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Nonparametric Regression under Alternative Data

Environments
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Abstract

This paper proposes a nonparametric regression estimator which can accommodate two em-
pirically relevant data environments. The first data environment assumes that at least one of
the explanatory variables is discrete. In such an environment a “cell” approach which consists of
partitioning the data and estimating a separate regression for each cell has usually been employed.
The second data environment assumes that one needs to estimate a set of regression functions that
belong to different experimental units. In both environments the proposed estimator attempts to
reduce estimation error by incorporating extraneous data from the other experimental units or
cells when estimating the regression function for a given individual experimental unit or cell. Con-
sistency and asymptotic normality of the proposed estimator are established. Its computational
simplicity and simulation results demonstrate a strong potential in empirical applications.
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1 Introduction

Let (Xij , Yij), i = 1, ..., nj , j = 1, ..., Q be a sample of Rp+1 valued random vectors where Yij

represents a response variable and Xij is a p-dimensional vector of explanatory variables. In many
empirical situations it is necessary to estimate a set of regression curves, say one for each experimental
unit of interest, which can be arranged as

Yij = mj(Xij) + εij (1)

where j denotes the jth experimental unit, and εij is a zero-mean and finite-variance error process.
In this manuscript, we concern ourselves with the estimation of the conditional mean E(Y |X = x).
Kernel regression estimators based solely on individual samples such as the Nadaraya-Watson and the
local linear kernel estimators have become widespread because they circumvent the risk of functional
misspecification inherent to their parametric counterparts and provide consistent estimates under
mild regularity conditions.

The standard Nadaraya-Watson estimator of the conditional mean mj(x) is given by

m̃j(x) =
∑nj

i=1 YijKhj (Xij − x)
∑nj

i=1 Khj (Xij − x)
(2)

where hj is the smoothing parameter and Khj (u) = 1
hj

K( u
hj

) with K(u) being the kernel function.
Denoting µ2 =

∫
z2K(z)dz and R(K) =

∫
K2(z)dz, the standard properties of the Nadaraya-Watson

estimator are

E[m̃j(x)−mj(x)] =
1
2
µ2h

2
j{m′′

j (x) + 2m′
j(x)

f ′j(x)
fj(x)

}+ o(h2
j ), (3)

Var[m̃j(x)] =
σ2R(K)

(nhj)fj(x)
+ O(hj/nj) (4)

where fj(x) is the marginal density function of Xij evaluated at support point x. Since the bias is
O(h2

j ) and hj = hj(nj) goes to 0 as nj goes to ∞, it follows that the Nadaraya-Watson estimator is
consistent. However, a drawback is its finite sample bias which can be quite large. Several papers
have proposed estimators which reduce the bias (Hardle and Browman, 1988; Hjort and Glad, 1995;
Glad, 1998, among others) or eliminate it (Racine, 2001). One such bias-correction estimator, Hjort
and Glad (1995), is of particular interest because of the ease with which it can be implemented. Hjort
and Glad (1995) propose a semiparametric estimator which combines a parametrically estimated pilot
with a nonparametrically estimated correction factor. The parametric pilot can be thought of as a
prior for the shape of mj(x) whereas the correction factor adjusts the pilot if it does not satisfactorily
capture the shape of mj(x). Consequently, the estimator behaves like the parametric start if the
parametric assumption is correct, while resembling the nonparametric estimator otherwise.

