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Executive Summary 
 
 AEPCO and the University of Arizona’s Department of Agriculture and Resource 

Economics (AREC) collaborated during the fall semester 2005 on a project to improve forecasts 

of next-day electricity load.  The project was conducted as part of an AREC M.S. class in applied 

econometrics.  Students developed econometric models for forecasting next-day hourly load 

profiles, and delivered results to AEPCO in a formal business presentation in December 2005.  

 The particular econometric models developed are known as ARIMA (autoregressive, 

integrated, moving average) models which use only past load data to forecast next-day load 

profiles.  The models were calibrated for five distinct seasons in 2004:  winter, spring, pre-

monsoon, monsoon, and fall periods.  The ARIMA models were estimated using rolling samples 

of 28 days of (672) hourly load observations for one week in the five seasons.  ARIMA forecasts 

yielded reasonable results:  forecast errors at coincidental peaks were generally at or below 5 

percent.  The time of day of coincidental peaks was usually forecast correctly.  ARIMA forecast 

also captured the shape of 24-hour profiles adequately. 

 The UofA ARIMA forecasts were compared to AEPCO pre-planning forecasts for two 

weeks in the summer of 2005—a pre-monsoon week in June and a monsoon week in August.  

ARIMA models usually provided modest improvements relative to AEPCO forecasts.  Mean 

absolute percentage errors (MAPE) for the ARIMA forecasts tended to be slightly smaller than 

the MAPE of AEPCO’s forecasts.   

 ARIMA forecasts can be updated daily by AEPCO econometricians with less than ½ 

hour of work.  In the short term, AEPCO staff can use ARIMA forecasts to complement their 

pre-planning forecasts.  ARIMA and pre-planning forecasts can be compared systematically to 

yield further improvements in forecasting next-day load profiles.  
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Forecasting Short-Term Electricity Load Profiles 

AEPCO and the University of Arizona’s Department of Agriculture and Resource 

Economics (AREC) agreed in June 2005 to explore opportunities for collaboration in forecasting 

next day hourly load.  Mr. Clifford Cathers of AEPCO developed a detailed proposal outlining 

specific objectives for improving forecast accuracy.  Dr. Gary Thompson of the University of 

Arizona (“UofA”), AREC, agreed to coordinate the department’s efforts and conduct the project 

in connection with his graduate course, Advance Applied Econometrics.  Three graduate students 

in the class, assisted by Dr. Thompson, developed several time series models for accurately 

forecasting short-term hourly loads.  

The objectives of the project were to: 

1. Forecast next-day coincidental peak loads for Class A members 

2. Forecast next-day 24-hour load profile for Class A members 

3. Forecast next-day 24-hour load profile for each Class A member 

4. Forecast next-day 24-hour load profile by delivery point and substation 

The objectives were designed for a project to be conducted over the course of several 

years.  The first year’s installment was to forecast coincidental peak load for Class A members.  

Next, UofA was to develop a 24-hour load profile for Class A Members.  In subsequent years, 

the project would expand to forecast 24-hour load profiles for each Class A member.  The final 

step will be to provide 24-hour load profile for each delivery point and substation.   

Although the initial idea was to focus solely on the first objective, UofA econometricians 

realized the first two objectives could be tackled simultaneously.  Accordingly, results presented 

here include analyses of both coincidental peak load forecasting performance and 24-hour load 

profile forecasting performance.     
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Business Problem 

 For building useful models, econometricians need to first understand the underlying 

economic and business problems which they want to model.  In the current context, UofA 

econometricians sought to formulate a concise statement and explanation of the business 

problem underlying the need for improved short-term forecasts.  Without an understanding of the 

business problem, UofA econometricians were afraid their forecasting results might not be 

relevant for improving daily decision making at AEPCO.   

UofA econometricians think AEPCO’s short-run business problem is one of cost-

minimization as opposed to profit maximization.  Regulatory strictures on electricity rates 

preclude AEPCO from passing on increases in input costs to its members by raising electricity 

prices.  Hence, revenues in the short run are only affected by the amount of electricity demanded 

at the Class A level because electricity prices are fixed.  Consequently, the benefit of improved 

accuracy of AEPCO’s pre-planning forecasts is manifested in the ability to lower input costs for 

generating electric power.  Also, to the extent surplus power is sold on the spot market or 

shortfalls in generation must be met by purchases on the spot market, more accurate forecasts 

can minimize reliance on potentially volatile day- or hour-ahead spot-markets. 

A flow chart of the AEPCO’s short-run business problem is depicted in figure 1.  The 

first two objectives mentioned above relate most closely to this business problem of least-cost 

electricity generation and buying or selling electricity in the spot market.    
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 Figure 1. Short-Run Business Problem 
 

 
 

Costs of Generating Electricity.  Accurate pre-planning forecasts of coincidental peak loads and 

24-hour load profiles may allow AEPCO to adjust the optimal daily mix of coal vs. natural gas 

for generating electricity at its Apache Junction plant.  The least-cost mix of coal and natural gas 

is essential in determining optimal capacity utilization and operating efficiency.  Natural gas is 

becoming more expensive (see Figure 2) and AEPCO must contract a day in advance for 

adequate delivery of natural gas.  More accurate forecasts will allow AEPCO to contract for 

precisely the correct amount of expensive natural gas to burn only when necessary.   
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Figure 2.  U.S. Prices of Natural Gas 
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 Source:  U.S. Department of Energy, http://tonto.eia.doe.gov/dnav/ng/hist/n9190us3m.htm 
 
 
Spot Market Transactions.  Improved forecasts may allow higher returns on transactions in the 

day- and hour-ahead spot markets for electricity should the spot market revitalize.  Although 

volatility in the day- and hour-ahead spot markets is not currently a problem, if generating 

capacity in the industry lags demand, a more active, volatile spot market may re-emerge.  In such 

a volatile market, more accurate short-term forecasts could be an essential tool for minimizing 

exposure to volatile spot market prices.  

