intensity is much the same as the OLS specification, only with

percentage of planted area represented by trees and the Pinal AMA binary variable hav-

ing been omitted. Here again irrigation district fixed effects area accounted for through

demeaning and robust standard errors are employed. The model is formally specified below.

Iit = αI + δ1Wat−1 + δ2Alft + δ3Cott + δ4CAPt + δ5FtPit + eit (22)

These fixed effect models R2 measures will be reported in two ways: R2 Within and

R2 Between. R2 Within reports how much variation in the dependent variable within an

irrigation district over time is accounted for. R2 Between reports how much variation between

irrigation districts is captured by the model. R2 Within is typically of greater interest, as the

application of fixed effects is due to skepticism over a model’s ability to otherwise explain

variation in the dependent variable between districts. With these fixed-effects regression

models fully specified, and having accounted for heteroskedasticity and systemic variation

in CDL remote-sensed data, the coefficient estimates produced will now be discussed.
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5.4 Results

With the effects of individual irrigation districts accounted for and additional complications

arising from the land cover variables’ systemic error addressed, the results of the fixed effects

model can now be interpreted. Table 7 presents coefficient estimates from both the water

deliveries and irrigation intensity models. Compared to the results from the OLS regressions,

the fixed effect models’ report less confounding significant coefficient estimates in many cases.

The fixed effect models’ R2 measures have decreased compared to their OLS counterparts.

This is likely due to the omission of the tree crops and Pinal AMA indicator variables, which

almost certainly capture the effect of other district-level fixed characteristics. Therefore, it

can be assumed that these fixed effect models’ R2 measures are more precise. The water

deliveries model returns an R2 Within of 0.37 and an R2 Between of 0.748, meaning the

model captures the effect of the explanatory variables on variation in water deliveries between

districts more efficiently than it does the effect of the explanatory variables on variation in

water deliveries within the individual districts over time. The irrigation intensity model flips

this dynamic, with an R2 Within of 0.4287 and a vanishingly small R2 Between of 0.0034,

meaning this model has almost no ability to capture the effect of the explanatory variables

on variation in irrigation intensity between districts. Taken in their entirety, the fixed-effect

models seem to have improved on the OLS modelling approach. The rest of this section will

be spent discussing the specific coefficient estimates returned, and the implications of these

results.

The lagged SPEI weather metric is found to have a highly significant effect in both fixed-

effect models. This finding differs from the results returned by the OLS modelling, and is

likely due to the Pinal AMA binary variable having been omitted. The positive sign on both

coefficient estimates is somewhat unexpected. Recall from Chapter 4 that the SPEI measure

ranges from -3 to 3, with negative values meaning a hotter, drier year. This means that,

when interacted with the highly significant coefficient estimate in either model, a hot and
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dry year t−1 indicates lower water deliveries in year t. Visual inspection of Figure 11 seems

to show hotter, drier years and cooler, wetter years alternating throughout the study period.

This alternating pattern is likely driving the positive sign of the coefficient estimate, and is

not necessarily a reliable trend. For this reason it would be useful to investigate the effect

of SPEI over a longer study period, once more remote-sensed data become available.

The cotton futures price variable returns statistically significant values for both models

and CAP water costs are seen to have a significant impact on irrigation intensity, with the

signs of all significant coefficient estimates conforming to standard economic expectations.

Higher prices of cotton futures are seen to increase water deliveries to agriculture and irriga-

tion intensity, while higher prices for CAP water are seen to decrease irrigation intensity. It

is no surprise that planted area’s impact on water deliveries to agriculture likewise conforms

to expectations. The fixed effect model returns a highly significant positive coefficient esti-

mate for this variable. Recall that planted area is included as a definitional control variable

and any other coefficient behavior would certainly be alarming.

Just as was seen in the OLS model results, alfalfa prices return negative coefficient

estimates, which run contrary to economic intuition. Happily, this confounding behavior is

not found to be significant in the fixed effect models, meaning these negative values may

be dismissed out of hand. This lack of significance could be explained by alfalfa’s semi-

annual/semi-perennial nature. Because stands may be productive for many years, water use

decisions with respect to this crop may be less responsive to changes in alfalfa price in any

one year. Another possible explanation for this coefficient estimate’s confounding behavior

include could be related to trends in the dairy industry. If alfalfa purchasers are concerned

not only with the prices of alfalfa as an input, but also the prices of milk and other inputs

necessary to produce milk, the effect of alfalfa prices on water use decisions could be diluted.

Being that alfalfa is the predominant crop in the region, further research on the factors that

drive alfalfa planting would likely be very valuable, as year t prices alone perhaps do not tell
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the entire story.

Coefficient estimates for fallowed land variables remain significant for water deliveries to

agriculture in the fixed effect models. As in the OLS models, the fallow-to-planted ratio’s

effect on irrigation intensity is negative, but is no longer statistically significant and may be

disregarded. The effect of the natural log of fallowed area on agricultural water deliveries has

gone from positive in the OLS specification to negative in the fixed effect modelling. This

negative effect of fallowed area on water deliveries seems to fall more in line with expectations,

as it seems intuitive that more fallowed area would lead to reduced water deliveries. The lack

of an effect of the fallow-to-planted ratio on irrigation intensity may be due to more efficient

irrigation technology and other best practices being implemented. Recall from Figure 6 that

irrigation intensity has declined in almost all districts studied over the course of the study

period. If this is due to growers being able to use less water to harvest their crops, then

fallowing lands would not be undertaken to make more water available to irrigate lands in

production. Instead, holders of grandfathered water rights could choose to fallow lands in

order to reduce overall irrigation supply and thereby accrue “flex credits”, which may be

sold or saved for a not-so-rainy day.
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6 Conclusion and Policy Implications

Arizona and the desert southwest are currently facing water challenges with no precedent in

recorded history. Climate change in recent decades has led to hotter temperatures, reduced

snowpack which melts much earlier in the year, and sporadic and undependable rainfall

throughout the region. As a result, flows in the Colorado River are greatly diminished

relative to recent decades, and Lake Mead’s surface elevation sits at an all time low. In 2021,

this depletion of Lake Mead’s water reserves led, for the first time, to the federal government

declaring a Tier 1 water shortage in the Colorado’s Lower Basin. This shortage condition

will result in reduced river water deliveries to Arizona, Nevada, and Mexico, with cutbacks in

Arizona mainly affecting irrigated agriculture in the central part of the state. Colorado River

water has not always been available in Central Arizona, with growers’ in the region being able

to meet their water needs in the past by utilizing groundwater reserves. This practice was

curtailed to a large extent when the 1980 Arizona Groundwater Management Act established

Active Management Areas (AMAs) in those parts of the state where groundwater reserves

were most imperiled, including much of Maricopa, Pinal, and Pima counties. The restrictions

imposed by the Groundwater Management Act have greatly reduced the depletion of Central

Arizona’s aquifers, but this outcome was made possible in part by the availability of Colorado

River water to Central Arizona growers due to the completion of the Central Arizona Project

(CAP) canal in the late 1980s. With the amount of water available through CAP now

reduced under the Colorado’s Tier 1 shortage condition, uncertainty exists as to whether or

not growers will once again turn to groundwater in order to meet their irrigation needs.

Many of Arizona’s policymakers and water managers have anticipated this current chal-

lenge, and some action has been taken in order to mitigate the fall out resulting from reduced

Colorado River water deliveries. Water banking has been a component of water management

in the state since the 1986 passage of the Underground Water Storage and Recovery Act,
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allowing excess CAP water to be stored in underground aquifers for some future not-so-rainy

day. These banked reserves will likely play some significant part in preserving water supplies

in Central Arizona if shortages in the Colorado’s Lower Basin become a fixture of the 21st

century. Additionally, the Groundwater Management Act has reduced the number of acres

in Central Arizona available to irrigated agriculture, and the state has provided incentives

for growers to follow best management practices in terms of irrigation water use (Arizona

Department of Water Resources, 2021). Beyond these policies, many municipalities through-

out the state have begun using treated waste water for non-potable uses. There are state

level discussions regarding alternative means of augmenting Arizona’s water supply, includ-

ing desalination of groundwater and further developing water treatment methods to allow

for potable reuse (McGreal et al., 2021).

While effectively managing and seeking to augment existing water supplies are often the

primary focus of Arizona water managers, a firm understanding of the demand for water

throughout the state’s various economics sectors is indispensable. The research presented

in the preceding chapters is intended to contribute to this understanding, specifically in

terms of irrigators’ demand for water in the Phoenix and Pinal AMAs. As mentioned in

Chapter 1, agricultural water use accounts for 68% of total water use in Arizona, meaning

that understanding the needs and motivations of the agricultural sector is a necessary part

of understanding water demand in the state overall. This research chiefly contributes to

developing understanding of agricultural water demand in three ways.

