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ABSTRACT

Population pressure is speeding the rate of deforestation in Sub-Saharan Africa, raising the
monetary and opportunity costs of meal preparation. Many people rely on firewood or
charcoal to prepare food. Using a field experiment in Western Zambia, we investigate the
impact of solar cook stoves on compositional changes in diet when constraints to cooking
nutritionally diverse foods (e.g., legumes) and the cost of meal preparation are removed. We
find no impact on diet for those households assigned to the solar stove treatment. We do
see a significant result for the average number of dishes per household meal. These results
offer valuable insights into program development for the provision of solar stoves to reduce

the cost of meal preparation.



CHAPTER 1

Introduction

Increasing population pressure across Sub-Saharan Africa (SSA) has accelerated household
over-consumption of natural resources. In rural areas, households dependent on solid fuels
(e.g., wood, animal dung, agricultural waste, charcoal, and coal) as the primary source of
energy for cooking their meals (Riva et al. 2017) face increased monetary and opportunity
costs of procuring fuel inputs for meal preparation. As access to energy inputs for meal
preparation declines, households are unable to obtain the health benefits of a nutritionally
diverse diet. We investigate the impact of alleviating constraints to cooking fuel costs on
changes in dietary outcomes for households in Western Zambia.

To examine the link between rising cooking fuel costs and dietary outcomes we conduct
a solar stove field experiment in the Barotse region of Zambia‘'s Western Province. We
randomize the assignment of solar stoves to 54 households across three communities. In total,
143 households participated in the experiment and kept detailed dietary records, regardless of
treatment status, for six weeks. Households recorded the ingredients used in preparing each
dish for each meal on each day plus the fuel used to prepare each dish. These data provide
information on household choices in preparing the 126 meals (on average, 315 separate
dishes) consumed over the study period. We randomize the delivery of solar stoves across
these four groups to understand which information, from which activity, and which socio-
economic factors might have a larger impact on shifting people towards more diverse diets,
particularly when there is access to a low-cost source of energy for cooking. We then use the
exogenous variation provided through randomization of solar stove recipients to identify the
impact of solar stoves on improving household dietary outcomes.

We find that households assigned solar stoves used the stove to prepare 40% of the
10



dishes consumed throughout the experimental time period. We find no significant effect of
solar stove assignment nor use on measures of household dietary diversity, total legumes
cooked, nor total number of dishes in a given meal. We see a weak, significant, and positive
relationship between solar stove use and the average number of lunch dishes prepared for a
given household.

Our results are consistent with other experiments featuring clean cookstove adoption and
health outcomes (Hanna et al. 2016; Beltramo and Levine 2013; Iessa et al. 2017), and with
prior impacts of nutrition-specific interventions on dietary outcomes in Zambia (Kumar et al.
2018; Rosenberg et al. 2018). While solar stoves appear to be well-positioned as a unique
solution to the growing list of social and environmental stressors associated with climate
change, there remains a disjuncture between their conceptualization and implementation.

We pose a theoretical framework using the unitary agricultural household model (Singh
et al. 1986) and draw upon the work of (Fitzsimons et al. 2016) to model the impacts
of increased protein consumption through a household member‘s choice to integrate more
legumes into their diet subject to the constraints of labor supply and available funds for
purchasing non-legume goods.

We contend that when the time and cost burdens of procuring cooking fuel are reduced
by the provisioning of solar stoves, households will be better equipped to allocate time and
money to sourcing more diverse ingredients for meal preparation.

We then conduct an empirical analysis of the average, intent-to-treat, and local average
treatment effects. We use our rich dataset of over 28,000 dish-level observations over a six-
week period to estimate impacts on solar stove assignment on use, solar stove assignment
on the share of meals cooked on a solar stove, household dietary diversity scores, dietary
species richness scores, the average number of dishes in a given meal, the total number of
meals skipped, and the total instances of cooking legumes.

Our findings join an understudied space of health outcomes associated with solar stove

11



adoption and our results inform the literature on development practice in socio-ecological
systems. Understanding the effectiveness of multi-dimensional interventions such as the one

discussed in this paper is integral to building resilient, healthy communities.

12



CHAPTER 2

Background

2.0.1 Food Security and Nutrition

Institutional definitions of food security have evolved considerably since the early efforts of
food aid for development. In recent decades, the aim to ensure food availability and acces-
sibility has evolved towards nutritional quality in order to mitigate global malnutrition and
hunger (Klennert 2009). This shift has necessarily inspired the development of new metrics
for a deeper assessment of food insecurity that addresses the dimensions of availability, ac-
cessibility, utilization, and stability /vulnerability (Pangaribowo et al. 2013). Several metrics
and frameworks have emerged to capture each of these dimensions, including the Poverty
and Hunger Index and Global Food Security Index, anthropometric indicators, and dietary
diversity scores, and others (Pangaribowo et al. 2013). We focus specifically on measures of
dietary diversity, as recent research in the BFS has established the need for crop diversifica-
tion strategies to both increase access to a broader range of nutrients and mitigate shocks
associated with increasing climate variability.

Empirical evidence suggests that more diverse diets improve several broader health out-
comes, including increased birthweight and reduced hypertension (Ruel 2003; Pangaribowo
et al. 2013). Dietary diversity scores are fairly straightforward to calculate and lower the
barriers to their use in analysis (Pangaribowo et al. 2013). The diets of households across
the BFS comport with the observation from Ruel (2003) that many household diets in de-
veloping countries are centered around “starchy staples and often include little or no animal
products and few fresh fruits and vegetables” (Pasqualino et al. 2016). We see this reflected

in our own sample, as cereals were the most frequently consumed food group among par-
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ticipants (see Table Al), with porridge, maize, maize flour, and cassava occupying four of
the top six most frequently consumed ingredients among our sample (see Table A2). Kumar
et al. (2018) state that much of the dependence of rural Zambians on these crops is due to
large-scale maize subsidy programs that create intense pressure to produce only maize, and
that “rural Zambian diets are monotonous and generally lack the diversity required for good
nutrition.”

Growing interest in integrated nutrition interventions is actively changing the way nu-
trition outcomes are studied (Rosenberg et al. 2018). Such interventions emphasize the
conceptualization of nutrient insecurity as a function of one’s socio-ecological surroundings
(Kumar et al. 2018). Nutrition-sensitive landscape programming aims to introduce com-
prehensive and practicable solutions for the needs of a socio-ecological system. Under the
auspices of World Fish and Bioversity International, the Agricultural and Aquatic Systems
(AAS) program operated a pilot program promoting improved nutrition and climate-smart
agricultural practices in the BFS from (2014-2015) (del Rio 2014; Pasqualino et al. 2015b,
2016). A team of researchers conducted a set of qualitative studies on seasonal food avail-
ability, governance systems, and market functionality to triangulate the issues of food and
nutrition security in the BFS (Madzudzo et al. 2013; Pasqualino et al. 2015a,b, 2016). The
findings from these studies guide our experimental design and selection of outcome variables.
We use the Household Dietary Diversity Score and Dietary Species Richness indicators to
analyze changes in dietary composition in response to the provisioning of solar stoves. Sim-
ilar to the construction of the HDDS, the DSR scores are a count of the species included in
a dish (Lachat et al. 2018). Including an additional measure provides validation and gives a
clearer understanding of the nutrient and biological diversity of a household’s diet and allows
us to validate the household dietary diversity scores and compare the results (Lachat et al.

2018).
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2.0.2 The Barotse Floodplain System

Spanning roughly 230 km, the BF'S includes four districts in Zambia’s Western Province and
is home to over 225,000 residents (Emerton 2003; Zimba et al. 2018). The BFS is inundated
annually from December to March from the flooding of the Upper Zambezi River (Pasqualino
et al. 2016). This yearly event revitalizes the soil and facilitates the agricultural livelihoods
of 90% of the individuals in the region (Pasqualino et al. 2016; Baars and Ottens 2001; Turpie
et al. 1999; Mirriam Sampa et al. 2019; Flint 2008).

The Lozi people are the largest ethnic group in the region and maintain oversight of
the area’s agricultural operations through the Barotse Royal Establishment governing body
(Pasqualino et al. 2016). The migratory patterns of the Lozi are adapted to the natural flow
of the Zambezi River and move twice annually: to the upland during the flooding season and
to the lowland when the water recedes (Baars and Ottens 2001; Pasqualino et al. 2016; Cai
et al. 2017; Joffre et al. 2017; Rickert 2013). The Lozi are primarily subsistence households
earning their livelihoods by crop production, fishing, and cattle grazing (Pasqualino et al.
2016).

The BFS experiences severe poverty and is vulnerable to shocks (Flint 2008; Rajarat-
nam et al. 2015). Its aforementioned ecological barriers are compounded by limited access
to agricultural inputs (e.g., dung), equipment, and household knowledge about improved
management techniques using organic matter (Baidu-Forson et al. 2014). The region ex-
periences a period of four to five months with limited access to food known as the hunger
season (Castine et al. 2013; Baidu-Forson et al. 2014; Rajaratnam et al. 2015; Pasqualino
et al. 2015b). The BFS has garnered attention from researchers for its low agricultural pro-
ductivity despite its abundance of natural resources (Flint 2008). Historically, floodplain
environments have served an integral role in sustaining life through their natural replenish-
ment of nutrients vital to aquatic and terrestrial systems. In recent decades, this seasonal

dependence has evolved into what Cole et al. (2018) characterize as a social-ecological trap,
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where rapid population growth and overexploitation of natural resources have created a
cycle of poverty and food insecurity. Concurrent with market failures, poor institutional
oversight, and lack of information sharing, the effects of increased climate variability are
becoming more evident. Impacts from climate change include protracted regrowth periods
of deforested lands, unpredictable droughts and flooding (Mirriam Sampa et al. 2019). Flint
(2008) demonstrates decreasing rainfall trends in BFS planting seasons from 1960-2000 and
increased frequency and length of extreme heat days over time; however the author clearly
highlights the possible error introduced by the region’s lack of data resources. Flint (2008)
tempers the potential of reduced data quality from the BFS with qualitative descriptions of
BFS households and livelihoods with respect to changes in climate patterns. Participants’
lived experiences corroborate the climatological trends of decreased predictability and ad-
verse impacts on agricultural production in the floodplain.