Costs of Maintaining Transmission Networks.  Underlying these explicit costs of generating 

electricity and selling or buying on the spot market is AEPCO’s ongoing commitment to service 

and maintenance of its transmission network.  More detailed forecasts at the substation and 

delivery point can improve scheduling decisions and minimize disruptions in service.  Objectives 

3 and 4 above relate to this slightly longer run business problem of servicing and maintaining 

transmission lines, which are an integral part of delivering generated power to Class A members.   
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Impacts of Market Forces 

Market forces may continue to enhance the value of accurate short-term forecasts.  

Demand for electricity at the Class A member level has increased substantially over the past 

decade.  Peak demands have grown at an even faster pace than average demands over the same 

period (see Figure 3).  As a result, small percentage errors in forecasts become more costly when 

applied to growing peak loads. 

Figure 3:  Monthly Average and Maximum Loads, AEPCO 6 Class A Members 
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 Source:  Calculations from AEPCO Load Data. 

 

Other market forces are likely to make generation of electricity more costly.  Natural gas 

prices have increased in real terms since 2001.  And relative to the price of coal, natural gas has 

become much more expensive.  Hence, errors in forecasting become more costly when peak 

demands must be met by burning increasingly more expensive natural gas.  If El Paso 

Corporation, AEPCO’s provider of natural gas, is successful in proposing so-called hourly burn 

fines, the costs of forecast errors could become even higher. 
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If natural gas prices increase, if spot markets become more volatile, or if load levels 

continue to grow and magnify the costs of small percentage errors in forecasts, statistically 

derived forecasts may prove even more beneficial to AEPCO in making short-term decisions 

aimed at maximizing returns for their member owners. 

 

AEPCO’s Pre-Planning Forecasts 

AEPCO’s pre-planning department currently relies on expert judgment whereby  

intuition, experience, and practical expertise are combined to generate pre-planning forecasts of 

next-day load profiles.  AEPCO forecasters take into account recent load shape, current 

forecasted weather, day of the week, holidays, and trends in formulating their forecasts.  AEPCO 

forecasters typically use the previous one or two months of load data in formulating their 

forecasts.  With these data, AEPCO forecasters review recent load history for the day and hour 

most similar to the current forecasted period.  Analysts then adjust the anticipated load level to 

account for observable factors—day of the week, holidays, etc.— likely to affect the current 

forecasted load level compared to the most similar recent historical observation. 

Monday through Thursday, pre-planners forecast next-day hourly loads.  On Friday, 

loads for the following three days are forecast, resulting in a continuous series of 72 hourly loads 

through midnight of the following Monday.  All loads are forecast for all Class A members 

jointly; no member-by-member forecasts are generated daily.   
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Alternative Forecasting Methods 

In the process of considering alternative methods for forecasting, AEPCO personnel 

suggested a successful alternative forecasting model should have several characteristics.  First, 

an alternative model should be able to generate a forecast within 15 to 30 minutes each day.  

Second, the model should accurately forecast load levels while capturing the shape of the daily 

load profile.  Third, the model should account for weather effects, such a cumulative heating 

degrees and highly variable monsoon conditions.  Fourth, the model should adapt to the changing 

shapes of daily load profiles.  While winter and summer daily profiles typically follow regular 

patterns, daily profiles in transitional periods in the spring and fall can vary in shape from one 

day to the next.  Any statistical model worth adopting must be sufficiently flexible to capture 

these changing daily profiles. 

AEPCO personnel estimate their pre-planning forecasts yield forecast errors in the 

vicinity of about 5 percent.  Existing methods using expert judgment appear to have been 

sufficiently accurate for AEPCO’s current load levels.  But the option of using other statistical 

methods should not be viewed as an all-or-nothing adoption decision.  AEPCO can continue to 

employ expert judgment methods while comparing their daily forecasts to those derived from 

statistical models.   Comparisons of the two types of forecasts could offer AEPCO forecasters 

new insights into their expert judgment.  Conversely, econometricians at AEPCO may refine 

their statistical forecasting models based on insight from expert forecasters.  Both sets of 

forecasts could also be evaluated after the fact using various metrics so that strengths and 

weaknesses of each could be identified.  
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Statistical Models for Short-Term Forecasting 

 Statistical models for forecasting short-term electrical loads fall into three broad 

categories: 

1. Time Series Models 

2. Artificial Neural Networks 

3. Semi- and Non-Parametric Regression 

Each of the class of models has desirable features and each, in turn, has weaknesses.  A 

detailed discussion of the pros and cons of implementing and estimating models in each class is 

not included here.  What is ultimately of concern to forecasters is simply forecast error.  Based 

on most commonly adopted metrics of forecast error, none of the models in any of the three 

classes of models performs measurably better in all circumstances.  In various literature reviews, 

each of the types of models are capable of producing mean absolute percentage errors of as low 

as 2 percent (EPRI).  From the perspective of minimizing forecast errors, no class of models is 

clearly preferred to another.  Forecast performance of particular models depends on the specific 

load and other data used, making comparisons across models difficult. 