First, Chapter 3 presents a conceptual model for water demand enumerated at the ir-

rigation district level. This model is constructed based on findings from the agricultural

economics literature, a review of which is summarized in Chapter 2. The only regional

characteristics necessary for this conceptual model to be relevant is significant dependence

on irrigation in local agriculture and a non-binding constraint on water supply. The model

considers the drivers of irrigation water demand in two categories: extensive and intensive
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decisions. Extensive decisions are what crops to plant in what quantities, and intensive de-

cisions determine how intensely water is applied once crops are planted. Future research can

continue to build upon this model in order to provide a framework for empirical analysis in

various regions.

The econometric models presented in Chapter 5 explore how these extensive and intensive

decisions highlighted in the conceptual model are driven by crop prices, growers’ expecta-

tions regarding climate, the cost of water, and irrigation district characteristics (including

regulatory policy, irrigation technology, and the extent of tree crops present). Recall that the

districts included in this study account for 95% of irrigated lands in the Phoenix AMA, and

87% or irrigated lands in the Pinal AMA. This means the sample observed is extremely close

to the overall population of agricultural water users in the study area over the course of the

study period. The intention of Chapter 5’s econometric analysis is to treat this population

of Central Arizona water users as a representative sample of Central Arizona water users in

future years. Interpreted this way, the results obtained can be used to predict agricultural

water use in coming years using only a small set of explanatory variables. Prediction is not

easy, and sampling from only the first twelve years of a time period extending into the future

can certainly not be said to be random sampling. Follow up research undertaken after some

time has passed would be a useful way to evaluate the results presented in Chapter 5.

This empirical work contributes to a growing literature on the incorporation of remote

sensed land cover data into models of water demand. Remote sensed data products are today

widely available, and commonly used in agricultural economics to provide climate data (Dell

et al., 2014; Donaldson and Storeygard, 2016). However, remote sensed land cover data,

such as those provided by USDA NASS’s Cropland Data Layer (CDL), have been utilized

less frequently. Chapter 5’s empirical analysis makes use of CDL data in three primary ways:

planted area in an irrigation district is included as a control variable in the water deliveries

model, the dependent variable irrigation intensity is found by dividing water deliveries by
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planted area in the second model, and fallowed area within an irrigation district is included

as an explanatory variable in both specifications. Additionally, area planted in tree crops had

been included in the OLS models presented initially, but was dropped from the fixed effects

models due to statistical issues with the fixed effect specifications. Incorporating the CDL’s

land cover data into these models allowed for greater specificity than would otherwise have

been possible. As the time periods for which CDL data is available accumulate in various

regions of the US, the use of such data will soon be more commonly seen in agricultural

economic modelling.

This work also contributes toward understanding agricultural water demand in Central

Arizona through the empirical analysis discussed in Chapter 5. This research is specific

to irrigation districts in the Phoenix and Pinal AMAs, though findings may inform future

research and water management efforts elsewhere in the world. Given a hotter, drier Colorado

basin, curtailments to Arizona’s allotment of Colorado River water are likely to occur more

frequently in the coming decades. As such, awareness of the key factors which drive demand

for irrigation water is valuable to anticipate Central Arizona’s agricultural water demand.

The analysis presented in Chapter 5 finds that December Futures prices for cotton have

a significant, direct effect on total water deliveries to agriculture and irrigation intensity,

while CAP water costs have a significant inverse effect on these outcome variables. Fallowed

area is seen to have a negative impact on overall water deliveries to agriculture, and no

significant effect in terms of irrigation intensity. This lack of a significant impact on irrigation

intensity could be due to improved irrigation technology and best practices reducing the

need for additional application of water for irrigation. The Standardized Precipitation-

Evapotranspiration Index (SPEI) is shown to have a significant, direct effect on the outcome

variables as well. This is a somewhat confounding finding, as SPEI values are negative in hot,

dry years and positive in cool, wet years. As discussed in Chapter 5, this direct effect could

be the result of the pattern of oscillating cool and warm years seen in Figure 11. This trend
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is most likely random, and a study over a longer time period could corroborate or falsify the

effect of SPEI returned by the empirical analysis in this work. Recall that the time frame

of this study is limited by the number of years CDL data is available. Prices for alfalfa, the

region’s most widely grown crop, are not seen to have any statistically significant impact

on either outcome variable once district-level fixed effects are accounted for. As mentioned

in Chapter 5, this could be due to alfalfa stands being less responsive to year-to-year price

fluctuations due to their semi-perennial nature, and certainly warrants further research.

In addition to alfalfa’s role in driving water use decisions, several other aspects of Chap-

ter 5’s empirical analysis provide areas for future research. Firstly, as discussed above, the

confounding signs associated with the SPEI index merit further scrutiny. Next, the ques-

tion of tree crops true effect on water deliveries and irrigation intensity remains unsolved, as

collinearity issues meant that the area of an irrigation district planted in tree crops had to be

omitted from the final fixed effect specifications. As mentioned in Chapter 1, pecan orchards

have much higher water requirements than the crops considered in this study’s empirical

models (Sammis and Herrera, 1999). Given the prevalence of pecan trees in Arizona, with

over 17,000 acres planted in 2017, the effect of orchards on agricultural water use is very

much of interest and will require further study (Lahmers et al., 2018).

Another question this work does not address is whether or not the effects observed in

Chapter 5’s empirical analysis would be consistent in irrigation districts outside of Central

Arizona’s AMAs. Throughout the state, many irrigation districts exist outside the AMA

system, with notable clusters in and around Yuma and Safford (Arizona Department of Water

Resources GIS Data, 2021). Being outside of any AMA, these districts are not required to

report their water use to the Arizona Department of Water Resources (ADWR), nor are

they constrained in their groundwater withdrawals. This lack of water use reports presents

a major obstacle for anyone interested in comparing the effects seen in this work to those

districts outside the AMAs. While challenging, this problem is not insurmountable, and
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research focused on water use decisions outside the AMAs would certainly be valuable.

When parsing the implications of this study’s findings, one must bear in mind the loom-

ing cuts to Central Arizona agriculture’s allotment of Colorado River water. Tables 5 & 6

show that, while irrigation intensity generally declined between 2008 and 2019, overall water

deliveries did not. How will growers respond when these CAP deliveries are significantly

curtailed? Will growers who hold “flex credits” supplement their water needs through addi-

tional groundwater pumping, and if so, will large investments be necessary to improve well

infrastructure? Water managers at ADWR, CAP, and elsewhere will likely seek to project

demand for irrigation water under these shortages, to either assess economic losses due fore-

gone planting, or to assess groundwater depletion due to growers turning to pumping to

offset reduced CAP deliveries. We have seen that cotton futures prices have a significant

direct effect on water use outcomes and that fallowed area has a significant inverse effect on

overall water deliveries, meaning both might be good barometers of growers’ water demand

at the outset of a season. Conversely, we have seen that CAP water prices act as a disincen-

tive to increased irrigation water use. This responsiveness to cost could be critical if water

managers must decide on a mechanism to equitably distribute reduced CAP allocations.