The estimator we propose in this manuscript is in the same realm as Hjort and Glad’s (1995);
however, we consider alternative data environments where we have data from possibly similar regres-
sion functions. If those unknown functions are identical, the optimal estimator would pool the data
and estimate one regression curve. If, however, those unknown functions are sufficiently similar, using
the pooled estimator as a pilot in Hjort and Glad’s framework would yield efficiency gains relative
to the Nadaraya-Watson estimator. The use of extraneous data in the form a nonparametric pooled
start represents the key conceptual difference between our proposed estimator and the estimator of
Hjort and Glad (1995).
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Two empirically relevant data environments are considered. The first data environment assumes
that at least one of the explanatory variables is discrete. While this situation is easily accommodated
in a parametric framework, the continuity assumptions required for nonparametric regression are
violated. As a result, a separate nonparametric regression estimation is required for each discrete
value. For example, if one of the explanatory variables is discrete and may take values {0, 1, 2, 3},
the sample must be partitioned according to the four discrete values into four cells where a separate
regression function is undertaken for each. Recently, Racine and Li (2004) developed a nonparametric
estimator that smoothes across the discrete values, thereby reducing variance at a cost of increased
bias. Conversely, our proposed estimator attempts to reduce bias by utilizing the entire data set. The
second data environment assumes that one needs to estimate a set of regression curves rather than
a single regression curve. Empirically, this situation arises often and led Altman and Casella (1995)
to develop a Stein-type Bayesian nonparametric estimator that uses empirical Bayes techniques
pointwise across the function space to reduce estimation error. This latter data environment can be
viewed as a generalization of the former with each of the discrete cells representing an experimental
unit.

The remainder of this manuscript is organized as follows. In the second section we introduce
the proposed estimator and investigate its asymptotic properties. The third section presents our
simulation results. The final section summarizes our findings.

2 A Nonparametric Estimator with a Pooled Start

Underlying the proposed estimator is that there exists a prior belief that the conditional means are
similar in shape. If the curves were identical, that is, if m1(x) = m2(x) = ...mQ(x) = m(x), we would
simply pool the data and estimate one common curve. Conversely, if the conditional means were
dissimilar, the pooled estimator is inappropriate. A primary strength of the proposed estimator is
that the form or extent of similarity among the curves is not required; in most empirical applications
the form or extent of similarity is unknown. We have adapted the Hjort and Glad estimator to
the context outlined in equation (1) by combining pooled and individual nonparametric estimators.
As a result, the proposed estimator, which we denote the nonparametric estimator with a pooled
start (NEPS), resembles the pooled estimate if the curves are identical or similar and the individual
(Nadaraya-Watson) estimate if the curves are dissimilar. The NEPS estimator of conditional mean
mj(x) is

m̂j(x) = m̂p(x)r̂j(x) =

∑nj

i=1 Yij

(
m̂p(x)

m̂p(Xij)

)
Khj

(Xij − x)
∑nj

i=1 Khj
(Xij − x)

. (5)

The estimator is implemented in two steps. The first step pools the data from all experimental units
to estimate a single curve denoted m̂p(x). This step introduces extraneous information from the
pooled dataset that is potentially relevant to the estimation of the conditional mean of interest. The
second step consists of multiplying the pooled estimate by a nonparametrically estimated correction
factor r̂j(x) to account for individual effects. The NEPS estimator is designed to outperform the
standard Nadaraya-Watson estimator when the hypothesis of similarity is tenable, but also produce
reliable estimates when the curves are dissimilar.

2.1 Asymptotic Properties of the NEPS Estimator

In deriving the asymptotic properties of the NEPS estimator, we require the following assumptions:
A1. The Xijs are i.i.d. and independent of the error process εij , which is also i.i.d.
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A2. The density function fj(x) and the conditional mean mj(x) ∈ C2(Θ) with finite second deriva-
tives and fj(x) 6= 0 in Θ, the neighborhood of point x.
A3. The density function g(x) and the conditional mean mp(x) of the pooled data ∈ C2(Θ) with
finite second derivatives and g(x) 6= 0 in Θ, the neighborhood of point x. The density function of
the pooled data g(x) is a mixture density generated by the Q individual density functions, that is,
g(x) =

∑Q
j=1 wjfj(x) where wj are mixing weights.

A4. The kernel function K(z) is bounded, real-valued, with the following characteristics: (i)∫
K(z)dz = 1, (ii) K(z) is symmetric about 0, (iii)

∫
z2K(z)dz < ∞, (iv) |z|K(|z|) → 0 as |z| → ∞,

(v)
∫

K2(z)dz ≤ ∞.
A5. hj → 0 and njhj →∞ ∀ j = 1, ...., Q.
A6. E|εi|2+δ,

∫ |K(ω)|2+δ, and
∫ | mp(x)

mp(Xij)
|2+δ are finite for some δ > 0.