ARIMA Models 

 For present purposes, one type of time series model was selected for forecasting:  

ARIMA.  ARIMA is an acronym standing for AutoRegressive, Integrated, Moving Average 

models.  In its simplest form, an ARIMA model postulates current load is simply some function 

of past loads.  For that reason, it is referred to as a univariate model because the only variable 

entering the model is load.  The only data required to estimate the ARIMA model are time series 

observations on loads.  But ARIMA models can be augmented with other variables.  If the other 

variables are non-stochastic such as dummy variables for day of the week or holidays, ARIMA 
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models using these non-stochastic variables are used for intervention analysis.  If stochastic 

variables such as actual and predicted weather variables are used, they are included in the 

ARIMA model by means of a transfer function.   

 In what follows, some slightly more technical explanation of ARIMA models is provided.  

Readers not interested in the technical details should skip to the section titled Seasonal 

Forecasting on page 20. 

 An ARIMA model is specified generally as ARIMA(p,d,q) where p denotes the order of 

the autoregressive (AR) component, d denotes the order of differencing of the raw data, and q 

indicates the order of the moving average (MA) process.  It is convenient to introduce concise 

notation as a means to make more explicit the autoregressive and moving average portions of the 

model.    A typical p-order autoregressive model of a sequence { }ty of load can be written as 

( )1 2
1 21 p

p t o ta L a L a L y a ε− − − − = +L  

in which L denotes the lag operator, i.e. i
t t iL y y −≡ .  Parameters to be estimated are given by the 

'sia  and tε is the white noise error.  The polynomial in the lag operators can be depicted even 

more compactly as  

( ) t o tA L y a ε= +  

where A(L) is shorthand for the polynomial.  Similarly, the moving-average portion of the 

ARIMA can be depicted as 

( ) ( )
1 1 2 2 1 1t o t t p t p t t q t q

t o t

y a a y a y a y

A L y a B L

ε β ε β ε

ε
− − − − −= + + + + + + + +

= +

L K
 

Here, the polynomial in the moving average is denoted as B(L). 

 Because many time series display marked trends, the univariate time series is often 

“filtered” in some manner so as to remove any detectable trends.  First differences, 
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1t t ty y y −∆ ≡ − , and second differences, ( )2
1 1 22t t t t t ty y y y y y− − −∆ = ∆ − = − + , are usually 

sufficient to remove linear trends.  To remove nonlinear trends, the raw series is first transformed 

by the natural logarithm and then differenced.  If no filtering is performed, the model is simply 

an ARMA(p,q) model. 

 The preceding ARIMA(p,d,q) model is additive in all parameters.  For purposes of 

modeling seasonal patterns, multiplicative ARIMA models are often specified.  The general 

notation for a seasonal multiplicative model is 

( )( )ARIMA , , , ,
s

p d q P D Q  

where 

 p = the order of the non-seasonal AR process 

 q = the order of the non-seasonal MA process 

 d = the number of non-seasonal differences 

 P = the number of multiplicative autoregressive coefficients 

 D = the number of seasonal differences 

 Q = the number of multiplicative moving average coefficients 

 s = the seasonal period 

For application to forecasting hourly load demands, “seasonality” refers to the period over which 

one cycle of a pattern occurs such as a day (24 hours) or a week (168 hours).  For examples of 

multiplicative seasonal ARIMA models, see Enders, pp. 93-99. 

Box and Jenkins formalized analysis of time series by using ARIMA models.  They 

outline three distinct steps in their analysis:  identification; estimation; and forecasting.  Each 

step will be addressed in turn. 

Identification.  Identification consists in choosing parameters of the ARIMA model so that the 

remaining error is white noise or, possibly, Gaussian white noise.  In linear models, identification 

is often achieved by zero restrictions, which exclude certain parameters from the model, and 
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normalizations, which typically set parameters equal to one.  In ARIMA models, finding the 

appropriate order of the AR and MA portions of the models amounts to imposing zero 

restrictions on a more general model.  In intuitive terms, the analyst seeks to include only the 

necessary parameters in the ARIMA model such that all trends and systematic patterns can be 

captured by the model.  The only remaining components in the model should be purely random 

and, therefore, inherently unpredictable.  

 Identification is usually aided by various graphical methods and statistical tests are 

conducted to verify whether error terms behave as white noise should.  Using graphical methods, 

one inspects the autocorrelation and partial autocorrelation functions to ascertain the appropriate 

autoregressive (AR) and moving-average (MA) specifications.   

 Prior to ascertaining the order of the AR and MA specifications, the data are filtered.  In 

an effort to mimic pre-planning forecast techniques, samples of 28 days (672 hourly 

observations) are employed.  The datasets are rolling samples inasmuch as only the preceding 28 

days of load data are used to forecast the following 24-hour load pattern for forecasts performed 

on Monday through Thursday.  On Friday of any given week, forecasts for the following 

Saturday through Monday include 72 hours of forecasted loads.  Filtering consists of 

differencing the load levels, not logarithms.  The data were differenced at a one-hour lag, a 24-

hour lag, and a combined 1- and 24-hour lag.  For illustrative purposes, the 28-day period ending 

June 7, 2005 was chosen for examining the effects of filtering.  Other periods during the year 

gave similar results. 
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Figure 4a.  ACF, 1-Hour Differences, 28-Day Period, May 11 - June 7, 2005 
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Figure 4b.  ACF, 24-Hour Differences, 28-Day Period, May 11 - June 7, 2005 
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Figure 4c.  ACF, 1- and 24-Hour Differences, 28-Day Period, May 11 - June 7, 2005 
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With either one-hour or 24-hour differencing, the autocorrelation function of the 

differenced series display pronounced “seasonality” with a strong autoregressive relationship  

 (see figures 4a & 4b).  But when load levels are differenced both at 1- and 24-hour lags, the 

strong AR relationship in the autocorrelation function is attenuated (figure 4c).   