Lozi households experience high levels of food insecurity and poverty (Pasqualino et al.
2016). In general the region lacks the infrastructure for market access and households practice
subsistence agriculture (Flint 2008; Pasqualino et al. 2016). Common regional crops include
maize, sweet potatoes, cassava, and rice (de Silva 2014). Regional crop availability varies,
as in some villages certain crops are available year-round, while other villages can only
access such crops for a three-month period (Pasqualino et al. 2015b). Community focus
group sessions facilitated by Bioversity researchers in 2014 revealed that food is typically
“plentiful” in Lealui and Nalitoya and “less available” in Mapungu during the months of
March and April (Pasqualino et al. 2015b). In both cases, the experiment was conducted
several months ahead of the hunger season, which starts as early as August and lasts until
December. As part of the community focus groups, participants were asked to rate the
availability of different food groups corresponding to the FAO dietary diversity guidelines.
Of the legumes, beans, seeds, and nuts group, no native crops were considered to be of

“high” availability at any point during the year. The Bambara groundnut was rated as “low”
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and “medium” availability,” while cowpeas and groundnuts were rated as “low availability”
during the months of March and April (Pasqualino et al. 2015b). Other nuts used for creating
cooking oil, like mungongo, were rated with “medium” availability, but processed culinary
ingredients such as these contribute less to dietary diversity and overall nutrition (Kennedy
et al. 2010). Caterpillar and fish were rated with the highest availability (medium) out of
all options for animal source food (Pasqualino et al. 2015b). During the annual fishing ban,
households substitute legumes (beans and groundnuts) for fish to meet their nutritional needs
for protein uptake, which drives the price per unit of beans and other legumes up during the
fishing ban Pasqualino et al. (2015a). Although the price of legumes does increase during
the fishing ban, vendors do observe decreased prices following the end of the fishing ban
(Pasqualino et al. 2015a), which would have coincided with the beginning of our experiment.

Households in the region have also self-selected into nutritional cooking clubs, participa-
tion in farm plot demonstrations (learning plots), participation in both, or chosen to abstain
from participation in these development activities. These programs have promoted the in-
troduction of legumes into the Lozi diet as both an inexpensive diet enhancement providing
better access to protein and a crop with restorative properties that improve soil for farming.
However, given substantial household reliance on firewood or charcoal as the main sources
of energy for cooking, the longer cooking times associated with preparing legumes or other,
longer-cooking foods can increase the use of cooking fuels. With climbing prices of energy
inputs for meal preparation, households are less able to meet their nutritional needs as they
choose to prepare a small number of quick-cooking foods, such as corn meal, rather than

legumes (Barbieri et al. 2017).

2.0.3 Solar Cookstoves

While solar stove technology has existed for centuries, improved solar stoves entered the

development discourse in the latter half of the twentieth century (Wentzel and Pouris 2007),
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gaining popularity as a valuable tool for alleviating the opportunity and financial cost bur-
dens of cooking fuel (Biermann et al. 1999). Experiments for evaluating solar cookers have
become more popular following the endorsement of the United Nations through their Sus-
tainability for All plan aimed towards improved cookstove adoption (Bensch and Peters 2015;
lessa et al. 2017). Although solar stoves can appear to be a universal solution for several
interconnected socio-ecological issues, prior experiments have shown mixed results with re-
spect to adoption and environmental benefits. In several cases, solar stove experiments have
found low to moderate adoption rates (Biermann et al. 1999; Wentzel and Pouris 2007; Ruiz-
Mercado et al. 2011; Hanna et al. 2016; Iessa et al. 2017); however, there are instances of
adoption success. Bensch and Peters (2020) found an almost perfect adoption rate and 30%
savings on firewood consumption. Similarly, an experiment in Ethiopia from 2013-2016 re-
vealed that nearly over two-thirds of the sample were still using their stoves at the end of the
experimental time period (Mekonnen et al. 2020). lessa et al. (2017) suggest that successful
studies are those which have properly scoped their intervention within a local context. A key
feature of our experiment is that it is contextualized by several previous qualitative studies
and interventions to help build a specific resilience to exogenous shocks. While the stoves are
a prominent part of our analysis, the primary focus is on nutritional outcomes. Our reseach
leverages local context while also contributing to the broader literature on health outcomes
for solar stoves, which at present is generally limited to respiratory conditions (Hanna et al.
2016; Bensch and Peters 2015; Smith-Sivertsen et al. 2004; Mobarak et al. 2012; Iessa et al.
2017).
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CHAPTER 3

Theoretical Framework

The goal of our intervention is to promote greater dietary diversity by reducing the fuel cost
burden associated with integrating new foods into household diets. In this section, we pose
a theoretical framework that explores the impact of using solar stoves on changes in legume
consumption in particular. Qualitative findings from previous assessments of nutrition secu-
rity and crop production in the BFS suggest that including more legumes in household diets
may offer a sustainable solution to both nutrition insecurity and soil degradation (del Rio
2014; Pasqualino et al. 2016). While BFS households have expressed interest in preparing
legume-based meals and diversifying their diets (del Rio 2014; Pasqualino et al. 2016), the
additional time and money towards procuring greater amounts of fuel to sustain extended
cooking times becomes cost-prohibitive. We aim to reduce the primary barriers to legume
consumption by providing an alternative cooking method that alleviates the time and finan-
cial burdens of sourcing cooking fuel. Ideally, treated households will choose to use their
solar stoves to prepare more legume-based meals. We use a unitary agricultural household
model to capture changes in consumption following the solar stove intervention. Drawing
from (Singh et al. 1986) and (Fitzsimons et al. 2016), we model BFS households as both
producers and consumers.

We begin by assigning a time endowment 7' to the household. We define household labor

[ as a function of the time endowment and leisure L, such that:

l=T-1L.

We assume the household’s utility is a function of leisure L, consumption of non-food goods

19



GG, and nutrition N. The household will maximize its utility as a function of food inputs and
labor supply such that the total expenditure on all goods (G, X3, and X5) does not exceed
total income, which is expressed as a product of wages w and hours of labor as a function

of time and leisure T" — [. The household’s problem then is:

max  U(G,L,N),

G,L,X1,X2

s.t. G+p1X1 —{—pQXQ S ’LU(T—L)

The household, as a producer, is represented by the nutrition production function in Equation
(3.1), where nutrition depends on the production of goods X; (legume crops) and X, (all

other goods):

N = F(X1, X).

Taken together, the household’s problem is:

max  GOLAX "M X,
G7L7X1 7X2

S.t. G+p1X1 +p2X2 S’U}(T—L)

Similar to Fitzsimons et al. (2016), we assume a Cobb-Douglas utility and production func-
tions. We also assume that households will exhaust their budget. Given a binding budget

constraint, We solve for G’ and substitute (3.1) into the objective function:

max (w(T — L) — py X1 — paXo)*LP X1 X2, (3.1)
L,X1,X2

where positive parameters «, 3, 71, and ¥, are output elasticities for G, L, X3, and X5. 71,

and -, represent the household’s perceived returns to nutrition inputs (legumes and non-
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legumes, respectively). Household perceptions of the returns to their nutrition inputs will
inform their allocation of money to non-food goods and time to labor.

We use comparative statics to ascertain whether the intervention influences how house-
holds assigned solar stoves value the nutritional benefits from cooking legumes. We take the
first-order conditions:

—ap1 gs!

Nx, (L, X1, X9) = — =0 2
Xl( ’ b 2) w(T — L) —p1X1p2X2 + X1 ’ (3 a>

_ap 2, (3.2b)

Nx, (L. X, X =
x, (L X, Xa) w(T — L) —piXapaXo  Xo

2 N (3.2¢)

N (L. X;. X
LB X, Xo) wT — L) —p XapaXo | L

We apply Cramer’s Rule using the equation system below to find solutions for our variables

of interest.

dX,  —Fppy (Fxox, Frr — F2x,1)

_ . : 3.3a
d’71 |H| ( )
dXy _ —Fx (Fxix, Fio — FxFxor) (3.3b)
d’}/l |H| 7 |
dX, _ —Fxi (Fxy x, Fxor — Fx 1 Fxox,) (3.3¢)

d’}/l |H| ’
where H is the bordered Hessian, or determinant of the coefficient matrix. Further simpli-

fying, we arrive at the following:

dX, B —Faim (FXlL(LBQIij + X'yéq;]l) B (Xf;Y?LQ) >0 (3'48“)
d’)/l ’[_{| 7
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—Fxyo Fx, (222
dXQ _ X1m ;XlL<wL2) < 0, (34b)
dy ’H’

dr _ P Fxe(zR) (3.4¢)

Equations (3.4a), (3.4b), and (3.4c) demonstrate the impact of solar stove interventions on
the household perceptions that influence the consumption of legumes, ;. The equations
indicate a positive change in the consumption of protein-rich foods, a negative change in
non-protein rich foods, and a negative change in leisure supply, respectively. As Fitzsimons
et al. (2016) note, the negative relationship with leisure supply implies a positive relation-
ship with labor supply, which, in the absence of credit access, indicates that the household
finances consumption at a higher level by increasing labor. Thus, following our intervention,

households will prepare more legume-based dishes and fewer non-legume foods.
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CHAPTER 4

Experimental Design

4.1 Research Questions and Objectives

We expect that deforestation across the Barotse floodplain has increased the cost of tradi-
tional cooking fuel (firewood and charcoal) to the point where the price of cooking fuel is
a binding constraint on the household’s decision regarding meal preparation. Households
assigned a solar stove will reduce their use of traditional cooking fuel and thus reduce the
costs of meal preparation. Following this reduction in fuel costs, households will prepare
more healthy meals that include more ingredients and exhibit greater dietary diversity. Ad-
ditionally, households will boil more liquids and cook more legumes. Conditional on reduced
fuel costs, households will change the composition of dishes cooked using traditional fuel as
they re-optimize their consumption decisions. These effects will likely differ for households
that had previously self-selected into participating in nutrition and/or farming demonstra-
tions compared to households that self-selected out of these activities. We investigate the
following research question: Does the provisioning of solar stoves change the composition
of the diet (measured by household dietary diversity, dietary species richness, count of the

number of dishes, and count of the number of meals skipped) eaten by the household?