A7. We assume that hp → 0 and njhp →∞ ∀ j = 1, ...., Q where hp is the smoothing parameter for
the pooled estimator.

Theorem

1. Under assumptions A1-A5, we have

E[m̂j(x)−mj(x)] =
1
2
µ2h

2
j

(
r′′j (x) + 2r′j(x)

f ′j(x)
fj(x)

)
mp(x) + o(h2

j ) (6)

Var[m̂j(x)] =
σ2R(K)

(nhj)fj(x)
+ O(hj/nj + (Nhp)−1). (7)

2. Under assumptions A1-A7, m̂j(x) has a limiting normal distribution

√
njhj(m̂j(x)−mj(x)) → N(B(hj), Σj) (8)

where B(hj) = 1
2µ2h

2
j

(
mp(x)r′′j (x) + 2mp(x)r′j

f ′j(x)

fj(x)

)
and Σj = σ2

fj(x)R(K).

Proof: See appendix.

Equations 4 and 7 show that the variances of the Nadaraya-Watson estimator and the NEPS
estimator are essentially the same; the two expressions differ by O( 1

n1hp+n2hp+......+nQhp
), which is

asymptotically negligible by A7. The bias of the NEPS estimator is not a function of the slope and
curvature of the true regression function as it is for the Nadaraya-Watson estimator (see equation
3). Rather, the bias is a function of the slope and second derivative of the correction factor rj(x).
If the nonparametric pilot mp coincides with or is proportional to the true function mj , then rj(x)
will be a straight line and r′j = r′′j = 0. This implies that the leading terms of the bias will vanish.
Similarly if mp(x) and m(x) are sufficiently similar, the correction factor will be less variable than
the individual conditional mean, hence leading to bias reduction. Interestingly, the pooled start does
not have to be a good approximation of mj(x) for the NEPS estimator to remain competitive to the
Nadaraya-Watson estimator in moderate samples.

2.2 Computational Tips

The ratio m̂p(x)
m̂p(Xij)

can be highly influential in regions when Xij is far from x. Also, it is possible that
m̂p(Xij) and m̂p(x) have different signs. Following Glad (1998), we suggest substituting the ratio
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m̂p(x)
m̂p(Xij)

by
∣∣∣∣∣

m̂p(x)
m̂p(Xij)

∣∣∣∣∣
10

1
10

,

that is, truncating values below 1
10 and above 10 to make the estimator robust to these local effects.

Additionally, when the number of curves Q is large, selecting the “optimal” extraneous data to
be included in the nonparametric pilot is not trivial. This problem is analogous to the choice of
instruments in instrumental variable estimation when the number of instruments is large or the
choice of the functional form of the parametric pilot in Hjort and Glad (1995). A cross-validation
procedure to select the extraneous data to be included in the pooled start can be used. The cross-
validation procedure consists of alternating the pooled start from the set formed by the Q curves,
for a total of 2Q possible pooled guides, and then choosing the one whose loss function is the lowest.

3 Finite Sample Simulations

In this section we conduct simulations to investigate the empirical applicability of the NEPS estimator
compared to the Nadaraya-Watson and other related estimators. Prior to the simulation results we
provide a terse review of two related estimators.

3.1 The Racine and Li Estimator

The objective of the Racine and Li estimator is to nonparametrically estimate regression functions
with discrete independent variables without having to partition the data. Suppose we have data on
one experimental unit: Yi a scalar response variable, Xc

i a vector of continuous variables, and Xd
i an

r-dimensional vector of discrete regressors. The Racine and Li estimator smoothes the continuous
variables by a c-variate kernel while the discrete variables are smoothed as follows

S(Xd
it, x

d
t , λ) =

{
1 if Xd

it = xd
t

λ otherwise , 0 ≤ λ ≤ 1
(9)

where Xd
it is the tth component of the vector Xd

i . The Racine and Li estimator is

m̃RL(xc, xd) =
∑n

i=1 YiWh,λ(Xc
i , x

c, Xd
i , xd)∑n

i=1 Wh,λ(Xc
i , x

c, Xd
i , xd)

(10)

where Wh,λ(Xc
i , x

c, Xd
i , xd) = Kh(Xc

i − xc)
∏r

t=1 S(Xd
it, x

d
t , λ).