 The autocorrelation function in figure 4c displays almost no discernible trends.  None of 

the autocorrelations for more than 24-hour lags exceed twice the estimated standard errors. 

 The partial autocorrelations for the 1- and 24-differenced series display an oscillatory 

decaying pattern at roughly 26, 50, 74, . . . hours (see darker columns in figure 5).  This pattern 

may suggest some residual moving-average relationships not captured by merely differencing the 

hourly load series. 

Figure 5. PACF, 1- and 24-Hour Differences, 28-Day Period, May 11 - June 7, 2005 
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 Using the filtered data, various procedures can be used to identify the appropriate 

ARIMA model.  The most common procedures favor a parsimonious model, that is, as model in 

which a smaller number of parameters is preferred to one with more parameters.  Information 

criteria such as Akaike’s or Schwartz’s criteria are typically used to select the most parsimonious 
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model.  Alternatively, Lagrange multiplier (LM) tests for determining the appropriate ARMA 

specification have been proposed (Godfrey; Hall and McAleer).  For brevity, the results of 

information criteria and LM tests are not presented here.   

 The multiplicative seasonal ARIMA model (see Hagan and Behr) chosen for analysis is 

given as  

( )( ) ( )1 2 168 1 24 24 48
1 2 168 24 481 1 1t ta L a L a L y b L b L ε− − − ∆ ∆ = + +  

There are five parameters to estimate for any particular rolling sample. No intervention variables 

are used nor are weather variables included in a transfer function. 

Estimation.  The parameters were estimated by maximum likelihood in nearly all cases.  On 

occasion, maximum likelihood fails to converge in which case the conditional non-linear least 

squares was used to obtain parameter estimates.  Estimation of the model with a sample of 672 

hourly observations takes less than one second of cpu using SAS version 9.1 software on a 

typical personal computer (see table A1, page 46, for typical estimation results).   Forecasted 

load values can be written directly to Excel spreadsheets for subsequent graphing and analysis. 

Forecasting.  Forecasted load values were obtained in the usual fashion.  Although confidence 

intervals about forecasted values could be generated, they are not included here. 

 

Seasonal Forecasting 

 All forecasts discussed in this section apply to the total of all 6 Class A members.  The 

ARIMA model just mentioned could be estimated with ease every day or even more frequently 

to obtain new parameter estimates and, consequently, updated forecasts of next-day 24-hour load 

profiles.  Reporting the results of 260 week-day forecasts for an entire year would be 
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overwhelming, however.  Instead, five typical seasons of the year were identified and the 

forecasting results from each of these five weeks are reported in what follows. 

 Although there may be various meteorological criteria for identifying particular seasons 

as distinct from one another, we choose to identify separate seasons based on the shape of daily 

load profiles only.  Even though load profiles for each Class A member may differ from the total 

or aggregate load profiles, any disaggregated differences are ignored at this juncture.  The five 

seasons are given in table 1 below. 

Table 1.  Seasons for Forecasting, Calendar Year 2004 

Season Type of 24-Hour Profile Week of Analysis 

Winter Bimodal January 27 – February 2  

Spring Transitional:  Mixture of 
Bimodal and Unimodal March 30 – April 5 

Summer, Pre-Monsoon Unimodal June 8 - 14 

Summer, Monsoon Unimodal; Highly variable 
peak due to rain events August 3 – 9 

Fall Transitional:  Mixture of 
Bimodal and Unimodal October 26 – November 1 

 

The terms unimodal and bimodal refer to whether the daily profile has one or two peaks.  While 

winter profiles are nearly always bimodal and summer profiles are unimodal, spring and fall 

profiles often display shapes which are a mixture of both.   

 Using rolling samples of 672 hourly observations, the ARIMA model was estimated for 

each week day in each of the five weeks selected in 2004, resulting in 25 sets of forecasted 

values.  Forecasted loads were compared to actual loads visually as well as using several metrics.  
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The most widely used metric in the academic literature is the mean absolute percentage error 

(MAPE) defined as 

1
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t t
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= ∑  

where ty  is the actual load level at any given hour, ˆty  is the forecasted load value for that same 

hour, and T is the total sample size (i.e. number of hours) over which the average is calculated.  

As may be obvious, MAPE treats the magnitudes of over and under forecasting equally.  

Squaring the forecast error, instead of taking the absolute value, would add a larger penalty for 

larger misses whether they were positive or negative.  A mean squared percentage error criterion 

such as 
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might be used if analysts think that larger forecasting errors should be weighted more heavily.  In 

the following sections, only MAPE are reported. 

 As objective 1 of this project states, forecasting the level and hour at which the 

coincidental peak load occurs is extremely important.  Accordingly, we report the absolute 

magnitude of forecast errors as well as percentage errors.  Also, we report the time of day of 

actual coincidental peaks versus forecasted values (see Tables A1-A5, pages 45-47). 