4.2 Intervention

The intervention took place in March and April 2016, which was immediately after the end
of the rainy season and at the beginning of the harvest season (Pasqualino et al. 2015b).
Solar stoves were randomly assigned to 54 households and 89 additional households across

three communities served as control groups. Over the course of six weeks, our sample of
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143 households recorded all of the ingredients used in each dish for each breakfast, lunch,
and dinner meal. Participants recorded a total of 27,804 observations using food diaries
(pictured in Appendix B for all meals over a six-week period. Households committed to
properly manage the solar stove, record its daily usage for six weeks in the assigned form,
and record fuel consumption during the same period. Participating households were entered
into a raffle of the solar stoves at the end of the six week experiment, conditional on their
satisfactory completion of their cooking and fuel log. This was to incentivize members of the
control group, who do not receive a stove during the initial allocation of stoves, to record

their data through the six weeks.

4.3 Sampling

Ten villages across the BFS are grouped into AAS Communities specific to the AAS program
(Pasqualino et al. 2016). Seasonal crop production and accessibility to markets, education,
and health care, varies across the villages (Pasqualino et al. 2015b, 2016). To eliminate any
bias associated with living in a particular village, we randomly selected three villages from
the ten AAS villages in which to carry out our study: Lealui, Manpungu, and Nalitoya.

To account for participants’ previous exposure to related development programs, we
stratified our sample by household involvement in prior programming. This strategy resulted
in four sub-samples, including i) households that participated in farmer learning plots; ii)
households that participated in nutrition clubs; iii) households that participated in both
learning plots and nutrition clubs; and iv) households that participated in neither learning
plots nor nutrition clubs.

In each community we facilitated an introductory day-long event. During the morning
we 1) began an open discussion with participants about the objectives, commitment, and
expected results from the solar cookers project; and 2) conducted a test and used some of

the solar stoves to make a communal lunch, highlighting safety management and precaution
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measures with a hands-on experience. During the afternoon session, we invited interested
participants to volunteer for the chance to have and use the solar stove during six weeks.
Given that some households in each of the villages were exposed to nutrition and crop
interventions delivered prior to our experiment, participants’ names were divided into one
bowl corresponding to an AAS Activity sub-group per village. We then drew names, without

replacement, for the assignment of the solar stoves.

4.4 Data

Our analysis uses both primary and secondary data sources. We visited all treatment and
control households to collect gender, age, and education data at the individual level. We
also captured household-level data on household size and number of household members.

Our descriptive statistics (see Table 1) show that, on average, participants are in their
late 40s (ages range from 21-80 years of age) with lower levels of assets and education.
Our sample includes more females relative to males, and on average, households have seven
household members. We can also see that on average, households prepare fewer breakfast
dishes and skip more breakfast meals.

Each household within the treatment and control groups for each village sub-group were
instructed to record the ingredients for each dish they cooked, the method used for cooking,
and the price of fuel for each dish prepared, per meal, per day over a six-week period.
Households were also asked to record whether liquids were boiled, the volume of liquids
boiled, whether legumes were prepared, and the amount of legumes prepared for each day
over the total period. A weekly total of the time or money they allocated to sourcing
their cooking fuel was also recorded. A blank food diary can be found in Appendix B. To
encourage members of the control groups to maintain their daily food logs, we required the
treated individuals to return their stoves at the end of the trial. We then held a separate

random drawing using treated and control groups to determine the permanent owners of the
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stoves, regardless of their treatment assignment during the trial.

We measure impacts on dietary composition using the Household Dietary Diversity Score
(HDDS) metric created by the Food and Agriculture Organization (FAO). The FAO Guide-
lines state that the household member who oversees meal preparation record all items con-
sumed by anyone within the household during a specified recall period (Kennedy et al. 2010).
The FAO advises a 24-hour recall period, as it reduces the risk of measurement error, sim-
plifies the data collection process, and provides a snapshot of population-level dietary trends
(Kennedy et al. 2010). Ranging from 1-12, the HDDS measures a household’s relative ac-
cessibility to “dietary energy” where 1 indicates low dietary diversity and 12 indicates high
dietary diversity (Kennedy et al. 2010). To generate scores for each household, we matched
each ingredient observation to one of the twelve FAO-designated food group categories and
the appropriate level (four available) of processing. Based on pre-determined FAO standards
associated with food group and processing levels, nutritious ingredients were assigned a value
of one. Ingredients that offered little to no nutritional value were not counted towards the
HDDS. Additionally, if a meal comprised of multiple dishes using some of the same ingre-
dients, the repeated ingredient was only counted once for that meal. The ingredient-level
scores were aggregated to the dish, meal, day, week, and six-week levels. We also calculate
the HDDS as an average over the food groups within each level of aggregation.

Following Lachat et al. (2018), we include dietary species richness as an additional mea-
sure of dietary diversity. This metric is calculated by matching ingredients to species and
tabulating the number of unique species consumed during a 24-hour period. Lachat et al.
(2018) highlight that dietary species richness serves as an important validation tool and
enriches the understanding of nutrient availability and biodiversity for a given population.

We analyze whether households are cooking more dishes, on average, after assignment
to a solar stove. Since participants log the cooking methods associated with each dish, a

change in average dishes per meal could tell us more about household choices to completely
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substitute solar stove use for fuel-based cooking methods or supplement their traditional
cooking methods with solar stove use. We calculate the average number of dishes in a meal
by tabulating the number of dishes for breakfast, lunch, dinner meals and dividing by the
total number of meals consumed by a household over the six-week experimental period.

We consider the number of meals skipped by each household by tabulating the total
number of meals skipped over the experimental period.

Based on prior qualitative research undertaken by BI, we include the number of times
legumes are prepared by a household during the experimental time frame. Legumes are
promoted as a less expensive substitute for animal-sourced protein, especially during the
annual fishing bans. They also contribute to improved soil quality, as nitrogen-fixing bacteria
facilitate the breakdown of atmospheric nitrogen and release it into the soil.

We also used Landsat 8 data (see Appendix C) in order to calculate the percentage of
cloud cover during the period. It is important to note that these data are incomplete, as
the satellite only flew over our RCT region five times during the experiment. Thus, we use
the single value obtained from Landsat 8 for each day within the week. When no data were
available for a certain week, we assigned it the averaged values from the week before and
week following.

We used the coefficients associated with tropical livestock units (TLU) to convert our
recorded values of participants’ livestock to internationally comparable units. The sum of
these units is the Tropical Livestock Index (TLI) value (FAO 2018).

We also construct indicator variables for our household covariates, cooking method, fuel
type, and each level of data (i.e., dish, meal, day, week, total RCT time). We validate data,
including checks for obvious misspellings, case-sensitivity, and errant characters from data
entry; joining dictionary files with Lozi-English translations for food groups, processing, and
species; as well as interpolating missing English data by matching Lozi entries to their English

counterparts. Continuous outlying values were winsorized at the 2nd and 98th percentiles.
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CHAPTER 5

Empirical Approach

Our causal interpretation draws from the Potential Outcomes Framework (Rubin 2005).
Within this framework, an outcome is a random variable whose realized value is contin-
gent on exposure to a single, well-defined causal state (Morgan and Winship 2015). In the
experimental case with binary treatment outcomes, participants are exposed to the causal
state associated with one of two treatment statuses (treated or untreated). We then face the
fundamental problem of causal inference: while the unrealized-and unobserved—outcome,
known as the counterfactual, is the ideal comparative reference for assessing the effect of
the intervention, it is impossible to compare an individual’s observed outcome with their
unobserved outcome (Holland 1986; Morgan and Winship 2015). We approximate this al-
ternative outcome by only assigning the treatment to part of the population. However, in
almost any experiment, there are sysetmatic differences among participants that may in-
fluence selection into the treatment. Thus, to ensure that no observable or unobservable
factors are deterministic of the treatment assignment and a household’s realized outcome,
we randomly select the treated households from the pool of all participants. We then use
the experimental observations to calculate an aggregate causal effect.