The American West has a water problem. Arizona has a water problem. The state’s

development over the last hundred years was made possible largely through development

of non-renewable groundwater resources. More recently, the CAP allowed for the Colorado

River to ease some of the strain on Central Arizona’s aquifers and provide water, not only

to agriculture, but to the growing population centers located along the I-10 corridor. For

growers in Central Arizona, this Colorado River water may not be available for much longer,

as drought conditions throughout the already arid region are intensified as a result of an-

thropogenic climate change. For water managers and policymakers seeking to curate and

augment existing water supplies, understanding the drivers of water demand is now more

crucial than ever. The hope for this research is that it can contribute in some small way to
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that goal.
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Figures and Tables

Figure 1: Irrigation districts in the Phoenix and Pinal AMAs

Data Source: ADWR
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Figure 2: Crops by Planted Acreage in Maricopa and Pinal Counties

Data Source: USDA NASS Cropland Data Layer
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Figure 3: Crops by Percent of Planted Acreage in Maricopa and Pinal Counties

Data Source: USDA NASS Cropland Data Layer
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Figure 4: Annual Average Water Deliveries to Agriculture

Data Source: ADWR
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Figure 5: Natural Log of Water Deliveries to Agriculture by District

Data Source: ADWR
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Figure 6: Irrigation Intensity by Irrigation District

Data Source: ADWR, USDA NASS Cropland Data Layer
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Figure 7: Cropland Data Layer Accuracy - Arizona

Data Source: USDA NASS Cropland Data Layer
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Figure 8: Real Alfalfa Prices (AZ)

Data Source: USDA NASS
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Figure 9: Real December Cotton Futures Prices

Data Source: New York Cotton Exchange
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Figure 10: Real CAP Water Prices

Data Source: US Bureau of Reclamation
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Figure 11: Central Arizona SPEI

Data Source: Global SPEI Database
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Figure 12: Central Arizona Precipitation

Data Source: NOAA National Weather Service
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Figure 13: Central Arizona 100+ Degree Days

Data Source: NOAA National Weather Service
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Figure 14: Residuals - Deliveries to Agriculture

n = 144
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Figure 15: Residuals - Irrigation Intensity

n = 144
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Figure 16: Tree Crop Area by Irrigation district

Data Source: USDA NASS Cropland Data Layer
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Figure 17: Tree Crop Area by Irrigation district, detail

Data Source: USDA NASS Cropland Data Layer,
omitting CAIDD and MSIDD
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Figure 18: Planted Area by Irrigation district

Data Source: USDA NASS Cropland Data Layer
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Table 1: Summary Statistics - Water Deliveries

Water Deliveries Agricultural Natural Log Percent Irrigation
Water Deliveries Ag Deliveries Agricultural Intensity

Unit of Measure acre-feet acre-feet ln(acre-feet) percentage af/900m2

Mean 144,182 98,710 11.09 84.2% 1.09
Min 13,883 13,766 9.53 11.6% 0.3
Max 593,828 338,502 12.73 100% 1.76

Standard Deviation 155,017 92,408 0.9 25.7% 0.31

n = 144
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Table 2: Summary Statistics - Irrigation Districts

District AMA Average Total Area Average Average Average Average Average Average Average Other Average
Ag Deliveries Planted Area Alfalfa Area Cotton Area Grains Area Trees Area Pasture Area Crops Area Fallowed Area

Arlington Canal Phoenix 26,271 24,645 17,407 13,566 687 1,375 9 12 1,757 1,410
Company (78%) (4%) (8%) (<1%) (<1%) (10%)

Buckeye Water Phoenix 123,114 98,497 74,210 57,394 3,404 8,255 17 18 5,122 5,727
Conservation Dist. (77%) (5%) (11%) (<1%) (<1%) (7%)

Central Arizona Pinal 294,129 489,731 315,340 63,219 183,711 54,174 3,832 926 9,479 89,188
Irrigation and Drainage Dist. (20%) (58%) (17%) (1%) (<1%) (3%)

Hohokam Pinal 51,480 127,571 96,696 40,377 36,212 17,845 77 29 2,157 19,583
Irrigation Dist. (42%) (38%) (19%) (<1%) (<1%) (2%)

Maricopa-Stanfield Pinal 278,757 465,940 262,647 109,151 48,975 83,465 1,084 1,065 18,907 115,443
Irrigation and Drainage Dist. (42%) (19%) (32%) (<1%) (<1%) (7%)

Maricopa Phoenix 36,561 163,449 33,925 10,174 965 10,762 4 312 11,708 28,769
Water Dist. (30%) (3%) (32%) (<1%) (1%) (35%)
New Magma Phoenix 81,676 122,301 79,088 47,492 14,433 12,626 33 38 4,466 15,220

Irrigation and Drainage Dist. (60%) (18%) (16%) (<1%) (<1%) (6%)
Queen Creek Phoenix 26,778 91,182 30,811 14,393 6,170 8,212 276 146 1,613 11,862

Irrigation Dist. (47%) (20%) (27%) (1%) (<1%) (5%)
Roosevelt Phoenix 128,394 176,294 107,117 56,731 19,755 24,756 2 54 5,820 25,569

Irrigation Dist. (53%) (18%) (23%) (<1%) (<1%) (5%)
Roosevelt Water Phoenix 39,011 186,831 36,328 25,274 894 6,998 476 697 1,988 15,179

Conservation Dist. (70%) (3%) (19%) (1%) (2%) (6%)
Salt River Phoenix 82,613.81 1,158,801 76,752 50,955 9,031 11,126 715 541 4,385 27,782

Project (66%) (12%) (15%) (1%) (1%) (6%)
Tonopah Phoenix 15,736 18,623 14,784 7,389 2,156 4,512 0 36 691 1,395

Irrigation Dist. (50%) (15%) (31%) (0%) (<1%) (5%)

n = 12 per district, ag deliveries in acre-feet, all area units in 900m2

(percentage of planted area in parentheses)
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Table 3: Cropland Data Layer Variables

Variable CDL Category
Alfalfa Area Alfalfa
Cotton Area Cotton
Grains Area Corn, Sorghum, Barley, Durum Wheat, Winter Wheat
Trees Area Citrus, Pecans, Pears, Pistachios, Olives, Oranges, Grapes

Pasture Area Grassland/Pasture
Other Crop Area Cantaloupes, Watermelon, Rye, Spring Wheat, Lettuce,

Other Hay (not Alfalfa), Oats, Dry Beans, Potatoes, Carrots,
Chick Peas, Millet, Broccoli, Cabbage, Honeydew,

Double Croppings
Fallowed Area Fallow/Idle Cropland

Developed Area Developed Open Space, Low Development,
Medium Development, High Development
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Table 4: Summary Statistics - Explanatory Variables

Alfalfa Price Cotton Price CAP Water SPEI
(Dec. Futures) Cost (lag)

Unit of Measure 2019$/ton Futures Price (2019$) 2019$/af Index
Mean 200.84 85.49 64.12 -0.211
Min 144.19 58.34 42.75 -0.716
Max 255.73 139.50 80.96 0.874

Standard Deviation 36.4 21.19 11.79 0.382

n = 144
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Table 5: OLS Model Results

Water Deliveries Intensity
R2 0.8743 0.3708
n 144 144

Lagged SPEI 0.0581 0.1075*
(0.082) (0.061)

Alfalfa Price -0.0021* -0.0017*
(0.001) (0.001)

Cotton Futures 0.0042* 0.0037**
(0.002) (0.002)

CAP Water Cost -0.0045* -0.0035*
(0.003) (0.002)

Trees -0.0003*** -6.1341*
(area/pct) (<0.001) (3.315)

Fallow 0.0917*** -0.24***
(ln(area)/ratio) (0.029) (0.088)
Planted Area <0.0001*** n/a

(<0.001)
Pinal AMA -1.0472*** -0.336***

(0.112) (0.049)
Constant 9.642 1.5493

*** = p < 0.01, ** = p < 0.05, * = p < 0.1
Standard Errors in Parentheses
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Table 6: Breusch-Pagan Tests for Heteroskedasticity

Model χ2 p-value

Deliveries to Agriculture 2.66 0.1028
Irrigation Intensity 0.02 0.8918
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Table 7: Fixed-Effect Model Results

Water Deliveries Intensity
R2 - Within 0.37 0.4287
R2 - Between 0.7484 0.0034

n 144 144

Lagged SPEI 0.1282*** 0.1162***
(0.026) (0.02)

Alfalfa Price -0.0015 -0.0009
(0.001) (0.001)

Cotton Futures 0.0032** 0.0027**
(0.001) (0.001)

CAP Water Cost -0.0025 -0.0029**
(0.001) (0.001)

Fallow -0.0405* -0.0519
(ln(area)/ratio) (0.022) (0.064)
Planted Area <0.0001** n/a

(<0.001)
Constant 10.9883 1.2585

*** = p < 0.01, ** = p < 0.05, * = p < 0.1
Robust Standard Errors in Parentheses
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A Appendices

A.1 Data Collection Procedures

Where possible, publicly available data were collected for this study directly online, without

the need for transcription or transformation, in order to minimize any risk of human error

affecting data quality. In practice, the only raw data directly applicable to this study’s

empirical analysis are average annual alfalfa prices obtained from the USDA’s National

Agricultural Statistics Service, as these data are available in the form of annual averages at

the county level. All other data used had to be transcribed or transformed in some way.

Some of these procedures were simple transcriptions from PDF files or averaging monthly

observations to find annual means, while other were more involved. Each will be described

below, with greater detail provided for the more complex data collection procedures.

Simple Procedures

The simplest procedures performed in the data collection process apply to the variables for ex-

pected cotton price, CAP water cost, and the Standardized Precipitation-Evapotranspiration

Index (SPEI) climate measure.