Peak Forecasts:  Weekdays 

 Objective 1 of this project calls for forecasts of coincidental peak load.  The 

multiplicative ARIMA model gives reasonable estimates of the magnitude and time of day of 

peak loads (Tables A1-A5).  Considering all next-day forecast, as opposed to 72-hour forecasts 

on Friday of each week, forecasts errors are usually at or below 5 percent regardless of season.  

There is one notable exception:  the forecast error for Wednesday, June 9 was 18.2 percent, 
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corresponding to a forecast of 62.2 MW over the actual load.  Daily maximum temperatures in 

one of the six Class A member areas—Trico—dropped dramatically relative to typical daily high 

temperatures (see figure 6).  Although these temperatures are only indicative of a single member 

area, they suggest a plausible reason for the high forecast values:  load owing to peak air 

conditioning demands dropped as daily maximum temperatures fell.  Interestingly, however, for 

the following day, Thursday, June 10, the forecast peak load “recuperated,” over-forecasting by 

only 11.0 MW or 3.3 percent even as the daily maximum temperature in Tucson fell to a near 

record low.   

Figure 6.  Hourly Dry Bulb Temperatures, June 1 -14, 2004, Tucson International Airport 
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 The forecasted time of day of coincidental peaks is generally good.  When daily profiles 

are unimodal, the hours of coincidental peak is forecasted exactly in nearly all cases.  In the 

summer when peak loads are highest, the only misses were by one hour.  When daily profiles are 

bimodal, however, forecasting the exact time of day of coincidental peak load can become more 

difficult because morning and evening peaks may occur at nearly the same load levels.  On 

Saturday, January 31, for example, the peak load occurred at 8 p.m. whereas on the previous four 

days, the peak occurred at 8 a.m.  Not surprisingly, the ARIMA model forecast an 8 a.m. peak 
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for Saturday.  The magnitude of the error was small because the actual Saturday evening peak 

load was only 6 MW larger than the peak morning load that same day. 

 

Peak Forecasts:  “Weekends” 

 Forecasts of daily coincidental peak loads for the “weekend” of Saturday, Sunday, and 

Monday are less accurate as would be expected when the length of the forecast period is tripled 

from 24 to 72 hours.  With a few exceptions, the percentage errors on peak load for Sundays and 

Mondays are almost uniformly higher than for corresponding Saturdays (see figure 7 below).   

Figure 7. Coincidental Peak Forecast Errors, Weekends 
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During the winter, spring, and fall weeks, the larger forecast errors over the weekend 

result in errors no larger than about 25 MW.  But during summer peaks, the magnitudes of 

forecast errors can double, resulting in peak forecast errors of over 50 MW ( e.g. Monday, June 

14, 2004).   
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Forecasting Daily Load Profiles 

 Two measures are used to judge the suitability of forecasts for capturing the shape of 

daily load profiles:  visual inspection of graphs and analysis of forecasting errors.  Visual 

inspection is appealing because our eyes tend to see deviations from patterns that do not reveal 

themselves as easily in tables of numbers.   But visual inspection is not without problems:  

occasionally our eyes can fool us because of optical illusions.  Consequently, various analyses of 

forecasting errors are graphed and analyzed to supplement visual inspections of 24-hour load 

profiles.  For purposes of comparison, forecasts of load profiles are divided into three categories:  

(i) unimodal summer; (ii) winter bimodal; and (iii) spring and fall transitional loads.  Each type 

of load profile presents special challenges for forecasting. 

Unimodal Summer Profiles 

 Forecasting the time of day of peak loads with unimodal daily load profiles is often the 

“easiest” in the sense that the ARIMA models provide accurate forecasts.  But even small 

percentage errors in summer forecasts represent very much larger loads.  Accordingly, if 

ARIMA forecasts do not coincide very closely with actual daily load profiles in the summer, 

cumulative misses over a 24-hour period can be quite large. 

 To appreciate how large errors of summer loads can be, it is useful to compare two days 

in the pre-monsoon season in June 2004.  As was made clear in the previous section, Wednesday 

June 9 was a difficult day to forecast:  the peak was forecast too high by 62.2 MW (18.2%).  

From figure 8 it is also clear the shape of the forecast load profile matches the actual load until 8 

a.m. when it begins to diverge considerably throughout the rest of day (forecasted values are 

indicated by dashed lines).  By contrast, two days later on Friday June 11, the forecast load 
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profile nearly coincides with the actual loads at every hour.  Even the very small “shoulder” 

occurring from 8:00 to 9:00 p.m. is mimicked by the forecasted values. 

 Percentage errors for the daily load profiles for all days of the week of June 8 -14 are 

depicted in figure 10.   The largest forecast errors measured in percentage terms sometimes 

occurred in the neighborhood of peak hours.  In contrast, percentage forecast errors at overnight 

low load levels tend to be quite small.  The largest daily percentage errors in hourly forecasts 

during this week never occurred at peak load hours (see times of day in figure 10).   

Figure 8. Load Profiles, June 9, 2004 
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Figure 9. Load Profiles, June 11, 2004 
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Figure 10. Hourly Percentage Forecast Errors, June 8 – 14, 2004 
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 In general, actual load profiles are reasonably well approximated when forecasts are 

made for the next 24 hours.  The shape of weekend forecasts tends to diverge over the longer 72-

hour forecasting period.  For the weekend of Saturday June 12 through Monday June 14, the 

tendency of the ARIMA forecast to under-predict is exacerbated by Monday (figure 11). 

Figure 11. Load Profiles, June 12 – 14, 2004 
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Here again, the cost of forecasting 72 hours ahead rather than 24 hours ahead on each Friday is a 

deterioration in the accuracy for forecasts.   