We desire to isolate the effect of solar stove use on nutrition outcomes. In an ideal exper-
iment, we would calculate the Average Treatment Effect (ATE), which Angrist and Pischke
(2008, 2015) describe as the difference between the treated and control groups in the absence
of selection bias. As previously discussed, our randomized treatment assignment allows us
to invoke the ignorability assumption and assume that random assignment has eliminated
any systematic variation in the treatment due to selection bias and we may “ignore” any

remaining idiosyncractic variation in the treatment (Morgan and Winship 2015). In the
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context of our experiment, the ATE would measure the linear difference in mean solar stove
use across both groups: those who were assigned a solar stove, and those who were not. In
the event of perfect compliance, we would estimate the ATE of solar stove use on household

dietary diversity, for example, with the following model:

HDDSint = a+ BTy + X3y + pio + ¢g + €ine, (5.1)

where our outcome variable HD DS, represents the dietary diversity score of a household
h during time t; « is an intercept term; 7' is the household use of a solar stove to prepare
a dish; and X is a matrix of controls indexed by household with ~ as its coefficient. pu is
a village fixed effect indexed by village v; ¢ is a fixed effect indexed by group, based on
previous exposure to AAS activities; and ¢, the idiosyncratic error term for each household
h during time ¢t.

With this understanding, and by allowing for the Stable Unit Treatment Value Assump-
tion (SUTVA), which Morgan and Winship (2015) define as the assumption that a treated
individuals outcome is not dependent on the way the treatment is assigned, we can estimate
causal effects. However, our collected data include both a household’s treatment status and
whether a solar stove was used. We know from an inspection of our data that there was
not perfect compliance, as the values for treatment assignment and use are not identical for
each household. This is not uncommon among RCTs where participating individuals may
opt out of their assigned treatment with no repercussions. There is an established set of par-
ticipant behaviors that partition our sample into four subgroups: always-takers, individuals
who will somehow always receive the treatment regardless of their treatment assignment;
never-takers, individuals who will never receive the treatment, regardless of their treatment
status; defiers, individuals who will do the opposite of their assignment status, regardless of
the assignment; and compliers, individuals who accept the treatment which they are assigned

(Angrist et al. 1996). We consider these subgroups in our estimation framework below.
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5.1 Average Treatment Effects

We address two preliminary questions before analyzing our final nutrition outcomes:
1. Are treated households using their solar stoves?

e Hy: pn = 0; there is no significant difference in the number of dishes prepared using
a solar stove between those who are (treated) and are not (control) assigned a

solar stove.

e Hi: > 0; there is a positive and significant difference in dishes prepared using

a solar stove between the treated and control groups.
2. What percentage of household dishes is prepared using solar stoves?

e Hy: pu = 0; there is no significant difference in the share of dishes prepared using
a solar stove between those who are (treated) and are not (control) assigned a

solar stove.

e Hyi: p > 0; there is a positive and significant difference in the share of dishes

prepared using a solar stove between the treated and control groups.

We hypothesize that if assigned a solar stove, a household will use the stove for dish prepa-
ration. We estimate the average treatment effect for each of our two intermediate outcomes

using the following equations:

e Are treated households using their solar stoves? We regress dishes prepared using a

solar stove onto treatment assignment in the equation below.

Dy = a+ BTy + Xpy + o + by + €ne,s (5.2)

where our outcome variable Dy, represents the dish for each household h during time ¢;

« is an intercept term; 7' is the household use of a solar stove to prepare a dish; X is a
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matrix of covariates indexed by household; u is a village fixed effect indexed by village
v; ¢ is a group fixed effect based on previous exposure to AAS activities; and e is
the idiosynchratic error term for each household A during time ¢. Since our dependent
variable is a binary variable, we estimate this equation using a linear probability model
(LPM) and a Probit model and compare the coefficients and standard errors of the

former to the average marginal effects and standard errors of the latter.

e What percentage of household dishes is prepared using solar stoves? We regress the
share of dishes prepared using a solar stove onto the treatment assignment and covari-

ates.

She =+ BT+ Xy + po + ¢g + €ne (5.3)

)

where our outcome variable Sj; represents the dietary diversity score h during time ¢.

5.2 Intent-to-Treat Effects

We also estimate the I'TT effect, which captures the causal effect of being assigned a solar
stove on our final outcomes of interest. While the ITT does not account for non-compliance,
it does provide us with an understanding of the causal relationship between a household’s
ability to use a solar stove and various nutrition outcomes. Table A4 lists the decision rule
associated with the alternative hypothesis for each of the final outcomes. We expect the
provisioning of solar stoves to yield positive and significant I'TT effects for HDDS, SR, and
number of dishes prepared using solar stoves. We also expect a negative and significant ITT
effect on the number of meals skipped.

We estimate the ITT effect for the following outcomes: HDDS (measured as a count

and measured as an average), Dietary Species Richness scores (measured as a count), the
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average number of dishes prepared using a solar stove, and the average number of meals

skipped (measured as a count and average).

1. Household Dietary Diversity Scores (HDDS): We estimate the ITT effect on the HDDS
(measured as a count and average) using Poisson and Ordinary Least Squares regres-
sion, respectively. The HDDS outcome variable H D DS}, represents the dietary diver-
sity score h during time ¢ and T is the household use of a solar stove to prepare a
dish:

HDDSy = a+ BT, + Xy + o + ¢g + €int. (5.4)

2. Dietary Species Richness (SR): We also estimate the ITT effect on the DSR measured
as a count using Poisson regression. The dietary SR outcome variable DS Rj,; represents
the dietary diversity score h during time ¢ and T is the household use of a solar stove
to prepare a dish:

SRht = o+ ﬂTh —+ X}/L’)/ —+ je% + (ﬁy + €int- (55)

Each of the ITT models above are estimated for each level of aggregation (dish, meal, day,

week, and total). They are also estimated both with and without controls.

3. Average Number of Meals in a Dish Prepared Using a Solar Stove: We estimate the
ITT effect on the average number of breakfast, lunch, and dinner meals prepared per
meal on a solar stove using OLS regression. The outcome variable N Dy, represents
the number of dishes h during time ¢ and 7' is the household use of a solar stove to
prepare a dish:

NDyp = a+ BT, + X3y + po + ¢ + €ne. (5.6)

4. Number of Meals Skipped We estimate the I'TT effect on the number of total, breakfast,
lunch, and dinner meals skipped (measured as a count) using Poisson regression. The

outcome variable M .Sy; represents the average number of meals skipped for each meal
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type h during time ¢ and T is the household use of a solar stove to prepare a dish:

MSy = a+ BTy + Xy + iy + ¢ + €nt. (5.7)

Each of the ITT models above are estimated for each meal type (breakfast, lunch, dinner)

and overall meals. They are also estimated both with and without controls.

5.3 Local Average Treatment Effects

The LATE uses the exogenous variation of the solar stove assignment variable to instrument
for endogenous solar stove use. Despite our control over the treatment assignment, we cannot
control whether the stoves were used. Nor could we be certain that non-treated individuals
were not able to access a stove. There are many reasons that might influence a household’s
decision to use an assigned stove, and these systematic decisions can increase the standard
error for the estimated treatment effect coefficient and underestimate the treatment effect
for individuals who comply with their assigned treatment. If we wish to better understand
the effect of solar stoves on nutritional outcomes for individuals who complied with their
treatment status, we can leverage the Local Average Treatment Effect (LATE). While the
LATE cannot account for those whose participation is not affected by the randomization of
treatment assignment (always-takers and never-takers), it can use the exogeneous assignment
of the treatment as an instrument for solar stove use to give us the treatment effect for
compliers.

We use instrumental variables (IV) estimation to recover the LATE. Following the guid-
ance of Imbens and Angrist (1994); Angrist et al. (1996); Angrist and Pischke (2008), we

first ensure that we satisfy the following assumptions:
1. The Stable Unit Treatment Value Assumption, as previously defined.

2. Non-zero average effect of the instrument on the treatment, otherwise known as a valid
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first stage. The instrument is correlated with the endogenous variable.

3. Exclusion restriction: the instrument is not correlated with the error term and does

not influence other determinants of the outcome variables.

4. Unconfundedness: The instrument also only affects the outcome variable through the

treatment assignment.

5. Monotonicity: Recall the typology of compliance discussed above. Given that the
behavior of always- and never-takers is not a response to treatment assignment, the IV
estimation of the LATE cannot provide insight into their associated treatment effects.
Further, the assumption of monotonicity implies that the estimated effect cannot reflect
both defiers and compliers, as the treatment effect must affect everyone in the same
way (Angrist and Pishke, 2008; Morgan and Winship, 2015). By monotonicity, we are
able to make the assumption that there are no defiers in our sample and our LATE is

the average treatment effect for the compliers.

To test assumption 1, we regress the endogenous variable on the instrument, solar stove
assignment. We find that the result is significant, meaning there is a relationship between
the two variables. However, the exclusion restriction is not testable and instead relies upon
the argument that the random assignment of a solar stove will only impact nutritional
outcomes through the endogenous solar stove use variable and thus has no direct effect on
any outcomes. We demonstrate a more generalized IV regression using 2SLS below.

Our first stage regression is as follows:

Usepny = a+ 6T) + Xpv + o + Vi (5.8)

In equation (5.8), we regress the endogenous treatment of solar stove use Use on an
intercept; our exogenous instrument of random treatment assignment 7', Z; a matrix of

covariates, village fixed effects; and stochastic error term.
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We then substitute the estimated value Utseht obtained using our instrument 7}, for the

original endogenous Usey; and estimate:

Dpy = o+ BTy + Xy + iy + €nt. (5.9)

5.4 Inference

We cluster our standard errors at the unit of randomization: the household. Additionally,
we correct for two critical concerns within our data that may affect our standard errors:
heteroskedasticity and serial correlation. For household observations across time periods,
we implement Liang-Zeger cluster-robust standard errors to account for correlation within
the households and across time. We implement Eicker-Huber-White robust standard errors
to account for heteroskedasticity when our unit of analysis is an overall measure for the
household (e.g., the six-week average of HDDS scores), as we lose the threat of correlated

error terms across multiple time periods.
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CHAPTER 6

Results

6.1 Average Treatment Effect

Before considering specific outcomes of interest, it is important to gain a fundamental un-
derstanding of how the treated respond to their treatment status. We do this by estimating
the average treatment effects for two intermediate outcomes (presented in Tables 4 and 5).
The estimated coefficients and marginal effects in Table 4 illustrate that, on average, par-
ticipants assigned a solar stove used the stove to cook 40% of their dishes over the six-week
experimental period. The results in Table 5 suggest that, on average, participants assigned
a solar stove used the stove to prepare approximately 45% of the share of dishes at the meal,

day, week, and six-week level.