In a context of multiple curve estimation as outlined in equation (1), the “discrete” smoother
S(., λ) controls the inclusion of extraneous information by assigning a weight of 1 to observations
belonging to the experimental unit of interest and a weight of λ to observations from the remaining
experimental units. The boundedness of λ within the unit interval allows the Racine and Li estimator
to nest both the pooled (λ=1) and Nadaraya-Watson (λ=0) estimators.

3.2 The Altman and Casella Estimator

The Altman and Casella model assumes a fixed and balanced design for the predictor variable so
that (1) can be rewritten as Yij = mj(Xi) + εij with Xi = i/n. It is also assumed that each curve
can be written as mj(Xi) = m(Xi) + ηj(Xi); that is, the curve for experimental unit j at design
point Xi is the population mean curve plus a term which captures the deviation from the population
mean curve. Underlying this last assumption is the fact that the curves are all sampled from the
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same population. Denote m̃j the nonparametric estimate of mj . Given that m̃j is biased, it can
be expressed as m̃j = φj + υj where υj is an error term such that E[υj ] = 0 and V ar[υj ] = α2/n.
Altman and Casella form a hierarchical model (m̃j |φj is normally distributed, and φj and mj are
jointly normally distributed) and derive the posterior mean of mj as

m̃j(x) = m̄(x) + α(x)[m̃j(x)− φ(x)]. (11)

In practice, the hyperparameters are replaced by sample estimates, which leads to the Altman and
Casella estimator for experimental unit j

m̃AC
j (x) = ȳx + α̃(x)[m̃j(x)− m̃(x)] (12)

where ȳx = 1/Q
∑Q

j=1 yxj is the cross-individual sample mean of the data at design point x, α̃(x) =
(σ̃y(x)m(x))/σ̂2

˜m(x)
is the ratio of the covariance between the data and the nonparametric estimates and

the variance of the nonparametric estimates, and m̃(x) = 1/Q
∑Q

j=1 m̃j(x). The reader is directed to
Altman and Casella (1995) for a complete derivation of their model. Note that this estimator uses
the data from the other experimental units in the population in the regression of the curve of interest
through m̂(x) and ȳx. If the individual curves are similar, then (m̂i(t)− m̂(t)) goes to zero and the
final estimates behave like ȳx which is unbiased for the population mean curve. Altman and Casella
note that their estimator performs better when the number of experimental units is sufficiently large
so that ȳx provides a good approximation to the population mean.

3.3 Simulation Design

In the first experiment we consider a random design regression where the explanatory variable is
uniformly distributed on the [0,1] interval. The second experiment forces the explanatory variable
to be equi-spaced on the [0,1] interval as required by the Altman and Casella estimator. For each
experiment two scenarios are investigated. In the first scenario, which we denote the “case of identical
curves,” four identical curves were generated: m1(x) = m2(x) = m3(x) = m4(x) = sin(5πx).
Individual-specific errors differentiate the data across experimental units. This is the ideal case for
the NEPS estimator. In the second scenario, which we refer to as the “case of dissimilar curves,”
four very dissimilar curves were generated (see figure 1). The four curves are

m1(x) = sin(15πx); (13)
m2(x) = sin(5πx); (14)

m3(x) = .3e(−64(x−.25)2) + .7e(−256(x−.75)2); and (15)
m4(x) = 10e−10x. (16)

Unlike in density estimation where the Marron and Wand densities (1992) are commonly used to
study the finite sample performance of density estimators, there are no standard test functions in
the regerssion case. However, the curves we use here have also been employed in similar simulations
(Hurvitch and Simonoff, 1998; Ruppert, Sheather, and Wand, 1995; Herrmann,1997). The choice
of these two extreme scenarios is motivated by the fact that in empirical settings it is impossible to
know if the conditional means are similar, identical, or dissimilar. Throughout the simulations, a
Gaussian kernel is used and the bandwidth is chosen to minimize the integrated squared error

ISE[m̂j(x)] =
∫

[m̂j(x)−mj(x)]2dx. (17)
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Figure 1: Graph of the four conditional means
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3.4 Results