 Daily profiles for the monsoon week chosen are quite similar to those in the pre-monsoon 

week.  The percentage forecast errors were smaller with only 3 of the 168 hours exceeding 10% 

in absolute value. 

Bimodal Winter Profiles  

 As might be expected, forecasting the load shape for a bimodal daily load profile is more 

difficult because there are more turning points.  Further, forecasting the profile of the daily peak 

is not easy when morning and afternoon peaks are nearly of equal load.  Again, it is useful to 

contrast a relatively good forecast of the load shape with one that diverges, all within the same 

week.  A relatively good forecast of load occurred for Wednesday, January 28 when both peaks 

are very closely approximated (see figure 12 below).  However, the mid-afternoon trough is 

forecast about 10 percent too high. 

Figure 12. Load Profiles, Wednesday, January 28, 2004 
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The following Saturday, January 31 was the day when the peak was forecast for the morning 

even though it actually happened in the afternoon.  As is evident if figure 13 below, the 

forecasted load profile is too high until 9 a.m. and then consistently too low for the rest of the 

day.   

Figure 13. Load Profiles, Saturday, January 31, 2004 
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Despite the difficulty of forecasting the bimodal load profiles, hourly percentage forecast 

errors were quite reasonable.  Figure 14 below shows that most errors ranged from -10% to 1% 

except for the weekend forecasts when Monday’s errors exceeded -10 percent.  Perhaps 

coincidentally, the largest percentage errors in the day-ahead forecasts tended to occur in the 

vicinity of the afternoon peak from 4 p.m. to 7 p.m.  Due to generally lower load levels in the 

fall, the magnitude of the forecast errors never amounted to more than 20 MW except at 5 a.m. 

on Monday in the weekend forecast resulting in a 27 MW shortfall. 
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Figure 14.  Hourly Percentage Forecast Errors, January 27 – February 4, 2004 
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Spring and Fall Transitional Profiles 

Transitional profiles in the spring and fall tend to combine elements of unimodal and 

bimodal profiles depending on weather conditions:  the more summer-like the weather the closer 

to unimodal; the more winter-like, the closer to bimodal.   The shapes of spring and fall profiles 

tend to look indistinguishable in some cases, suggesting there are not distinct spring and fall 

profiles per se.  Nevertheless, both spring and fall profiles will be discussed in what follows. 

 ARIMA forecasts of the next 24-hour profile sometimes predict the peak level and time 

of day quite accurately yet fail to track the shape of the entire profile.  An example of this 

phenomenon is exemplified in figure 15.  The April 2 peak was forecast only 3.6 MW (1.6%) too 

high and correctly at 8:00 p.m.  However, the forecast profile misses the mid-day trough by as 

much as 10 percent.  On the other hand, for some days, the ARIMA forecast not only hits the 

peak correctly but follows the shape of the load profile very closely.  Figure 16 displays one such 
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case in which the peak was under-forecast by only 0.7 MW (-0.3%)  and correctly at 7:00 p.m.  

The largest hourly error in forecast on that Tuesday was only -2.4% at 1 p.m.  These two days 

Figure 15. Load Profiles, Friday, April 2, 2004 
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Figure 16. Load Profiles, Tuesday, October 26, 2004 
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are indicative of the extremes in performance of the 24-hour ahead ARIMA forecasts of 

transitional profiles:  Friday April 2 is among the worst performances and Tuesday October 26 

was one of the best. 

 Hourly forecast errors during both the spring and fall transitional weeks are depicted 

below.  In the spring week chosen, the largest percentage errors tend to occur in the afternoon 

Figure 17. Hourly Percentage Forecast Errors, March 30 – April 5, 2004 
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Figure 18. Hourly Percentage Forecast Errors, October 26 – November 1, 2004 
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but not during peak load periods of 8:00 p.m.  For the fall week, there is no apparent pattern to 

the timing of the largest percentage errors.  As is evident in other seasons of the year, Friday 

forecasts of 72-hour ahead loads result in consistently larger percentage forecast errors. 

 

Improving Weekend Forecasts 

 As an experiment to see how weekend forecasts might be improved, the ARIMA model 

was estimated with rolling samples ending on a Saturday and Sunday (April 3 and 4, 2004) to see 

how forecasts would change if the ARIMA parameter estimates were updated daily rather than 

using the previous Friday’s parameter estimates to forecast for the following 72-hour period.  In 

what follows, the forecasts based on Friday’s parameter estimates will be referred to as 3-day-

ahead forecasts while the forecasts based on Saturday and Sunday’s parameters estimates are 

referred to as day-ahead forecasts. 

 Table 2 below indicates that there could be significant reductions in forecast errors if day-

ahead forecasts were implemented.  Although the 3-day-ahead and day-ahead forecasts both 

Table 2. Day-Ahead vs. Day-Ahead Forecast Errors, April 4 – 5, 2004 

Peak Error Peak % Error MAPE Period 
 3-Day 

Ahead 
Day 

Ahead 
3-Day 
Ahead 

Day 
Ahead 

3-Day 
Ahead 

Day 
Ahead 

Sunday  14.2 8.4 6.3% 3.7% 7.9% 6.3% 

Monday 18.4 4.8 8.1% 2.1% 9.0% 3.8% 

Sunday-Monday        8.4%     5.1% 

 

predicted the correct time of day of the peak—8:00 p.m. on Sunday and Monday—the forecasted 

loads differ substantially as do the percentage errors at peak.  The MAPE for each day is also 
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reduced appreciably using the day-ahead forecasts.  The improvement owing to day-ahead 

forecasts can be appreciated visually in the figures below.  Both the day-ahead and 3-day-ahead 

Figure 19. Load Profiles and Forecasts, April 3-4, 2004 
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Figure 20. Hourly Forecast Errors, April 3-4, 2004 
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forecasts miss the slight morning peak on Monday, April 4.  But the day-ahead forecast misses 

the mild mid-day trough by much less and more closely approximates the evening peak.  The 

day-ahead forecasts also do much better at predicting overnight minimum loads. 