6.2 Intent to Treat Effect

The ITT provides insight into a household’s response to having access to a solar stove, and
by extension, the ability to prepare a wider variety of dishes. The solar stove should defray
the higher fuel costs that accompany dishes with greater dietary diversity, while also slowing
the rate at which households consume wood for fuel.

Our estimated I'TT effects illustrate the effects of being assigned a solar stove on changes
in a household’s composition of diet. The results shown in Table 6 and Table 7 tell us that
households assigned a solar stove did not experience any significant changes in the food
groups or levels of processing during the experimental period. Lachat et al. (2018) recom-
mend combining the use of household dietary diversity scores and dietary species richness for

a deeper understanding of food and nutrition security, as changes in dietary species richness
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can serve as an indicator for changes in one‘s natural environment. The estimated effects in
8 show us that there were also no significant changes in the biodiversity within the sample
region during the experiment. Given that our experiment was conducted during the har-
vest season, it is possible that households had already made and acted upon their decisions
regarding agricultural production prior to participating in the RCT. Such decisions have a
direct impact on the availability of foods for rural subsistence households and local mar-
kets. Thus, there may be a lagged response to biodiversity depending on an intervention‘s
synchronization with the growing season.

We consider more general outcomes focused on food security in Tables 9 and 10. In
theory, access to a less expensive cooking method could allow households to spend more
time and money on food, rather than the fuel required for cooking food. We do not see any
treatment effects that suggest the treatment assignment impacted the quantity of meals a
household cooked throughout the experiment. for households assigned a solar stove on the
average number of breakfast, lunch, dinner, and overall meals.

Finally, we consider the case of increased household legume consumption, as was pro-
moted by BI after a series of qualitative studies in AAS communities. Table 11 shows no
significant effect of treatment assignment on the number of times legumes were cooked by
a household at the day, week, and six-week levels. As in our discussion of increased dietary
diversity and species richness, such changes may be lagged due to household decisions made

prior to the experiment.

6.3 Local Average Treatment Effect

Estimating the Local Average Treatment Effect allows us to hone in on the portion of our
sample that was assigned a solar stove and chose to use the solar stove. We consider the same
outcome variables that were used for the I'TT above. Tables 13 and 12 show us that when

treated households chose to use the solar stoves they were assigned, they did not experience
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a change in dietary diversity. Similarly, there is no evidence of a shift in species richness for
these household (see Table 14).

Column 6 in Table 15 indicates that households assigned solar stoves prepared, on aver-
age, more lunch dishes in a meal. This is a plausible result, as lunchtime is likely the part
of the day with the most direct sunlight; however, when covariates are removed from the
model, the effect is no longer significant. As for our measure of legume consumption (see

Table 17, we see no evidence of impacts from solar stove use.

6.4 Inference

Statistical power is a crucial factor in results interpretation, as smaller samples may provide
unreliable results (Michler and Josephson 2021). While our sample comprises 143 house-
holds, our unique set of collected data spans 27,804 dish-level observations. Further, we use
the estimation of Local Average Treatment Effects to increase our statistical power. Figure
D1 shows a power calculation for the intent-to-treat effect of household dietary diversity
scores calculated as an average at the meal level (N=14,541). The power calculation indi-
cates that the minimum detectable treatment effect is around a magnitude of 0.025. Our
estimated intent-to-treat effect is -0.081, meaning that we have surpassed the minimum de-
tectable treatment effect in magnitude and our result for this specific outcome at this level
of aggregation have statistical power. Figure D2 tells a different story; despite having 27,804
observations and applying the LATE, our estimated effect for dietary species richness mea-
sured as a count at the dish level is underpowered. Taken together, we know that some of
our estimated treatment effects may indeed be underpowered and prevent us from ruling out
the possibility of false null results.

Future analyses should use corrections for both false discovery rate (FDR) and family-
wise error rate (FWER). The former corrects for the expected proportion of rejections that

are Type I errors, while the latter concerns any instance of Type I errors (Michler and
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Josephson 2021).

Hypotheses regarding measures of dietary diversity and legumes cooked may be grouped
together, as changes in one should imply directionally similar chanages in the other. The
average number of dishes in a meal cooked and the number of meals skipped should not
be grouped together. While similar, these are more general measures and do not address
nutrition insecurity directly. Increased dietary diversity does not necessarily imply that more
dishes will be prepared per meal; perhaps the number and type of ingredients changes, but
the number of dishes in a meal prepared remains the same. The number of meals skipped is
not necessarily dependent on the diversity of one’s diet, and further, may be independent of
the number of dishes prepared. Thus, we can correct for the family-wise error rate among
hypotheses concerning dietary diversity measures (HDDS and SR). We should use Anderson

sharpened g-values for FDR correction and Romano-Wolf p-values for FWER correction.

6.5 Experimental Validity

With regard to internal validity, there is a trove of analytical techniques and robustness
checks to ensure empirical integrity. A natural starting point is measuring attrition, which
would inform us of whether any households stopped participating in the experiment. Know-
ing this helps us better understand the control and treated groups during the experimental
time frame and any bias incurred. While an informal review of the data suggests that at-
trition is likely not an issue, we can formalize this assumption by performing a Lee Bounds
estimation (Lee 2009). In a similar vein, missing data are also a critical part of analysis and
should be accounted for. Since participants were asked to record instances of skipping meals,
we are able to distinguish and compare observations of skipped meals to blank entries.

In the event that any of our other experimental outcome variables the reveal significant
treatment effects, we should also investigate potential spillover effects by regressing our

outcome variables on indicators of other cooking methods (e.g., wood, charcoal, dung).
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The question of external validity is less straightforward. While it can be helpful to design
easily comparable development interventions in order to assess their usefulness or predict
success elsewhere, there is much to be said for designing experiments that incorporate the
particularities of a specific geography. It is clear that an experiment in one part of the world
may be an excellent or poor fit for another. Thus, we continue to face the tradeoff between
generalizable and nuanced experimental design.

Given that there was 40% compliance with the treatment status, we estimated the I'TT
and LATE effects for the final outcomes of dietary diversity, total number of meals skipped,
average number of dishes in a meal, and total instances of legumes cooked per household.
While we did not find a significant effect of solar stove use on nutrition outcomes using either
the ITT or LATE, we see a weak significant result for solar stove use and the household
average number of dishes in lunch meal. We are encouraged by the promise of our average
treatment effect results as we continue to analyze other experimental outcomes (e.g., fuel
cost savings and boiled liquids).

There are several reasons why households may not adopt solar stove use. Biermann et al.
(1999); Bensch and Peters (2015); Hanna et al. (2016) credit steep learning curves associated
with changes to lifelong cooking behaviors as inhibitors to adoption, and further suggest that
solar stoves may be better served as a supplemental cooking method in parallel with stoves
reliant on biomass fuel products. Referencing the weak associations found in their own
assessment of a nutrition-sensitive intervention in Zambia on dietary outcomes, (Rosenberg
et al. 2018) suggest that such interventions may not be enough to make a substantial impact
on dietary outcomes in isolation. A potential point of future investigation might be the
success of indirect vs. direct gains in accessibility (i.e., the impact of receiving a tool that
facilitates nutrient uptake versus direct access to nutrients themselves).

The low adoption rates from a five-year randomized controlled trial in Orissa, India were

linked to poor stove maintenance and no significant savings in fuel costs (Hanna et al. 2016).
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lessa et al. (2017) highlight that, among the studies included in their review of solar stove
experiments, one-third of the experiments reported adoption failures due to the expenses
associated with owning and operating a stove. Within the past decade, development scholars
have approached such an issue by heavily subsidizing the initial purchase and maintenance
of solar stoves (Hanna et al. 2016) and introducing cookers to treated households at no cost
to the participants (Bensch and Peters 2015). Such factors are difficult to address with a

single experiment, but may offer insight into our results.
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CHAPTER 7

Conclusion

While solar stoves appear to provide a unique solution to the growing list of social and en-
vironmental stressors associated with climate change, there remains a disjuncture between
their conceptualization and implementation. This paper examines nutrition outcomes as-
sociated with solar stove use in a randomized controlled trial. Our estimation of average
treatment effects show that, as expected, households assigned solar stoves used them to cook
roughly 40% more of their meals instead of other cooking methods, relative to the control
group. We do not find a significant effect of solar stove assignment nor use on measures
of household dietary diversity. We also do not see a significant effect of the provisioning of
solar stoves on changes in legume consumption. We detect a weak, significant, and positive
relationship for solar stove use and the average number of lunch dishes prepared for a given
household.