Tables 1 and 2 report the mean integrated squared error (MISE) averaged across the estimates of the
four curves for the random and fixed designs for samples sizes 50, 100, and 500 with 500 simulations.
The average mean integrated squared bias (MIB2) is also reported as the NEPS estimator is designed
to reduce bias. Table 1 presents the results of the first simulation experiment where a random
design regression is used. NW denotes the Nadaraya-Watson estimator, R&Li is the Racine and Li
estimator, and NEPS is our proposed estimator. For the “case of similar curves” the NEPS estimator
significantly outperformed the NW estimator in all sample sizes. The superior performance of the
NEPS estimator is attributable to a lower bias as seen in table 1, confirming the derived theory. The
R&Li estimator also outperformed the NW estimator but not to the extent of the NEPS. Interestingly,
the NEPS estimator also has a lower MISE than the NW estimator for the sample sizes of 50 and 100
in the “case of dissimilar curves.” Note however that the NW estimator is a special case of the NEPS
estimator with mp(x) being equal to a constant ∀ x. However, a “flat start” is quite conservative for
most curves, including those curves we consider in these simulations. We would also expect that as
the sample size increases, the NW estimator will perform relatively better than the NEPS estimator
when the curves are not identical.

Table 1: Average error of the four curves: random design.

Case of similar curves
n NW R&Li NEPS

MISE MIB2 MISE MIB2 MISE MIB2

50 10.644 5.6111 3.8884 2.6365 2.6987 0.3431
100 5.7383 3.5223 2.3816 1.7222 1.4638 0.1710
500 1.9022 1.3000 0.5883 .3064 0.3915 0.0553

Case of dissimilar curves
n NW R&Li NEPS

MISE MIB2 MISE MIB2 MISE MIB2

50 18.5100 14.3130 20.3510 16.2460 18.1560 12.7090
100 14.8060 12.3190 15.5110 12.9280 14.5970 11.0740
500 12.2757 11.3895 15.1869 14.8708 13.4409 12.2039
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Therefore m̂p(x) need not be a great approximation of the conditional mean of interest for the NEPS
estimator to perform well. This result was also found by Hjort and Glad (1995) and Glad (1998)
and represents a strength of their idea. Formally, if mp(x) is such that

|r′′j (x)mp(x) + 2r′j(x)mp(x)
f ′j(x)
fj(x)

| < |m′′
j (x) + 2m′

j(x)
f ′j(x)
fj(x)

|, (18)

the NEPS estimator will have a smaller asymptotic mean squared error than the NW estimator as
the variances are essentially the same. The R&Li estimator remained competitive because of its
ability to revert to the NW estimator by having λ̂j → 0 when the curves are dissimilar.

Table 2 reports the results of the second experiment where a fixed design is used. A&C denotes
Altman and Casella’s nonparametric empirical Bayes estimator. The NEPS estimator outperformed
the NW estimator and the A&C estimator when the conditional means are identical. As in the
random design case, the NEPS remained competitive to the NW estimator for the samples sizes of
50 and 100 even when the similarity assumption is inappropriate. The performance of the A&C
estimator is somewhat disappointing, which could be explained by the small number of experimental
units (Q = 4) considered in our simulations. Altman and Casella (1995) noted that Q needs to be
large for their estimator to perform well relative to the NW estimator.

Table 2: Average error of the four curves: fixed design.

Case of similar curves
n NW A&C NEPS

MISE MIB2 MISE MIB2 MISE MIB2

50 5.6786 1.5812 7.8547 0.0152 2.7299 0.3296
100 3.1335 0.6486 7.4178 0.0149 1.5254 0.1980
500 0.8969 0.2003 6.6718 0.2652 0.6154 0.0273

Case of dissimilar curves
n NW A&C NEPS

MISE MIB2 MISE MIB2 MISE MIB2

50 12.4690 8.9958 18.3277 9.1848 11.9579 7.3078
100 4.4908 2.0037 11.1970 3.1989 5.1113 1.7449
500 1.1113 0.2649 11.1993 4.6252 2.7831 0.3238