Recall from Chapter 4 that the New York Cotton Exchange December Futures prices

taken from the last Friday in February of a given year are seen as a strong proxy for growers’

price expectations. Data from the New York Cotton Exchange are publicly available through

a wide variety of third party online resources which document market patterns. Expected

cotton price data are found by manually transcribing the price listed on the last Friday in

February of year t. Data used in this study were transcribed from futures.tradingcharts.com,

which reports historical data from the New York Cotton Exchange for December Futures

prices for cotton as far back as 1971.
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CAP water cost data likewise require transcription but are easier to source than cotton

futures data, as they are made directly available by the US Bureau of Reclamation. Each

year, the bureau publishes rate schedules for CAP water, the cost of which is dependent on

end use. For example, municipal and industrial water users are charged a higher rate per

acre-foot of Colorado River water delivered through the CAP than agricultural water users.

These rate schedules are available through the Bureau of Reclamation’s website as far back

as 2007. All that is necessary for this study is to transcribe the agricultural water cost for

year t from each schedule.

Finally, SPEI data from the Global SPEI database are available monthly at a moving

three-month average. Recall from Chapter 4 that, while these data are not available at the

level of individual counties, their pixel scale of 0.5° squared closely matches the boundaries

of Maricopa and Pinal counties. Because these data are available monthly, it is necessary

to average the values by year to find an annual measure. This average annual value is then

used in the empirical analysis presented in Chapter 5.

Irrigation Water Delivery Variables

Beginning with water delivery variables, data collection procedures begin to become a bit

more complex. Water delivery variables are taken from annual reports filed with the Arizona

Department of Water Resources (ADWR) by irrigation districts. With the exception of one

district, every report contains a schedule of water deliveries made in that year enumerated by

water right number, called Schedule D. The type of right is also included for each line item

listed in Schedule D. Many of these reports also contain a summary page, called Schedule

D1S. Schedule D1S contains a breakdown of water deliveries by type (non-exempt irrigation,

exempt irrigation, municipal providers, etc.), and by source (groundwater, CAP, in-lieu,

etc.).

As Schedule D1S is concise and well organized, it is the first-best option for obtaining
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water deliveries data. Data from Schedule D1S is used whenever this summary page is

included in a report. Using data from Schedule D1S is considered a first-best procedure for

two reasons: 1) summing up line items from Schedule D is tedious, and 2) summing up line

items from Schedule D is more prone to human error. When Schedule D1S is available, it is

a simple task to record the sum of deliveries to non-exempt irrigation and exempt irrigation

uses.

Where Schedule D1S is unavailable, Schedule D becomes the next best source for water

deliveries data. Line items from Schedule D are included whenever the water right num-

ber begins with ‘58-’ (denoting farm-owned irrigation grandfathered rights), ‘57-’ (denoting

district-owned irrigation grandfathered rights), or ‘88-’ (denoting irrigation rights on a farm

registered as having ”Best Management Practices”), as well as any lite items denoted as

exempt water deliveries (Tyler Fitzgerald, AZ Dept. of Water Resources, personal commu-

nication, June 25, 2021). When pulling data from Schedule D, deliveries are first summed

by individual water rights type, before summing these water rights type groupings to find

total deliveries to irrigation. This allows for arithmetic checks to occur in multiple places,

in order to diminish the possibility of human error.

The exception mentioned above relates to the San Carlos Irrigation and Drainage District

(SCIDD). Rather than filing water use reports including Schedule D1S or Schedule D, reports

filed by SCIDD simply include a front page describing overall water use by the district.

As is evident in other districts’ reports, not all water used in a district necessarily is put

to agricultural uses, and so the lack of any indication of agricultural use in the SCIDD’s

reporting was initially distressing. Table 2 shows the SCIDD to be one of the largest in the

study area in terms of water deliveries, and omitting it from this study due to uncertainty

over the nature of its’ water use is an outcome to be avoided if possible. Thankfully, the

Arizona Department of Water Resources were able to provide more detailed breakdowns of

water use in the Pinal AMA for years ranging from 2016 to 2019. These detailed breakdowns
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allowed for the comparison of specific agricultural water use within the SCIDD to the overall

water use listed on the front page in the district’s reports. In the four years for which

these comparisons were possible, deliveries to non-exempt irrigation in the SCIDD closely

resembled those values reported in the district’s reports as “Total Water Delivered To Lands”.

Due to these favorable comparisons, the assumption can be made that SCIDD’s reported

“Total Water Delivered To Lands” variable accounts for water delivered to agricultural uses

in years prior to 2016. It is unfortunate that it is necessary to make an assumption regarding

these data, but preferable to having to omit the SCIDD from the study entirely.

Land Cover Variables

Finally, irrigation district land cover variables are generated with QGIS software using ir-

rigation district shapefiles from the Arizona Department of Water Resources, and raster

data from the USDA National Agricultural Statistics Service’s Cropland Data Layer. USDA

NASS publishes the Cropland Data Layer annually, going back as far as 2008 in Arizona.

It is for this reason that the study period in this analysis only goes back as far as 2008, as

land cover variables are restricted to observations from 2008 forward. Using QGIS’s raster

calculator tool, binary raster layers are generated from the Cropland Data Layer to reflect

specific land cover categories. These categories include alfalfa, cotton, major grains, tree

crops, pasture, other crops, fallowed/idled lands, and developed area. The pixels reflecting

the land cover of interest in each of these raster layers are then summed by irrigation district

using QGIS’s zonal statistics tool. From here, it is simple to divide the pixel area of a land

cover grouping within an irrigation district by the pixel area of the entire district to find the

percent land devoted to a particular land cover group in a given year. For crop groups, the

pixel area devoted to a particular cropping category within an irrigation district can also be

divided by the overall planted area within the district, which is simply the sum of the alfalfa,

cotton, major grains, tree crops, pasture, and other crops categories. This procedure yields
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the percentage of planted area within a district planted in a certain crop or crop group.
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A.2 Effects of Irrigation Districts, Crop Mix, and Prior-Year Planted

Area

Purpose

This section describes measures taken to ensure that the modeling approach presented in

the main body of this work is valid in it’s assertions that water deliveries and irrigation

intensity are partially driven by exogenous variables such as price, climate, and policy. A

concern regarding these assertions is that water delivered and application rates could be

essentially predetermined by a growers’ choice of acreage planted in a particular set of crops.

If deliveries and irrigation intensity are completely defined by planted area, the econometric

analyses reported in Chapter 5 are unnecessary. A another concern is that crop area may

be relatively invariant over time, with growers simply planting the same acreage and crop

mix as they had selected the prior year. A final concern is that irrigation districts’ fixed

characteristics (i.e. scale, location, water rights, etc.) may predetermine water deliveries and

irrigation intensity. This section shows that, while current and prior year cropped area carries

much explanatory power for both water deliveries and irrigation intensity (water delivered per

planted area), the opportunity remains for additional factors to influence water delivered and

irrigation intensity. Likewise, while irrigation districts’ fixed characteristics carry significant

explanatory power, they do not comprehensively describe water use decisions.

Models Focused on Planted Area

The first stage of this process considers two Ordinary Least Squares (OLS) regressions. The

first model examines deliveries as a function of area within an irrigation district planted in

different crops and crop groups. The crops and crop groups included are alfalfa, cotton,

major grains (including corn, sorghum, barley, and wheat), tree crops (including pecans,

pistachios, olives, citrus, and others), irrigated pasture, and a catch-all grouping for all other
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crops (including but not limited to cantaloupes, oats, potatoes, millet, lettuce, beans, and

carrots). Recall, Table 2 describes the average size of area planted in each of these crop

groups by district. In addition to planted area, this first model also considers the effect of

fallowed lands on an irrigation district’s water deliveries.

The second model describes intensity as a function of the percentage of total district

planted area represented by different crops and crop groups. Percentage of planted area is

chosen due to irrigation intensity being a per-acre measure. Fallowed area is not included

in this second specification. Instead, the ratio of fallowed area to planted area is considered.

This measure ranges from a minimum observed value of 0.01 to a maximum value of 3.27,

with an average of 0.43 describing just under half as much fallowed area as planted area.

Because irrigation intensity decision making is modeled as a function of the percentage of

a districts’ total planted area represented by various crops, an issue arises with collinearity.

By definition, these percentage variables sum to 1, as they are represented in decimal form.

This means that each observation contains six explanatory variables that add up to 1, which

happens to be the value assigned to the constant term in an OLS regression’s X matrix. For

this reason, any model specifications mentioned in this section which include all six crop

category percentage variables will not include a constant term.