 The foregoing experiment suggests there may be significant reductions in forecast errors 

if weekend forecasts can be made on Saturday and Sunday.  Further, experimentation with other 

weeks during the year is recommended so as to quantify the gains when other types of load 

profiles are prevalent. 

 

Comparing AEPCO and UofA Forecasts 

 Whether the ARIMA forecasts developed by the UofA can complement AEPCO 

forecasts depends in large measure whether UofA forecasts can consistently match or better 

AEPCO forecasts.  Both forecasts were compared for two selected weeks, one in the pre-

monsoon season and one in the monsoon season of summer 2005.  One of the six Class A 

members, Mohave Electrical Cooperative (MEC), is a partial requirements member which means 

the pre-planning unit at AEPCO does not forecast their entire load.  As a result, all forecasts and 

actual loads presented here are for the other 5 Class A members, exclusive of MEC. 

 Peak Load Comparisons 

 Comparisons of performance for forecasting peak loads are made in tables 3  and 4 

below.  The time of day of coincidental peak was predicted correctly for all days by the UofA 

ARIMA forecasts for the week of June 7 – 13, 2005.  The AEPCO time of day peak was only 

incorrect for Sunday; AEPCO forecast the peak at 3:00 p.m. but it actually happened at 5:00 p.m.  

In general, the magnitudes of the UofA forecast errors compare favorably with those of AEPCO.  

In percentage terms, the UofA errors are as small or smaller than AEPCO forecast errors at the 
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peak for most days of the week.  Both AEPCO and UofA forecast reasonably well during this 

particular week of June 2005 because the weather was not anomalous and the single peaks 

occurred at 5:00 p.m. every day of the week.  In relative terms, this was an “easy” week for 

forecasting. 

Table 3. Peak Load Comparisons, June 7 – 13, 2005 

Forecast Error Percentage Error 
Day of the 

Week 

Actual 
Peak 
Load 
(MW) 

AEPCO UofA AEPCO UofA AEPCO UofA 

Tuesday 241.0 227 236.3 -14.0 -4.8 -5.8% -2.0% 

Wednesday 247.4 248 237.6 0.6 -9.8 0.2% -4.0% 

Thursday 242.3 246 242.2 3.7 -0.1 1.5% 0.03% 

Friday 240.9 256 243.1 15.1 2.1 6.3% 0.9% 

Saturday 239.2 256 246.9 16.8 7.7 7.0% 3.2% 

Sunday 249.8 270 249.8 20.2 0.02 8.1% 0.01% 

Monday 269.5 248 252.0 -21.5 -17.5 -8.0% -6.5% 
 

 A more difficult week for forecasting occurred in the monsoon season of 2005.  The 

week of August 9 – 15, 2005 proved especially difficult because there was an unexpected 

widespread rain event with lower than normal temperatures in southwest Arizona.  Peak 

forecasts for most days during that week were reasonably good (see table 4).  However, on 

Sunday, August 14 peak load dropped by 50 – 75 MW compared to previous days as the result of 

a monsoon rain event on the prior evening and rain showers that morning in Tucson (see figure 

22).  At Tucson International Airport the temperature dropped from 77° F. at 8:55 a.m. to 67° F. 

two hours later as the result of overcast skies and scattered rain showers which lasted until noon 

(see figure 21).  The afternoon high temperature that Sunday only reached 78 ° F. as skies 

cleared.   As a result of the monsoon rain event, both UofA and AEPCO forecasts failed 
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miserably to predict the time and magnitude of the coincidental peak.  The actual peak did not 

occur until 8:00 p.m. at a load level of only 184.5 MW.  But both AEPCO and UofA forecast the 

peak in the afternoon at  

Table 4. Peak Load Comparisons, August 9 – 15, 2005 

Forecast Error Percentage Error Day of the 

Week 

Actual 
Load 
(MW) AEPCO UofA AEPCO UofA AEPCO UofA 

Tuesday 238.5 286 265.5 47.5 27.0 19.9% 11.3% 

Wednesday 238.2 273 251.3 34.8 13.1 14.6% 5.5% 

Thursday 270.3 246 248.1 -24.3 -22.3 -9.0% -8.2% 

Friday 256.5 244 266.5 -12.5 10.1 -4.9% 3.9% 

Saturday 233.7 244 240.8 10.3 7.1 4.4% 3.0% 

Sunday 184.5 286 237.3 101.5 52.8 55.0% 28.6% 

Monday 252.9 244 233.3 -8.9 -19.5 -3.5% -7.7% 
 

3:00 and 4:00 p.m., respectively.  The AEPCO forecasted peak was 100 MW too high while the 

UofA peak was over 50 MW too high.  Clearly, the unexpected monsoon event rendered both 

forecasted peaks quite misleading. 