In any intervention, researchers working among vulnerable populations must bear in
mind that these individuals face significant uncertainty. While an intervention may posit
an innovative and multi-faceted solution, the idea of deviating from a household’s regular
operations may introduce further uncertainty and influence a household’s choice to adopt.
Moreover, we all can understand that behavioral changes do not always happen as quickly
as we would like, or at least as quickly as project resource constraints might allow. A follow-
up interview with households who received the raffled solar stoves upon the original RCT
completion may reveal delayed effects on nutritional outcomes. Qualitative endline surveys,
when feasible, can provide insight into a project’s limitations or potential improvements for

any similar projects offered in the future.
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Table 1: Descriptive Statistics

Variables Obs. Mean St Dev. Min Max
Solar Stove Assignment (=1 if assigned) 143 0.378 0.48 0 1
Solar Stove Use (=1 if used) 143 0.231 0.423 0 1
AAS Group (none, nutrition clubs, learning plots, both) 143 1.825 1.140 0 3
Age (years) 143 4759 1244 21 80
Cloud Cover (percentage) 143 993 8362 0 100
Education Attainment (none, primary, secondary, higher) 143 1.545 0.614 0 3
Gender (=1 if female) 143 0.692 0.463 0 1
Household Size (number of household members) 143 7.007 2736 1 16
Tropical Livestock Index 143 8.093 14.36 0 95.36
Village (Lealui, Mapungu, or Nalitoya) 143 1.056 0.878 0 2
Note: Summary statistics for independent variables included in analysis (N = 143 households). The first

two rows present the two main independent variables used for estimating treatment effects. The remaining
rows present covariate summaries. Frequency tables for categorical covariates are also presented in Table 2.
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Table 2: Categorical Covariate Frequency Table

Covariate Category Count Percent Cumulative Percent
AAS Activity Group None 33 23.08 23.08
Learning Plot 8 5.594 28.67
Nutrition Club 53 37.06 65.73
Both 49 34.27 100
Educational Attainment None 3 2.098 2.098
Primary 65 45.46 47.55
Secondary 69 48.25 95.8
Higher 6 4.196 100
Gender Female 99 69.23 100
Male 44 30.77 30.77
Village Lealui 51 35.66 35.66
Mapungu 33 23.08 58.74
Nalitoya 59 41.26 100

Note: Frequency of each categorical covariate within the sample (N = 143 households).
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Table 3: Descriptive Statistics:

Outcome Variables

Variables Obs. Mean St Dev. Min Max
Solar Stove Assignment 27,804 0.395 0.489 0 1
Solar Stove Use 27,804 0.181 0.385 0 1
Avg. Share of Dishes Prepared Using Solar Stoves: Meal 14,541 0.178 0.357 0 1
Avg. Share of Dishes Prepared Using Solar Stoves: Day 5,526 0.178 0.298 0 1
Avg. Share of Dishes Prepared Using Solar Stoves: Week 838  0.181 0.273 0 1
Avg. Share of Dishes Prepared Using Solar Stoves: Total 143  0.177 0.258 0 0.933
HDDS Count: Dish 27,804 2.32  0.999 1 6
HDDS Count: Meal 14,541 3.897 1.53 1 9
HDDS Count: Day 5,526 5.699 1.477 1 11
HDDS Count: Week 838 8.208 1.536 1 12
HDDS Count: Total 143 9.846 1.218 6 12
HDDS Avg.: Meal 14,541 2.098 0.649 0.333 6
HDDS Avg.: Day 5,626 1.9  0.492 0.333 3.667
HDDS Avg.: Week 838 1.173 0.219 0.143 1.714
HDDS Avg.: Total 143 0.234 0.029 0.143 0.286
DSR Count: Dish 27,804 2.262 1.056 0 6
DSR Count: Meal 14,541 4.325 2.534 0 20
DSR Count: Day 5,526 11.38 5.641 0 51
DSR Count: Week 838 75.06 35.45 2 238
DSR Count: Total 143  439.8 197.0 66 1,192
Avg. Number of Dishes Prepared: Breakfast 143 1.267 0.306 1 2833
Avg. Number of Dishes Prepared: Lunch 142 2217 0433 1.073 3.795
Avg. Number of Dishes Prepared: Dinner 142 2.152  0.382 1 3.447
Avg. Number of Dishes Prepared: All Meals 143 1.915 0.327 1 3.082
Number of Meals Skipped: Breakfast 143 13.18 10.08 0 39
Number of Meals Skipped: Lunch 143 5.091 8.133 0 39
Number of Meals Skipped: Dinner 143 6.594 8.168 0 38
Number of Meals Skipped: All Meals 143 25.45 23.61 0 106
Number of Times Legumes Cooked in a Day 5,526 0.187 0.39 0 1
Number of Times Legumes Cooked in a Week 838 1.235 1.493 0 7
Number of Times Legumes Cooked Total 143 7.238 6.911 0 38

Note: Summary statistics for outcome variables included in analysis presented above. N = 143 households,
except in the cases of average number of dishes prepared for lunch and dinner. One household did not specify
their cooking method for lunch and dinner dishes, despite specifying a method for breakfast dishes. Thus,
this household was excluded from analyses regarding average number of dishes in a lunch or dinner meal.
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Table 4: Average Treatment Effect of Solar Stove Assignment on Solar Stove Use

Dishes Prepared Using Solar Stove

LPM Probit LPM Probit
(1) (2) (3) (4)
Solar Stove Assignment 0.444*** 0.387*** 0.441*** 0.380***
(0.029) (0.029) (0.028) (0.029)
Observations 27,804 27,804 27,804 27,804
Covariates No No Yes Yes
Village Fixed Effects Yes Yes Yes Yes
R? 0.307 0.316
Pseudo- R? 0.364 0.375
Log Likelihood -7795.575 -8362.790 -7620.722 -8206.375

Note: *p<0.1; **p<0.05; ***p<0.01. Estimation of coeflicients for Linear Probability Model and average
marginal effects for Probit model. Liang-Zeger standard errors are clustered at the household level and

presented in parentheses below each effect.
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Table 5: Average Treatment Effect of Solar Stove Assignment on Share of Dishes Prepared Using Solar Stove

Share of Dishes Prepared Using Solar Stove

Each meal Each day Each week Overall

(1) 2) ®3) (4) () (6) (7 (8)
Solar Stove Assignment 0.441** 0.440** 0.452%* 0.450*** 0.459*** 0.458** 0.456** 0.454**

(0.029) (0.028) (0.030) (0.030) (0.031) (0.031) (0.031) (0.032)
Observations 14,541 14,541 5,526 5,526 838 838 143 143
Mean of Control Group 0.009 0.009 0.008 0.008 0.010 0.010 0.009 0.009
Covariates No Yes No Yes No Yes No Yes
Village Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
Group Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
R? 0.354 0.364 0.530 0.542 0.644 0.661 0.713 0.729

Note: *p<0.1; *p<0.05; ***p<0.01. OLS estimation of the average treatment effect of solar stove use on share of dishes prepared on a solar stove. Means are presented with associated
standard errors in parentheses below. Liang-Zeger cluster-robust standard errors are clustered at the household level for columns 1-6 and Eicker-Huber-White (EHW) robust standard

errors are used for columns 7-8.
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Table 6: Intent to Treat Effect of Solar Stove Assignment on Household Dietary Diversity Score (Count)

Household Dietary Diversity Score (Count)

Dish Meal Day Week Overall

(1) (2) (3) (4) () (6) (7 (8) 9) (10)
Solar Stove Assignment —0.027 —0.018 —0.032 —0.023 —0.007 —0.007 —0.004 —0.001 —0.003 —0.004

(0.028) (0.026) (0.030) (0.029) (0.028) (0.028) (0.025) (0.026) (0.020) (0.020)
Mean of Control Group 2.339 2.339 3.936 3.936 5.688 5.688 8.191 8.191 9.798 9.798
Observations 27,804 27,804 14,541 14,541 5,526 5,526 838 838 143 143
Covariates Yes Yes No Yes No Yes No Yes No Yes
Village Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Group Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Pseudo R? 0.003 0.004 0.005 0.007 0.010 0.011 0.007 0.007 0.006 0.006

Note: *p<0.1; **p<0.05; ***p<0.01. Poisson estimation of the intent-to-treat effect of solar stove assignment on household dietary diversity scores measured as a count. Means are
presented with associated standard errors in parentheses below. Liang-Zeger cluster-robust standard errors are clustered at the household level for columns 1-8 and Eicker-Huber-White

(EHW) robust standard errors are used for columns 9-10.



Table 7: Intent to Treat Effect of Solar Stove Assignment on Household Dietary Diversity
Score (Average)

Household Dietary Diversity Score (Average)

Each meal Each day Each week Overall

(1) 2 3) (4) (5) (6) (M) (8)
Solar Stove Assignment —0.081 —0.076 —0.014 —0.014 —0.004 —0.002 —0.001 —0.001

(0.051) (0.050) (0.053) (0.053) (0.030) (0.031) (0.005) (0.005)
Mean of Control Group 2.123 2.123 1.896 1.896 1.170 1.170 0.233 0.233
Observations 14,541 14,541 5,526 5,526 838 838 143 143
Covariates No Yes No Yes No Yes No Yes
Village Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
Group Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
R? 0.027 0.032 0.108 0.113 0.101 0.111 0.167 0.181

Note: *p<0.1; **p<0.05; ***p<0.01. OLS estimation of the intent-to-treat effect of solar stove assignment on household dietary diversity scores
measured as an average. Means are presented with associated standard errors in parentheses below. Liang-Zeger cluster-robust standard errors are
clustered at the household level for columns 1-6 and Eicker-Huber-White (EHW) robust standard errors are used for columns 7-8.
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Table 8: Intent to Treat Effect of Solar Stove Assignment on Dietary Species Richness

Dietary Species Richness (Count)

Dish Meal Day Week Overall

(1) (2) (3) (4) () (6) (7 (8) 9) (10)
Solar Stove Assignment —0.009 —0.013 0.001 0.004 0.032 0.031 0.033 0.031 0.045 0.037