Formally, these models are specified as follows:

Wit = α + βaAait + βcAcit + βgAgit + βtAtit + βpApit + βoAoit + βfFit

Iit = δaPait + δcPcit + δgPgit + δtPtit + δpPpit + δoPoit + βfFRit

Here, Wit represents water delivered and Iit represents intensity of irrigation (total water

applied divided by planted area) in district i in year t. Axit represents area planted in crop

x in district t in year i. In the second model, Pxit represents the percentage of overall

planted area planted in crop x in district i in year t. The six crop groups described above

are represented by subscripts a (alfalfa), c (cotton), g (grains), t (trees), p (pasture), and o
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(other crops). Fallowed area in district i in year t is given as Fit, and the ratio of fallowed

area to planted area in district i in year t is given as FRit.

The results of these models are presented in Table A1. Of greatest interest are the models’

measures of fit (R2). An R2 value approaching 1 means that the explanatory variables’

collective effect on the outcome variable is almost completely definitional. In this case,

little-to-no explanatory power is unaccounted for and inclusion of other potential variables

is not fruitful. The identity specifications presented in Table A1 return R2 values of 0.9368

for water deliveries to agriculture, and 0.9285 for irrigation intensity.

The relatively high measure of fit returned by both models seems to indicate that current

year water deliveries and irrigation intensity can largely be explained by current year crop

mix and acreage planted. This is intuitive. Once planting decisions are made, there is some

minimum amount of water needed to maintain the health of a grower’s crop. There could

be instances where external factors lead to a decision to abandon a crop that’s already been

planted, but these events are likely rare. While an R2 value of 0.9368 is high, it is not 1.

This means that, while planted area accounts for much of growers’ water use, the inclusion of

these explanatory variables alone does not explain deliveries completely. Some other factors

influence growers’ water use decisions.

The irrigation intensity model, with its R2 value of 0.9285, indicates that crop mix and

planted area also have a substantial effect on water delivered per planted area, but that

there also exist other influential factors to be accounted for. This is also intuitive, as one

might easily assume that growers must apply a predictable amount of water per acre, based

on what has been planted. However, the literature has shown that growers will also make

intensive choices throughout the growing season (Foster et al., 2014). These may be based

on a number of exogenous variables, such as a change in the cost of inputs or a shift in the

expected price of crops at harvest time. The modelling presented in Table A2 underscores

this point, and will be discussed at greater length in the coming paragraphs.
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Inclusion of Interaction Terms

In an effort to decompose the effect of various exogenous climatic and economic factors

from the effect of crop mix and area planted, regressions are run which include interaction

variables on the right hand side. These interaction variables are generated by taking the

product of some external factor (such as SPEI value in a given year) and each land cover

variable contained in the specifications above. A formally stated example follows, with water

deliveries specified as the outcome variable.

Wit = αW + βxAxit + γxAxitSPEIit

In this example, Axit represents a vector of areas planted in different crops in irrigation

district i in year t. These planted area variables are included once in their original form,

and included again having been interacted with SPEI in irrigation district i in year t. Of

specific interest here is the vector of coefficients for these interaction terms, γx. Statistical

significance in these coefficients indicates that the external factor included in the model

specification is having some impact beyond that explained by planted area variables.

The interaction models are run using real alfalfa prices, real expected cotton prices, real

CAP water costs, and lagged SPEI values (prior year) as interaction variables in separate

models. Results are presented in Tables A2 and A3. Most specifications return either one

or two significant coefficients which correspond with interaction terms. This is consistent

with the measures of fit seen in the planted area models above, as much explanatory power

is already captured by the planted area variables. It must be noted that CAP costs can

be seen to have no significant effect on water deliveries when planted area is accounted

for. Likewise, cotton prices appear to have no significant effect on irrigation intensity when

percentage of planted area is accounted for, a somewhat surprising finding. Once again,

R2 values are generally high for for all interaction models, as much explanatory power is
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captured by the planted area variables. While these R2 values are high, but not so close to 1

as to preclude the addition of other explanatory variables. This, along with the statistically

significant interaction terms, reinforces the notion that there are other influential factors

driving agricultural water deliveries and irrigation intensity that have yet to be accounted

for.

Irrigation Intensity Over Time

Next, the irrigation intensity model specified at the top of this section is run once again,

with the observations split into subgroups by year. Recall, the model is specified as follows:

Iit = δaPait + δcPcit + δgPgit + δtPtit + δpPpit + δoPoit + βfFRit

Observations are grouped into four three-year sets: 2008-10, 2011-13, 2014-16, and 2017-19.

The intention here is to observe how irrigation intensity is affected by the extent to which a

given crop is planted in a district from year to year. Observations are grouped because, with

only 14 irrigation districts, running this model at the level of each individual year would

include so few observations that results may be unreliable.

Table A4 outlines the results of this modelling approach. There is some significant

variety between the coefficients returned, meaning that some factors not accounted for in this

modeling are at work driving growers’ intensive decision making. The percentage of planted

area represented by alfalfa and percentage of planted area represented by major cereal grains

aboth significant across all four groups. The coefficient estimated for the alfalfa variable

is much higher for the first grouping (2008-10) than for the other three. The coefficient

estimated for the grains variable floats close to a value of 1 with no discernible pattern in

its fluctuations. The “other crops” category changes wildly from year to year, but this may

be due to a change in the mix of the crops making up this catchall category, and so should
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be taken with a grain of salt. The fallow-to-planted ratio is seen to have a consistently

significant negative effect on irrigation intensity, but once again the coefficient values vary

considerably. In general, the frequent shifts in coefficient values observed from group to

group allude to the presence of exogenous variables not included in the above specification

affecting the intensity of irrigation water applied.

Effects of Prior-Year Planted Area

Next, checks are performed to examine to what extent a crop’s planted area can be predicted

based on plantings of the same crop in the previous year. This process begins with looking

at simple regressions that include only the natural log of a single crop’s area in a given year

(t) as the outcome variable and the natural log of the same crop’s area the year prior (t− 1)

as the sole explanatory variable. Formally, the models is specified as follows:

ln(Ait) = α + βln(Ai(t−1))

This simple framework will then be built upon with the inclusion of alfalfa and cotton prices

in year t, described below.

ln(Ait) = α + βln(Ai(t−1)) + δaPat + δcPct

It is important to mention that, because these models involve a lagged land cover variable,

and because the Cropland Data Layer only publishes measurements from Arizona as far back

as 2008, these regressions involves fourteen fewer observations than others in this analysis,

as it is impossible to construct a lag variable for an observation where t = 2008. Results

from these models are presented in Table A5.

At a glance, two details stand out in these results: the high significance of the lagged

variables, and the relatively high measures of fit. These go hand in hand. An irrigation
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district heavily planted in a particular crop or crop group in year t−1 is likely to be planted

with a similar crop mix and acreage in year t. The R2 values for the alfalfa models (0.9603

and 0.9618) are very high. This can be explained by the fact that alfalfa is not planted

annually. Recall, alfalfa is a semi-perennial crop and so, unless external factors drive a

grower to remove their stands of alfalfa in order to plant something different, it is likely that

much of the alfalfa planted in Central Arizona in one year will remain there into the next. R2

values are much lower for cotton, major grains, and other crops, indicating greater flexibility

in cropping decisions for these annual crops. One unexpected result observed is the lower

measure of fit seen in the tree crop models. The idea of area planted in trees shifting greatly

from year to year is non-intuitive. However, tree crops have a finite life. Planting may

occur in “pulses” and removal of some portion of planted area would likely be happening in

any given year. This low measure of fit may also be explained by USDA NASS’s Cropland

Data Layer generally being more accurate in its identification of cash crops such as cotton

and alfalfa than tree crops (US Department of Agriculture, National Agricultural Statistics

Service, 2021).

In those specifications which include alfalfa and cotton prices, these price variables are

frequently significant. These crop prices play an important role in determining planting

decisions from year to year. It is not surprising that the prices of these two crops would

affect each other’s cropped areas, but the prices of alfalfa and cotton also have a major

impact on acreage planted in the catchall “other crops” category. These prices do not affect

area planted in tree crops, as orchards are unable to shift cropping patterns on an annual

basis. The significance of these crop prices attests to the fact that planting decisions are not

solely predetermined by plantings in the prior year.
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Effects of Irrigation Districts’ Fixed Characteristics

Finally, a fixed effect regression is specified for each dependant variable (the natural log

of water deliveries to agriculture and irrigation intensity). These regressions contain no

explanatory data aside from district level fixed effect variables. These regressions are run in

order to assess the extent to which this study’s outcome variables can be explained solely

due to fixed district-level characteristics.