4 Summary

In this paper, we have proposed a computationally simple nonparametric regression method which
admits two empirically relevant data environments. The method was designed to achieve bias re-
duction by incorporating extraneous information from curves which are thought to be similar to the
curve of interest. Consistent with the derived theory, the simulation results indicate that the NEPS
estimator has a strong practical potential in small to moderate samples. It outperformed the NW
estimator when the curves were identical and did not lose much efficiency when the curves were
very dissimilar. The proposed estimator also performed admirably against the related estimators of
Racine and Li and Altman and Casella.
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Appendix. Proof of the Theorem

In what follows we will drop the subscript j for simplicity.

1. Under assumptions A1-A5, we have

E[m̂(x)−m(x)] =
1
2
µ2h

2
(

r′′(x) + 2r′(x)
f ′(x)
f(x)

)
mp(x) + o(h2) (19)

Var[m̂(x)] =
σ2R(K)
(nh)f(x)

+ O(h/n + (Nhp)−1). (20)

Proof. m̂(x) = 1
n

∑n
i=1 Kh(Xi − x)

(
Yi

f̂(x)

) (
m̂p(x)

m̂p(Xi)

)
. A Taylor series expansion of m̂p(x)

m̂p(Xi)
around
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mp(x)
mp(Xi)

yields

m̂(x) ' 1
n

n∑

i=1

Kh(Xi − x)
Yi

f̂(x)

(
mp(x)
mp(Xi)

+
m̂p(x)−mp(x)

mp(Xi)

)

−
(

mp(x)
mp(Xi)

m̂p(Xi)−mp(Xi)
mp(Xi)

)
.

The expressions 1
n

∑n
i=1 Kh(Xi−x) εi

f̂(x)

m̂p(x)−mp(x)
mp(Xi)

and 1
n

∑n
i=1 Kh(Xi−x) εi

f̂(x)

mp(x)
mp(Xi)

m̂p(Xi)−mp(Xi)
mp(Xi)

are of order op(h2
p); hence,

m̂(x) =
1
n

n∑

i=1

Kh(Xi − x)
Yi

f̂(x)
mp(x)
mp(Xi)

+
1
n

n∑

i=1

Kh(Xi − x)
m(Xi)
f̂(x)

m̂p(x)−mp(x)
mp(Xi)

− 1
n

n∑

i=1

Kh(Xi − x)
m(Xi)
f̂(x)

mp(x)
mp(Xi)

(
m̂p(Xi)−mp(Xi)

mp(Xi)

)
+ op(h2

p)

m̂(x)−m(x) =
mp(x)
nf̂(x)

n∑

i=1

Kh(Xi − x)(r(Xi) + ε∗i − r(x)) +
1

nf̂(x)

n∑

i=1

Kh(Xi − x)r(Xi)(m̂p(x)−mp(x))

− 1
nf̂(x)

n∑

i=1

Kh(Xi − x)
mp(x)
mp(Xi)

r(Xi)(m̂p(Xi)−mp(Xi)) + op(h2
p)

=
An

f̂(x)
+

Bn

f̂(x)
+ op(h2

p)

where ε∗i = εi
mp(Xi)

, An = mp(x)
n

∑n
i=1 Kh(Xi − x)(r(Xi) + ε∗i − r(x)) and

Bn = 1
n

∑n
i=1 Kh(Xi−x)r(Xi)(m̂p(x)−mp(x))− 1

n

∑n
i=1 Kh(Xi−x) mp(x)

mp(Xi)
r(Xi)(m̂p(Xi)−mp(Xi)).

E(An) = mp(x)E

(
n−1

n∑

i=1

Kh(Xi − x)(r(Xi)− r(x))

)

= mp(x)
∫

Kh(X1 − x) (r(X1)− r(x)) f(X1)dX1

= mp(x)
∫

K(ω) (r(x + hω)− r(x)) f(x + hω)dω after a change of variable

=
h2

2
(
mp(x)f(x)r′′(x) + 2mp(x)f ′(x)r′(x)

)
µ2(K) + o(h2). (21)

Denote B1
n and B2

n respectively the first and second terms of Bn.