(0.035) (0.035) (0.051) (0.050) (0.058) (0.057) (0.067) (0.067) (0.070) (0.070)
Mean of Control Group 2.255 2.255 4.282 4.282 11.09 11.09 73.04 73.04 425.91 425.91
Observations 27,804 27,804 14,541 14,541 5,526 5,526 838 838 143 143
Covariates No Yes No Yes No Yes No Yes No Yes
Village Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Group Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Pseudo R? 0.008 0.009 0.028 0.029 0.071 0.073 0.144 0.149 0.207 0.226

Note: *p<0.1; **p<0.05; ***p<0.01. Poisson estimation of the intent-to-treat effect of solar stove assignment on household dietary species richness measured as a count. Means are
presented with associated standard errors in parentheses below. Liang-Zeger cluster-robust standard errors are clustered at the household level for columns 1-8 and Eicker-Huber-White

(EHW) robust standard errors are used for columns 9-10.
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Table 9: Intent to Treat Effect of Solar Stove Assignment on Average Number of Dishes Per Meal

Number of Dishes Prepared with Solar Stove (Count)

All Meals Breakfast Lunch Dinner

(1) (2) (3) (4) (5) (6) (7) (8)
Solar Stove Assignment 0.036 0.050 0.010 0.009 0.084 0.098 0.003 0.012

(0.052) (0.053) (0.054) (0.057) (0.064) (0.061) (0.060) (0.060)
Mean of Control Group 1.899 1.899 1.258 1.258 2.173 2.173 2.139 2.139
Observations 143 143 143 143 142 142 142 142
Covariates No Yes No Yes No Yes No Yes
Village Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
Group Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
R? 0.216 0.275 0.092 0.110 0.294 0.346 0.202 0.234

Note: *p<0.1; **p<0.05; ***p<0.01. OLS estimation of the intent-to-treat effect of solar stove assignment on the average number of dishes per meal
prepared by a given household. Means are presented with associated standard errors in parentheses below. Eicker-Huber-White (EHW) robust standard
errors are used for columns 1-8.
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Table 10: Intent to Treat Effect of Solar Stove Assignment on Number of Meals Skipped

Number of Meals Skipped (Count)

All Meals Breakfast Lunch Dinner

(1) (2) (3) (4) (5) (6) (7) (8)
Solar Stove Assignment —0.183 —0.140 —0.149 —0.097 —0.136 —0.072 0.025 0.025

(0.168) (0.170) (0.142) (0.142) (0.258) (0.260) (0.209) (0.209)
Mean of Control Group 27.61 27.61 14.47 14.47 5.393 5.393 6.798 6.798
Observations 143 143 143 143 143 143 143 143
Covariates No Yes No Yes No Yes Yes Yes
Village Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
Group Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
Pseudo R? 0.057 0.120 0.102 0.145 0.066 0.135 0.074 0.074

Note: *p<0.1; **p<0.05; ***p<0.01. OLS estimation of the intent-to-treat effect of solar stove assignment on the number of meals skipped by a
household during the experiment. Means are presented with associated standard errors in parentheses below. Eicker-Huber-White (EHW) robust
standard errors are used for columns 1-8.
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Table 11: Intent-to-Treat Effect of Solar Stove Assignment on Total Number of Times Legume Dishes Cooked

Total Number of Times Legume Dishes Cooked

Day Meal Overall

(1) (2) (3) (4) (5) (6)
Solar Stove Assignment 0.069 0.063 0.074 0.074 0.087 0.078

(0.178) (0.165) (0.179) (0.167) (0.180) (0.167)
Mean of Control Group 0.179 0.179 1.177 1.177 6.865 6.865
Observations 5,526 5,526 838 838 143 143
Covariates No Yes No Yes No Yes
Village Fixed Effects Yes Yes Yes Yes Yes Yes
Group Fixed Effects Yes Yes Yes Yes Yes Yes
Pseudo R? 0.004 0.014 0.011 0.028 0.026 0.063

Note: *p<0.1; **p<0.05; ***p<0.01. Poisson estimation of the intent-to-treat effect of solar stove assignment on total
number of times legume dishes were cooked. Means are presented with associated standard errors in parentheses below.
Liang-Zeger cluster-robust standard errors are clustered at the household level for columns 1-4 and Eicker-Huber-White
(EHW) robust standard errors are used for columns 5-6.
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Table 12: Local Average Treatment Effect of Solar Stove Use on Household Dietary Diversity Score (Count)

Household Dietary Diversity Score (Count)

Each dish Each meal Each day Each week Overall

(1) (2) () 4) () (6) (7 3) 9) (10)
Solar Stove Use —0.057 —0.041 —0.077 —0.058 —0.016 —0.017 —0.009 —0.004 —0.004 —0.006

(0.062) (0.057) (0.071) (0.069) (0.064) (0.062) (0.055) (0.057) (0.033) (0.034)
Mean of Control Group 2.339 2.339 3.936 3.936 5.688 5.688 8.191 8.191 9.798 9.798
Observations 27,804 27,804 14,541 14,541 5,526 5,526 838 838 143 143
Covariates No Yes No Yes No Yes No Yes No Yes
Village Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Group Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Note: *p<0.1; **p<0.05; ***p<0.01. IV Poisson estimation of the local average treatment effect of solar stove use on household dietary diversity score measured as a count. Means are
presented with associated standard errors in parentheses below. Liang-Zeger cluster-robust standard errors are clustered at the household level for columns 1-8 and Eicker-Huber-White
(EHW) robust standard errors are used for columns 9-10.



Table 13: Local Average Treatment Effect of Solar Stove Use on HDDS (Average)

Household Dietary Diversity Score (Average)

Each meal Each day Each week Overall

(1) 2) ®3) (4) () (6) (7) 3)
Solar Stove Use —0.196 —0.184 —0.031 —0.030 —0.009 —0.003 —0.001 —0.002

(0.124) (0.122) (0.119) (0.116) (0.064) (0.065) (0.008) (0.008)
Mean of Control Group 2.123 2.123 1.896 1.896 1.170 1.170 0.233 0.233
Observations 14,541 14,541 5,526 5,526 838 838 143 143
Covariates No Yes No Yes No Yes No Yes
Village Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
Group Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes

Note: *p<0.1; **p<0.05; ***p<0.01. IV estimation of the local average treatment effect of solar stove use on household dietary diversity scores measured
as an average. Means are presented with associated standard errors in parentheses below. Liang-Zeger cluster-robust standard errors are clustered at
the household level for columns 1-6 and Eicker-Huber-White (EHW) robust standard errors are used for columns 7-8.

95



9¢

Table 14: Local Average Treatment Effect of Solar Stove Use on Dietary Species Richness

Dietary Species Richness (Count)

Dish Meal Day Week Overall

(1) 2) (3) 4) (5) (6) (7 (8) 9) (10)
Solar Stove Use —0.003 —0.018 0.038 0.034 0.121 0.095 0.119 0.096 0.103 0.075

(0.078) (0.075) (0.125) (0.119) (0.146) (0.139) (0.078) (0.076) (0.123) (0.123)
Mean of Control Group 2.255 2.255 4.282 4.282 11.09 11.09 73.04 73.04 425.9 425.9
Observations 27,804 27,804 14,541 14,541 5,526 5,526 838 838 143 143
Covariates No Yes No Yes No Yes No Yes No Yes
Village Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Group Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Note: *p<0.1; **p<0.05; **p<0.01. IV Poisson estimation of the local average treatment effect of solar stove use on dietary species richness measured as a count. Means are presented
with associated standard errors in parentheses below. Liang-Zeger cluster-robust standard errors are clustered at the household level for columns 1-8 and Eicker-Huber-White (EHW)
robust standard errors are used for columns 9-10.
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Table 15: Local Average Treatment Effect of Solar Stove Assignment on Average Number of Dishes Per Meal

Average Number of Dishes Per Meal

All Meals Breakfast Lunch Dinner

(1) 2) (3) (4) (5) (6) (7) (8)
Solar Stove Use 0.062 0.016 0.016 0.143 0.166* 0.005 0.020

(0.087) (0.090) (0.092) (0.106) (0.099) (0.099) (0.097)
Mean of Control Group 1.899 1.899 1.258 1.258 2.173 2.173 2.139 2.139
Observations 143 143 143 143 142 142 142 142
Covariates No Yes No Yes No Yes No Yes
Village Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
Group Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes

Note: *p<0.1; **p<0.05; ***p<0.01. IV OLS estimation of the local average treatment effect of solar stove use on the average number of dishes
per meal prepared by a given household. Means are presented with associated standard errors in parentheses below. Eicker-Huber-White (EHW)
robust standard errors are used for columns 1-8.
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Table 16: Local Average Treatment Effect of Solar Stove Use on Number of Meals Skipped

Number of Meals Skipped (Count)

All Meals Breakfast Lunch Dinner

(1) (2) (3) (4) (5) (6) (7) (8)
Solar Stove Use —0.353 —0.261 —0.267 —0.183 —0.487 —0.302 —0.039 —0.039

(0.232) (0.235) (0.219) (0.227) (0.348) (0.372) (0.311) (0.311)
Mean of Control Group 27.61 27.61 14.47 14.47 5.393 5.393 6.798 6.798
Observations 143 143 143 143 143 143 143 143
Covariates No Yes No Yes No Yes Yes Yes
Village Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
Group Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes

Note: *p<0.1; **p<0.05; ***p<0.01. OLS IV estimation of the local average treatment effect of solar stove use on the count of meals skipped by
a household during the experiment. Means are presented with associated standard errors in parentheses below. Eicker-Huber-White (EHW) robust
standard errors are used for columns 1-8.
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Table 17: Local Average Treatment Effect of Solar Stove Assignment on Total Number of Times Legume Dishes Cooked