The results of these fixed effects regressions are presented in Table A6. In each model,

the Arlington Canal Company is not assigned a fixed effect variable in order to avoid issues

with collinearity. Instead, the Arlington Canal Company serves as a baseline, whose water

deliveries and irrigation intensity ratio are represented by the constant in each specification.

In an interesting statistical quirk, standard errors reported are uniform across all fixed effect

variables. This is due to the standard errors of the coefficients of the district fixed effect

variables depending on the root mean square error of the regression as a whole. Because

each fixed effect variable has the same number of annual observations, the same standard

error is returned for each coefficient estimate. This is to be expected, and it is because of

this that standard error is only reported once for each model.

The statistics of greatest interest reported in Table A6 are the R2 values for each model

specification. The water deliveries model exhibits a high R2 value of 0.9681. This indicates

that much of districts’ water need can be explained by fixed characteristics, such as scale,

location, composition of water rights, and which AMA they belong to. Similar to the cropped

area models discussed earlier in this appendix, the R2 value, while high, is not so high that

it could reasonably be called vanishingly close to a value of 1. There is still room for

additional explanatory data to contribute to a statistical understanding of districts’ overall

water deliveries.

The irrigation intensity model reports a relatively modest R2 measure of 0.8073. Once

again, this behavior is similar to that of the cropped area models. Much of irrigation water
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application rates may be attributed to district-level fixed characteristics, which could include

soil composition, elevation, and irrigation technology. However, just as irrigation intensity is

not able to be explained solely by crop and acreage choice, neither can it be explained only

through fixed district level characteristics. An R2 value of 0.8073 means there is still much

to be explained by factors other than fixed characteristics.

Finally, both models return almost entirely significant coefficient estimates. Every fixed

variable included in each specification returns a significant coefficient estimate, aside from the

dummy value associated with the Queen Creek Irrigation Districts annual water deliveries

to agriculture. This evidence of the high significance of district-level fixed characteristics

on the outcomes examined in this study further supports the inclusion of district level fixed

effects in Chapter 5’s empirical analysis.
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Table A1: Cropping Identity Models

Water Deliveries Irrigation Intensity
R2 0.9368 0.9285

Alfalfa 1.367*** 1.3581***
(0.271) (0.179)

Cotton 0.6914*** 0.5688
(0.196) (0.42)

Grains 1.2662*** 1.2857***
(0.205) (0.278)

Trees 11.9739 -12.486
(8.633) (8.503)

Pasture -3.6183** 3.414**
(1.474) (1.381)

Other Crops 1.1443 1.4035***
(0.759) (0.34)

Fallow -0.3933** -0.3432***
(0.141) (0.082)

Constant -3737.64 n/a

*** = p < 0.01, ** = p < 0.05, * = p < 0.1
(Standard Errors in Parentheses)

121



Table A2: Decomposing Drivers of Irrigation Intensity

Alfalfa Price Cotton Price CAP Water Cost Lagged SPEI
R2 0.9316 0.9353 0.9376 0.9341

Percentage Alfalfa -0.0026* -0.0004 -0.0059 0.1415
(Interacted) (0.001) (0.004) (0.004) (0.179)

Percentage Cotton 0.0012 0.0042 0.0019 -0.1237
(Interacted) (0.002) (0.005) (0.012) (0.25)

Percentage Grains 0.0062* 0.0075 -0.0032 -0.0149
(Interacted) (0.003) (0.007) (0.008) (0.39)

Percentage Trees -0.114 0.1656 -0.1293 6.2886
(Interacted) (0.074) (0.128) (0.284) (8.552)

Percentage Pasture 0.038 0.049 -0.6409 26.6578***
(Interacted) (0.061) (0.262) (0.736) (7.725)

Percentage Other Crops -0.0013 0.0139 0.0053 0.1517
(Interacted) (0.01) (0.018) (0.016) (0.248)

Fallow-to-Planted 0.0014 <0.0001 -0.0069* -0.2182***
(Interacted) (0.001) (0.001) (0.004) (0.054)

Percentage Alfalfa 1.8819*** 1.3995*** 1.7886*** 1.5013***
(0.239) (0.221) (0.398) (0.246)

Percentage Cotton 0.3162 0.1751 0.5224 0.4929
(0.427) (0.783) (0.751) (0.4)

Percentage Grains 0.0365 0.5817 1.3307* 1.138***
(0.622) (0.502) (0.706) (0.295)

Percentage Trees 10.8613 -26.2503 to -5.0086 -5.8873
(15.366) (13.448) (23.706) (13.537)

Percentage Pasture -4.4962 -1.4434 39.4191 31.464***
(10.955) (23.324) (43.033) (8.886)

Percentage Other Crops 1.7142 0.3819 1.2889 1.6477***
(1.822) (1.415) (1.252) (0.352)

Fallow-to-Planted -0.6238*** -0.34** 0.0562 -0.5448***
(0.201) (0.126) (0.221) (0.088)

*** = p < 0.01, ** = p < 0.05, * = p < 0.1
(Standard Errors in Parentheses)
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Table A3: Decomposing Drivers of Water Deliveries

Alfalfa Price Cotton Price CAP Water Cost Lagged SPEI
R2 0.9435 0.9499 0.9419 0.939

Alfalfa Area -0.0023 -0.0017 -0.0006 -0.0683
(Interacted) (0.002) (0.004) (0.007) (0.304)
Cotton Area 0.0041 0.0088*** -0.0108 0.009
(Interacted) (0.003) (0.002) (0.019) (0.281)
Grains Area 0.0098*** 0.0184* -0.0073 0.4762
(Interacted) (0.003) (0.009) (0.014) (0.486)
Trees Area -0.0199 -0.1622 0.2202 3.1527
(Interacted) (0.169) (0.127) (0.8) (14.376)
Pasture Area 0.1148 -0.1067 -0.4893 5.378
(Interacted) (0.072) (0.25) (0.6123) (5.241)

Other Crops Area -0.0035 0.0083 -0.0043 -0.871
(Interacted) (0.007) (0.023) (0.041) (0.584)
Fallow Area -0.0044*** -0.0062 -0.0027 -0.2822*
(Interacted) (0.001) (0.006) (0.008) (0.149)

Alfalfa Area 1.8873*** 1.5731*** 1.4666** 1.2857**
(0.354) (0.279) (0.628) (0.494)

Cotton Area -0.2717 -0.2536 1.3478 0.6733
(0.541) (0.37) (1.003) (0.417)

Grains Area -0.8692 -0.5258 1.4177* 1.6812**
(0.722) (0.928) (0.687) (0.634)

Trees Area 19.8313 32.1394** -0.5888 14.9925
(30.048) (14.359) (44.51) (20.889)

Pasture Area -26.4385 3.9463 24.2592 -0.27
(14.913) (18.297) (38.434) (2.553)

Other Crops Area 1.8237 0.9536 2.1494 0.5598
(1.294) (1.487) (3.496) (0.331)

Fallow Area 0.5749* 0.2105 -0.147 -0.5601**
(0.275) (0.379) (0.582) (0.193)

Constant -4277.74 -5708.09 -5950.22 -4124.79

*** = p < 0.01, ** = p < 0.05, * = p < 0.1
Standard Errors in Parentheses
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Table A4: Irrigation Intensity over Time

2008-10 2011-13 2014-16 2017-19
R2 0.9746 0.9152 0.9541 0.9554

Percentage Alfalfa 1.7054*** 1.3529*** 1.3357*** 1.336***
(0.149) (0.285) (0.143) (0.123)

Percentage Cotton 0.4734* 0.872 0.713 0.5774
(0.266) (0.502) (0.685) (0.502)

Percentage Grains 0.9479*** 1.143** 1.0331*** 0.9506**
(0.222) (0.465) (0.263) (0.313)

Percentage Trees 4.9668 -22.4887** -12.679* -14.1173*
(4.732) (8.678) (6.112) (7.371)

Percentage Pasture -4.3074*** 8.4326 0.8778 2.947
(1.118) (8.197) (18.449) (2.526)

Percentage Other Crops 2.4167*** 1.5189** 1.9666*** 1.6261***
(0.541) (0.675) (0.337) (0.274)

Fallow-to-Planted -0.4348*** -0.2339** -0.5748*** -0.4311***
(0.042) (0.084) (0.107) (0.123)

*** = p < 0.01, ** = p < 0.05, * = p < 0.1
(Standard Errors in Parentheses)
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Table A5: Checking for Temporal Correlation