E(B1
n) = E

1
n

n∑

i=1

Kh(Xi − x)r(Xi)EXi (m̂p(x)−mp(x))

=
1
2
µ2h

2
p

(
m′′

p(x) + 2m′
p(x)

g′(x)
g(x)

)
E

(
1
n

n∑

i=1

Kh(Xi − x)r(Xi)

)

= r(x)f(x)Bias (m̂p(x)) + o(h2).
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Similarly,

−E(B2
n) = E

(
1
n

n∑

i=1

Kh(Xi − x)r(Xi)
m(x)

mp(Xi)
EXi (m̂p(Xi)−mp(Xi))

)

=
1
2
µ2h

2
pE

(
m′′

p(Xi) + 2m′
p(Xi)

g′(Xi)
g(Xi)

)
E


 1

n

∑

j 6=i

Kh(Xj − x)r(Xj)
mp(x)
mp(Xj)


 + o(n−1)

by assumption A1. Hence,

−E(B2
n) =

1
2
µ2h

2
p

(
m′′

p(x) + 2m′
p(x)

g′(x)
g(x)

)
r(x)f(x) + o(h2 + n−1)

−E(B2
n) = r(x)f(x)Bias[m̂p(x)] + o(h2 + n−1).

Since plimf̂(x) = f(x), it follows that E(m̂(x) −m(x)) ' f(x)−1E(An + Bn). This completes
the first part of the proof.

V ar[An] = σ2(nh)−1R(K)f(x) + O(h/n). The computation of the variance of Bn and the co-
variance of An and Bn is significantly longer and thus not provided in detail; it is available from
the authors. Both V ar[Bn] and Cov(An, Bn) are found to be the order O[(Nhp)−1]. Again,
V ar(m̂(x)) ' f(x)−2[V ar(An) + V ar(Bn) + 2Cov(An, Bn)], which completes the second part of
the proof.

2. Under the assumptions A1-A7, m̂(x) has a limiting normal distribution:

√
nh(m̂(x)−m(x)−B(h)) → N(0, Σ) (22)

where B(h) = 1
2µ2h

2[mp(x)r′′(x) + 2mp(x)r′ f
′(x)

f(x) ] and Σ = σ2

f(x)R(K).

Proof. Write (m̂(x)−m(x))f̂(x) = Cn + Dn + op(h2
p) where Cn = mp(x)

n

∑n
i=1 Kh(Xi − x)(r(Xi)−

r(x))+ 1
n

∑n
i=1 Kh(Xi−x)r(Xi)(m̂p(x)−mp(x))− 1

n

∑n
i=1 Kh(Xi−x) mp(x)

mp(Xi)
r(Xi)(m̂p(Xi)−mp(Xi))

and Dn = mp(x)
n

∑n
i=1

εi
mp(Xi)

Kh(Xi−x). From the first part of the proof of the theorem, it can be seen

that E(Cn) = h2

2 (mp(x)f(x)r′′(x) + 2mp(x)f ′(x)r′(x))µ2(K)+o(h2); somewhat lengthy calculations
show that V ar(Cn) = o(h4)+O

(
1

n1hp+n2hp+......+nQhp

)
. By assumption A7, njhp →∞ ∀ j = 1, ...., Q;

hence the last term of the variance of Cn can be ignored. Combining the expectation and variance
of Cn, it follows that

Cn = E(Cn) + op(h2)

=
h2

2
(
mp(x)f(x)r′′(x) + 2mp(x)f ′(x)r′(x)

)
µ2(K) + op(h2)

= f(x)B(h) + op(h2);

Similarly, E(Dn) = 0 and V ar(Dn) = (nh)−1
(
σ2R(K)f(x) + o(1)

)
. Dn is a triangular array of i.i.d.

random variables; thus, under assumption A6, we can apply Liapounov’s central limit theorem to
obtain

√
nh(Dn) → N(0, f2(x)Σ).

Since plimf̂(x) = f(x), it also follows that
√

nh(m̂(x)−m(x)−B(h)) =
√

nh
Dn

f̂(x)
+ op(1) =

√
nh

Dn

f(x)
+ op(1) → N(0,Σ). (23)
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