Total Number of Times Legume Dishes Cooked

Day Meal Overall

(1) (2) (3) (4) (5) (6)
Solar Stove Use 0.261 0.025 0.272 0.040 0.215 0.040

(0.380) (0.318) (0.393) (0.327) (0.274) (0.237)
Mean of Control Group 0.179 0.179 1.177 1.177 6.865 6.865
Observations 5,526 5,526 838 838 143 143
Covariates No Yes No Yes No Yes
Village Fixed Effects Yes Yes Yes Yes Yes Yes
Group Fixed Effects Yes Yes Yes Yes Yes Yes

Note: *p<0.1; **p<0.05; ***p<0.01. Poisson estimation of the local average treatment effect of solar stove use on total
number of times legume dishes were cooked. Means are presented with associated standard errors in parentheses below.
Liang-Zeger cluster-robust standard errors are clustered at the household level for columns 1-4 and Eicker-Huber-White
(EHW) robust standard errors are used for columns 5-6.
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Table Al: Frequency of Food Group Consumption

Food Group Frequency Percent Cumulative Percent

Cereals 26,395 32.77 32.77
Vegetables 13,238 16.435 49.21
Oils & Fats 10,125 12.57 61.78
Tubers 6,730 8.355 70.13
Leafy Greens 6,696 8.313 78.44
Legumes & Nuts 4,213 5.23 83.67
Fish 3,869 4.803 88.48
Spices & Condiments 3,593 4.461 92.94
Milk 1,805 2.241 95.18
Vitamin-A Vegetables 1,153 1.431 96.61
Flesh Meat 1,095 1.359 97.97
Beverages 931 1.156 99.13
Eggs 332 0.412 99.54
Fried Snacks 178 0.221 99.76
Fruits 131 0.163 99.92
Organ Meat 29 0.036 99.96
Vitamin-A Fruits 17 0.021 99.98
Sweets 12 0.015 99.99
None 5 0.006 100.00
Total 80, 547 100 100.00

Note: Tabulation of the frequency of food groups to which ingredients used in meal preparation belong.
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Table A2: Frequency of Ingredient Consumption

Ingredient Frequency Percent Cumulative Percent

Porridge 10,601 13.16 13.16
Oil 9,897 12.29 25.45
Maize 8,316 10.32 35.77
Tomato 8,021 9.958 45.73
Maize Flour 6,143 7.627 53.36
Cassava 5,639 7.001 60.36
Fish 3,869 4.803 65.16
Onion 3,800 4.718 69.88
Sugar 2,687 3.336 73.22
Rape 2,105 2.613 75.83
Groundnut 1,969 2.445 78.27
Sour Milk 1,502 1.865 80.14
Cowpea 1,326 1.646 81.79
Cassava Leaves 1,073 1.332 83.12
Sweet Potato 1,030 1.279 84.40
Pumpkin Leaves 1,009 1.253 85.65
Amaranth 984 1.222 86.87
Hibiscus 944 1.172 88.04
Rice 873 1.084 89.13
Meat 827 1.027 90.15
Total 80, 547 100 100

Note: Frequency tabulation of the top 20 ingredients used by participants for meal preparation.
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Table A3: Frequency of Processing Levels

Level of Processing Frequency Percent Cumulative Percent

Unprocessed 49,632 61.62 61.62
Processed Ingredient 19,485 24.19 85.81
Proccessed Food 10,773 13.38 99.18
Ultra-Processed 657 0.82 100.00
Total 87,973 100.00 100.00

Note: Frequency tabulation for each of the four levels of ingredient processing specified by the FAO.
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Table A4: Final Outcomes: Decision Rules

Outcome Variable H,

Household Dietary Diversity Score (Average) u > 0
Household Dietary Diversity Score (Count) >0

Dietary Species Richness (Count) >0
Total Number of Dishes in a Meal w>0
Total Meals Skipped (Count) 1w<0

Note: Table lists each decision rule for final outcome alternative hy-
potheses (Hy).
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Table Ab: Definitions of Variables Used in Empirical Analysis

Variable

Description

Solar Stove Assignment

Solar Stove Use

Age
Cloud Cover
Education

Gender

Household Dietary Diversity Score (Dish)
Household Size

Tropical Livestock Index

Village
Group

Random assignment of solar stove to house-
hold (=1 if assigned a stove)

Use of solar stove to prepare dish (=1 if used
stove)

Age of household head in years

Percentage of cloud cover

Education of household (None = 0, Primary
= 1, Secondary = 2, Higher = 3)

Gender of household head (=1 if participant
identifies as female)

Dish-level measure of dietary diversity. Po-
tential range: 1 - 6

Total number of individuals in the house-
hold

Tropical Livestock Unit/250 kg live weight
Village fixed effect

Aquatic and Agricultural Systems Group

Household Dietary Diversity Score

Dietary Species Richness Score

Avgerage Number of Dishes Prepared

Number of Meals Skipped

Number of Times Legumes Cooked

The food groups associated with the in-
gredients a household includes in a given
dish, measured as both an average or a to-
tal count. Also aggregated to the meal, day,
week, and overall (six-week) levels.

The total count of species associated with
the ingredients a household includes in a
given dish. Aggregated to the meal, day,

week, and overall (six-week) levels.
The average number of dishes a household

includes prepares for a given meal over the
six-week experimental time period. Calcu-
lated for breakfast, lunch, dinner, and over-

all meals.
The total number of meals a household skips

over the six-week experimental time period.
Calculated for breakfast, lunch, dinner, and

overall meals.
The number of times a household prepares

a legume dish for a meal. Aggregated to the
day, week, and six-week experimental time
period.

Note: Covariates and main independent variables included in analysis are presented in the top section, with

outcome variables presented below.
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Figure B1: Daily Food Diary, Days 1-3
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Note: Participating households logged each ingredient in each dish for each meal (classified as breakfast,
lunch, or dinner) throughout the six-week experiment. Participants also logged the cooking method (solar
stoves, firewood, charcoal, or dung, pictured at the top of the diary) for each dish. Time and money spent
on fuel collection and purchases were logged weekly.
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Figure B2: Daily Food Diary, Days 4-6
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Note: Participating households logged each ingredient in each dish for each meal (classified as breakfast,
lunch, or dinner) throughout the six-week experiment. Participants also logged the cooking method (solar
stoves, firewood, charcoal, or dung, pictured at the top of the diary) for each dish. Time and money spent
on fuel collection and purchases were logged weekly.
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Figure B3: Daily Food Diary, Day 7
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Note: Participating households logged each ingredient in each dish for each meal (classified as breakfast,
lunch, or dinner) throughout the six-week experiment. Participants also logged the cooking method (solar
stoves, firewood, charcoal, or dung, pictured at the top of the diary) for each dish. Time and money spent
on fuel collection and purchases were logged weekly.



APPENDIX C

Cloud cover calculation

We used the Landsat Collection 1 Level-1 band Quality Assessment band (BQA) from im-
agery taken throughout the year 2016 (tile path 175; row 071). We reclassified the pixels on
the BQA with high cloud or cloud shadow confidence attributes as 1/cloud cover to delimit
the cloud area. Pixels with other attributes (e.g., low or medium confidence) were reclassi-
fied as 0/no cloud cover. We calculated the cloud area in a 5km radius around each village

(Table C1 and Figure C1) for the relevant week.
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Table C1: Percentage of village area with clouds or cloud shadows

Data Aquired Villages Project
Month Day Year Mapungu Lealui Nalitoya Ongoing
1 25 2016 58.0 91.5 25.2 No
2 10 2016 13.6 5.69 28.8 No
2 26 2016 100 100 100 Yes
3 13 2016 11.8 1.70 35.8 Yes
3 29 2016 100 2.06 0.00 Yes
4 14 2016 0.00 0.00 0.00 Yes
4 30 2016 0.00 0.01 0.00 Yes
5 16 2016 0.00 0.00 0.00 No
6 1 2016 0.00 0.00 0.00 No
6 17 2016 0.00 0.00 0.00 No
7 3 2016 0.00 0.00 0.00 No
7 19 2016 0.00 0.00 0.00 No
8 4 2016 0.00 0.00 0.00 No
8 20 2016 0.00 0.00 0.00 No
9 5 2016 0.10 0.00 0.00 No
9 21 2016 0.00 0.12 0.00 No
10 7 2016 0.00 0.00 0.00 No
10 23 2016 0.00 0.00 33.5 No
11 8 2016 0.00 0.00 0.00 No
11 24 2016 99.9 54.1 1.46 No
12 10 2016 53.8 91.0 0.88 No
12 26 2016 26.9 100 23.8 No

Note: Percentage of the area in a buffer of 5km around each village with
clouds or clouds shadows. See figure 1 for visual identification of the
cloud cover area throughout the year 2016.
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Figure C1: Cloud cover during experiment
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Note: Cloud cover area delimited with Landsat 8 Enhanced Thematic Mapper path 175 row 071 in a radius
of bkm around each village where the solar project took place during the end of February until the end of
April 2016. The whole tile area had had a cloud cover of 0% from 16 05 2016 until 20 08 2016.
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APPENDIX D

Power Calculations
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Figure D1: Power Calculation: HDDS Average, Meal
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Note: Power calculation graphic for household dietary diversity score calculated as an average at the meal
level. The gray (middle) line indicates that at 14,541 observations, the minimum detectable treatment effect
would have a magnitude of roughly 0.025. Since our measured treatment effect is -0.081, we know that our
results are truly non-significant results and are not biased from our sample size.
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Figure D2: Power Calculation: DSR Count, Dish
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Note: Power calculation graphic for dietary species richness calculated as a count at the dish level. The gray
(middle) line indicates that at 27,804 observations, the minimum detectable treatment effect would have a
magnitude of roughly 0.032. Since our measured treatment effect is -0.003, we know that our results are
underpowered and may not provide reliable estimates of null results.
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