Crop Alfalfa Cotton Grains Trees Other

R2 0.9603 0.9618 0.8807 0.8849 0.8271 0.8284 0.6616 0.6837 0.5707 0.5991

Crop Area 0.975*** 0.9745*** 0.9169*** 0.9176*** 0.9207*** 0.9216*** 0.8238*** 0.8365*** 0.7651*** 0.746***
(Lagged) (0.016) (0.016) (0.028) (0.027) (0.034) (0.035) (0.057) (0.056) (0.055) (0.054)

Alfalfa Price 0.0012* -0.006** < 0.0001 -0.0059 0.0103***
(0.001) (0.003) (0.003) (0.004) (0.004)

Cotton Price -0.003** 0.01** 0.003 -0.0043 -0.0199***
(0.001) (0.005) (0.004) (0.007) (0.006)

Constant 0.26 0.276 0.719 1.047 0.624 0.344 0.82 2.31 1.84 1.6

*** = p < 0.01, ** = p < 0.05, * = p < 0.1
(Standard Errors in Parentheses)
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Table A6: Irrigation District Identity Models

Water Deliveries Irrigation Intensity
R2 0.9681 0.8073

Standard Error 0.0697 0.0575

Buckeye Water Conservation and Drainage District 1.5466*** 0.148**
Central Arizona Irrigation and Drainage District 2.4154*** -0.5809***

Hohokam Irrigation District 0.579*** -0.9879***
Maricopa-Stanfield Irrigation and Drainage District 2.3624*** -0.4525***

Maricopa Water District 0.3291*** -0.4288***
New Magma Irrigation and Drainage District 1.1357*** -0.479***

Queen Creek Irrigation District 0.0025 -0.6435***
Roosevelt Irrigation District 1.5886*** -0.316***

Roosevelt Water Conservation District 0.3884*** -0.4228***
Salt River Project 1.1424*** -0.4337***

Tonopah Irrigation District -0.5113*** -0.4497***
Constant 10.1723 1.5145

*** = p < 0.01, ** = p < 0.05, * = p < 0.1
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A.3 Alternate Variables Considered

Alternate Land Cover Variables

Data incorporated into this study includes remote sensed land cover data provided publicly

by the US Department of Agriculture’s Cropland Data layer (CDL). The CDL provides

annual data for land cover at a pixel resolution of 30m. This data product is invaluable to this

research, as it allows variables such as planted area and fallowed area to be incorporated into

the empirical analysis presented in Chapter 5. Additionally, without the CDL, the irrigation

intensity dependent variable could not have been constructed, as irrigation intensity is defined

in this study as water deliveries to agriculture divided by planted area. Appendix A.2

reports further details of CDL data by breaking planted area down into subgroups (cotton,

alfalfa, grains, etc.) in order to investigate the overall effect of extensive cropping choices on

water deliveries. None of these subgroups are included in Chapter 5’s model specifications.

However, there were extensive considerations regarding the use of two specific subgroups of

land cover variables. After preliminary regressions, these were ultimately excluded from this

work’s empirical analysis: the area within an irrigation district planted in major grain crops

and the area within a district classified by the CDL as “developed”. Each is discussed in

some detail below.

Recall from Figures 2 & 3 that barley, corn and durum wheat make up some of the

most commonly planted crops in Central Arizona after alfalfa and cotton. The major grains

category of land cover used in Appendix A.2 incorporates these three crops, as well sorghum

and winter wheat. Taken as a group, this category represents a substantial portion of Central

Arizona’s planted crops, with this combination of major grains exceeding cotton in terms

of planted area on occasion (once again, note Figure 2). It is for this reason that the idea

of including this grains group in Chapter 5’s empirical analysis was strongly considered.

Ultimately, grains were omitted from the econometric models presented in that chapter for
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the following reasons. While grain crops taken as a group occasionally exceed cotton in

terms of planted area, in only one year out of the twelve observed in this study does a

single grain crop, durum wheat, outpace cotton planting. While together grain crops make

up a significant part of Central Arizona’s agricultural portfolio, these crops individually are

still generally being planted on a much smaller scale than alfalfa and cotton. Finally, as

discussed in Chapter 1, cotton and wheat crops are frequently rotated throughout the year,

with wheat being planted in cotton fields as winter crop after harvesting. Because of this,

including variables related cotton and grains in the same econometric model could potentially

confound regression results.

The decision not to include developed area in Chapter 5’s empirical analysis likewise

required careful consideration. Early iterations of this work would have included all water

deliveries within a district, as opposed to water deliveries specifically made to agriculture.

Overall water deliveries data is more readily available through the Arizona Department of

Water Resources and so an initial idea was to include developed area as a control for munic-

ipal/industrial water use in any total water deliveries model. This approach was ultimately

dropped for the following reasons. First, the CDL’s metadata seeks to evaluate the veracity

of remote sensed observations through ground truthing. These evaluations are available for

all crop categories (as well as fallowed/idle cropland) in each state in each year. These eval-

uations are not made for the CDL’s developed area categories, leaving no way of knowing

how accurate these measurements are (US Department of Agriculture, National Agricultural

Statistics Service, 2021). The intention of the CDL is to provide information on cropping,

not all forms of land cover, meaning that in the absence of ground truthed evaluations, data

on developed area are less than reliable (Patrick Willis, personal communication). Hap-

pily, irrigation districts water use reports were eventually found to contain more detailed

breakdowns of water use by sector (see Appendix A.1 for more detail). These breakdowns

allowed for water delivered specifically to agriculture to be included as an outcome variable,
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eliminating the need to control for developed area.

Alternate SPEI Periods

The effect of climate is an area of interest in this study, and so, choosing an observational

period for climate relevant to growers’ water use decision making in year t is an important

consideration. As such, four different time periods over which the climate could be measured

were evaluated during the process of specifying empirical models of water demanded and

irrigation intensity. These are: 1) the average climate in year t, 2) the average climate

in the prior year (year t − 1), 3) the average climate in the prior rainy season, defined as

July to December of year t − 1, and 4) the average climate in the prior winter, defined

as November and December of year t − 1 and January of year t. The water deliveries

model outlined in Chapter 5 is specified using each of the three prior year SPEI measures.

Appendix A.2 shows that extensive cropping choices made at the start of the growing season

account for the majority of water deliveries to agriculture. Because of this, only climate

measures from time periods prior to the start of the growing season are considered for the

water deliveries model. On the other hand, intensive decisions are made throughout the

growing season, and Appendix A.2 shows that, while extensive decisions have some effect on

irrigation intensity, other factors play a much larger role in driving these choices. Therefore,

the irrigation intensity model is specified using all four time period measures, as it seems

likely the climate during the growing season may play a role in intensive decision making.

Coefficient estimates from these models will be compared in order to assess the suitability

of the various time period measures for use in the main body of this work.

Recall from Chapter 4 that the climate measure of choice in this study is the Standardized

Precipitation-Evapotranspiration Index (SPEI). The index includes measures of precipita-

tion and drought in the form of potential evapotranspiration (McEvoy et al., 2012). These

measures are standardized at various time scales, with values returned ranging between -3
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(meaning a period is hotter and drier than average), to 3 (meaning a period is cooler and

wetter than average). This study makes use of SPEI values standardized over a moving three

month time period, a time frame considered most efficient for assessing drought conditions

related to soil water content (Global SPEI Database, 2021). These three month standardized

values are then averaged over the periods described in the last paragraph to create four SPEI

measures.

The first step in comparing the four potential variable measures is observing the correla-

tion coefficients between every pair. A correlation matrix is presented in Table A7. Because

each of the three prior year measures contain some amount of the same information, it is

not surprising that the correlation coefficients are much higher between any combination

of these prior year measures than any prior year variable’s correlation with the own year

measure. Because of the high correlation between these prior year measures, it is less likely

to observe large differences in regression coefficient estimates’ signs and significance levels.

On the other hand, the low correlation between the own year measure and each of the prior

year measures indicates that large differences between the sign and significance of regression

coefficient estimates are quite possible.

The water deliveries model presented in Chapter 5 (Equation 21) is restated here for

convenience.

ln(Dit) = αD + β1X + β2Alft + β3Cott + β4CAPt + β5FaAit + β6PlAit + ΓD ∗ FEi + eit

where errors are clustered at t

The only difference between the above model and Equation 21 is X standing in for the

various SPEI time period measures to be evaluated. Therefore, β1 will be the coefficient of

interest in this evaluation. Table A8 presents coefficient estimates obtained from regressions
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run using all three prior year time period measures: the full year, the rainy season (July

to December), and the winter (November to January). Results are consistent across all

three measures, with each returning a positive and highly significant coefficient estimate. As

mentioned in the previous paragraph, this consistency is likely due to the high correlation

between these measures, as each contains some amount of the same information. There is

no clear measure of choice, nor a clear measure to be rejected. The prior year time period is

included in Chapter 5 because, being a twelve month average, it contains more information

than the other two.

Once again, the irrigation intensity model presented in Chapter 5 (Equation 22) is re-

stated here for convenience, and once again X stands in for the various time period measures.

Iit = αI + δ1Wat−1 + δ2Alft + δ3Cott + δ4CAPt + δ5FtPit + ΓI ∗ FEi + eit

where errors are clustered at t

Table A9 presents coefficient estimates returned by running this regression model using each

of the three prior year time period measures, as well as the own year average. The prior

year measures again return results that are consistent with each other in terms of sign and

significance. The coefficient estimates for these prior year measures are positive and highly

significant. On the other hand, the own year average SPEI measure returns a negative

coefficient estimate of no statistical significance. Recall that a negative SPEI value indicates

a hotter, drier year, so the negative value for the own year coefficient estimate is more in

line with an intuitive explanation of climate’s effect on irrigation intensity. However, the

lack of statistical significance means confidence cannot be placed in this result. It is possible

that in Central Arizona, growers generally expect hot and dry conditions and plan their

irrigation schedules accordingly, meaning the year-of climate would not impact irrigation

intensity. Adversely, the somewhat unexpected positive coefficient estimates returned by the
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prior year measures are highly significant, and included in Chapter 5’s empirical analysis.

As above, this measure is chosen over the prior rainy season or the prior winter due to a

greater amount of information being captured by a twelve month average. Additionally,

choosing the same SPEI measure for both empirical models creates consistency in terms of

the data required to specify each. It should be noted that, based on the results presented

in this section, were one to choose to run the same models specified in Chapter 5 using one

of the alternate prior year SPEI measures described above, coefficient estimates and overall

measure of fit would likely change very little.
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Table A7: Correlation Coefficients of SPEI Measures

Full Own Year Full Prior Year Prior Year Rainy Season Prior Year Winter
(July - Dec) (Nov - Jan)

Full Own Year - - 0.2072 0.0739 0.0365
Full Prior Year 0.2072 - - 0.7347 0.7771

Prior Year Rainy Season 0.0739 0.7347 - - 0.8791
Prior Year Winter 0.0365 0.7771 0.8791 - -

*** = p < 0.01, ** = p < 0.05, * = p < 0.1
(Standard Errors in Parentheses)
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Table A8: Lagged SPEI Measures: Deliveries Models

Full Prior Year Prior Year Rainy Season Prior Year Winter
(July - Dec) (Nov - Jan)

R2 0.9755 0.9768 0.9752
Coefficient 0.1104*** 0.1301*** 0.0753***
Estimate (0.035) (0.021) (0.015)

*** = p < 0.01, ** = p < 0.05, * = p < 0.1
(Standard Errors in Parentheses)
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Table A9: Lagged SPEI Measures: Intensity Models

Full Own Year Full Prior Year Prior Year Rainy Season Prior Year Winter
(July - Dec) (Nov - Jan)

R2 0.8957 0.9052 0.9047 0.9005
Coefficient -0.0415 0.1009*** 0.0879*** 0.0558***
Estimate (0.048) (0.027) (0.023) (0.016)

*** = p < 0.01, ** = p < 0.05, * = p < 0.1
(Standard Errors in Parentheses)
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A.4 Meetings and Contacts

Matthew Ford and Danielle Tadych, Research Assistants
University of Arizona, Department of Hydrology and Atmospheric Sciences
mford4@email.arizona.edu, dtadych@email.arizona.edu
November 19, 2020 - Zoom call
Topics: groundwater/pumping data, GIS data integration, tribal lands, academic literature

George Frisvold, Professor and Extension Specialist
University of Arizona, Department of Agricultural and Resource Economics
frisvold@ag.arizona.edu
January 7, 2021 - Zoom call
Topics: crop rotations, crop price data, irrigable area vs. planted area, pumping costs,
irrigation technologies, federal commodities programs

Dave DeWalt, Arizona State Statistician
United States Department of Agriculture - National Agricultural Statistics Service
dave.dewalt@usda.gov
January 15, 2021 - Email
Topics: irrigation technology, Cropscape

Russell Tronstad, Professor and Extension Specialist
University of Arizona, Department of Agricultural and Resource Economics
tronstad@ag.arizona.edu
January 19, 2021 - Zoom call
Topics: effective prices for crops, expected revenue for farms, Central Arizona cropping
patterns

Thomas Whipple, Hydrologist
Arizona Department of Water Resources
twhipple@azwater.gov
January 20, 2021 - Zoom call
Topics: water costs, energy providers, Cropscape, irrigation district water use

Tyler Fitzgerald, Agricultural Water Resources Specialist
Arizona Department of Water Resources
tfitzgerald@azwater.gov
February 5, 2021 - Email
Topics: irrigation district water use, public records requests, water rights/program codes
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Ken Seasholes, Manager - Resource Planning & Analysis
Central Arizona Project
kseasholes@cap-az.com
February 10, 2021 - Zoom call
Topics: CAP and Central Arizona water supply, urbanization, ADWR data, tribal water
data, pumping capacity, flex credits

Tyler Fitzgerald, Agricultural Water Resources Specialist
Arizona Department of Water Resources
tfitzgerald@azwater.gov
March 1, 2021 - Email
Topics: further clarification on irrigation districts’ water use reporting

Hannah Hansen, Graduate Research Assistant
University of Arizona, Department of Agricultural and Resource Economics
hannahhansen@email.arizona.edu
March 6, 2021 - Zoom call
Topics: checking data compilation

Russell Tronstad, Professor and Extension Specialist
University of Arizona, Department of Agricultural and Resource Economics
tronstad@ag.arizona.edu
March 8, 2021 - Email
Topics: Expected prices for cotton

Laura Condon, Assistant Professor
University of Arizona, Department of Hydrology and Atmospheric Sciences
lecondon@arizona.edu
March 18, 2021 - Zoom call
Topics: GIS processing of Cropscape data

Craig Wissler, Associate Professor
University of Arizona, Department of Natural Resources and the Environment
cwissler@arizona.edu
March 23, 2021 - Zoom call
Topics: GIS processing of Cropscape data
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Ron Klawitter, Principal - Water System Projects
Salt River Project
Ronald.Klawitter@srpnet.com
April 6, 2021 - Zoom call
Topics: District water reporting (water classifications, lands classifications, etc.), water de-
livery forecasting, Salt River Project characteristics

Dan Scheitrum, Assistant Professor
University of Arizona, Department of Agricultural and Resource Economics
dpscheitrum@arizona.edu
April 8, 2021 - Zoom call
Topics: Econometric modeling, robustness checks

Danielle Tadych, Graduate Research Assistant
University of Arizona, Department of Hydrology and Atmospheric Sciences
dtadych@email.arizona.edu
April 22, 2021 - Zoom call
Topics: GIS data processing

George Frisvold, Professor and Extension Specialist
University of Arizona Department of Agricultural and Resource Economics
frisvold@ag.arizona.edu
May 27, 2021 - Zoom call
Topics: econometric modeling, robustness checks, cotton price variables

Patrick Willis, Contractor
United States Department of Agriculture
patrick.willis@usda.gov
June 22, 2021 - Zoom
Topics: Cropscape, fallow/idle cropland assessment

Tyler Fitzgerald, Agricultural Water Resources Specialist
Arizona Department of Water Resources
tfitzgerald@azwater.gov
June 25, 2021 - Google Meet
Topics: Water rights classifications, San Carlos Irrigation and Drainage District, statewide
irrigation district water deliveries data
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Dan Scheitrum, Assistant Professor
University of Arizona, Department of Agricultural and Resource Economics
dpscheitrum@arizona.edu
September 2, 2021 - Zoom call
Topics: Econometric modeling, robustness checks

Tyler Fitzgerald, Agricultural Water Resources Specialist
Arizona Department of Water Resources
tfitzgerald@azwater.gov
October 16, 2021 - email
Topics: Deliveries out of district, deliveries to groundwater storage facilities

Ashley Kerna Bickel, Economic impact Analyst
University of Arizona, Department of Agricultural and Resource Economics
ashley.bickel@arizona.edu
November 17, 2021 - zoom
Topics: San Carlos Irrigation and Drainage District, gross crop revenues per acre
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