The effects of the monsoon event on hourly loads can be appreciated in figure 23.  The 

low temperatures, precipitation, and cloud cover lead to a profile which more closely resembled 

a typical fall profile than a unimodal summer profile.  Yet both AEPCO and UofA forecasts were 

typical summer forecasts.  Neither forecast could accurately predict the timing or magnitude of 

peak load given the unexpected rain event. 

Profile Comparisons 

 Forecasting coincidental peak loads is indisputably important.  But forecast errors at 

other hours during the day can have big consequences in the summer when loads are at their  
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Figure 21. Hourly Dry Bulb Temperatures (° F.), Tucson International Airport 
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Figure 22. Hourly Precipitation (Inches), Tucson International Airport 
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highest during the year.  Hence, the forecast performance measured in terms of tracking load 

profiles is especially important in the summer.   

As a means of comparing forecast performances at all hours, the percentage forecast 

errors over the course of the selected pre-monsoon and monsoon weeks are presented in figures 

24 and 25.  For the pre-monsoon week, the UofA forecasts of weekdays—Tuesday through 

Friday—tend to have slightly smaller percentage errors than the AEPCO forecasts.  But both 

forecasts of weekends—Saturday through Monday—deteriorate relative to weekday forecasts, 

and there is little appreciable difference in forecast errors between the two forecasts.
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Figure 23. Load Profiles, Sunday, August 14, 2005 
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Figure 24. Hourly Percentage Forecast Errors, June 7 - 13, 2005 
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For the monsoon week chosen, UofA forecasts again have slightly smaller percentage 
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Figure 25. Hourly Percentage Forecast Errors, August 9 - 15, 2005 
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errors but both forecasts failed miserably to capture the effects on load of the unexpected 

monsoon rain event already discussed (see figure 25 above).   

A daily recap of the two forecast errors in table 5 bears out the tendency of UofA 

forecasts to yield slightly smaller percentage errors for weekday forecast in both weeks.  But 

both sets of forecasts fair much worse in the monsoon week even when there are no significant 

rain events.  That the UofA ARIMA forecasts would be as accurate as they are is surprising 

inasmuch as the ARIMA model does not use weather data in any fashion.  Only past hourly load 

data are used to make short-term load forecasts.  One virtue of the ARIMA model is that it can 

be estimated quickly based only on previous load data, thereby producing a useful benchmark 

against which forecasters in the pre-planning unit can compare their forecast. 



  41  

Table 5. Mean Absolute Percentage Errors, Selected Days and Weeks, 2005 

June 7 - 13 August 9 - 15 
Time Period 

AEPCO UofA AEPCO UofA 

Tuesday 3.5% 1.5% 11.1% 5.2% 

Wednesday 4.5% 2.6% 8.6% 3.8% 

Thursday 2.7% 1.0% 6.3% 5.2% 

Friday 4.0% 1.0% 5.6% 5.7% 

Saturday 3.8% 2.4% 11.2% 4.0% 

Sunday 4.2% 3.8% 39.0% 18.8% 

Monday 4.6% 4.5% 14.4% 7.2% 

Tuesday - Monday 3.9% 2.4% 13.7% 7.1% 
 

 

Conclusions 

ARIMA models appear to give modest improvements in forecast accuracy compared to 

status quo methods used for pre-planning purposes, at least using the measures of accuracy 

utilized in this report.  UofA ARIMA models offer improved predictions of coincident peak load 

and 24-hour load profiles.  Further, AEPCO personnel noted the unforeseen benefit of UofA’s 

models: their ability to predict daily minimum load levels, which are also important for efficient 

capacity utilization at the Apache Junction generating plant. 

The modest forecasting success achieved with UofA ARIMA models should be taken 

only as a partial measure of success.  UofA and AEPCO forecasts were compared systemically 

for just two weeks in the summer of 2005.  In the future, both sets of forecasts should be 

compared for the entire summer, and, as other AEPCO forecasts become available, for other 

times during the year with different load profiles.  Although there is no reason to believe 
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ARIMA forecasts will perform worse at other times of the year, careful comparisons of both 

forecasts should be conducted until analysts are sufficiently convinced that the ARIMA forecasts 

are sound. 

Implementation of ARIMA Forecasts 

Implementation of ARIMA forecasts should be relatively easy.  Econometricians at 

AEPCO with ready access to past load data can estimate an ARIMA model in seconds with 

suitable software.  Forecasts can be written easily to spreadsheets for immediate dissemination to 

analysts elsewhere in AEPCO and Sierra Southwest Cooperative Services.  The ease of 

estimating the ARIMA model suggests the model might be updated as needed and as the most 

recent hourly load figures become available.  For example, the ARIMA model could easily be 

estimated in the morning for next-day pre-planning purposes but could then be updated late in 

the afternoon as new load information becomes available.   

The ease of estimating the ARIMA model also suggests it could be estimated on 

Saturdays and Sundays for obtaining next-day forecasts to replace the current 3-day ahead 

forecasts generated on Fridays.  With remote computer access, an AEPCO econometrician could 

even re-estimate the ARIMA model on Saturdays and Sundays without being physically present 

in Benson.   

Incorporating Weather Variables 

The modest success achieved also implies that there is still room for improvement.  The 

ARIMA models employed in the project do not incorporate weather data of any sort.  In order to 

incorporate weather data, there are several issues which need to be addressed: 

1. Temporal aggregation:  hourly vs. daily weather data 
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2. Spatial aggregation: finding the appropriate weather stations for each Class A member 

site. 

3. Selection of appropriate weather variables and how to include them in the transfer 

function. 

4. Availability of next-day forecasted weather variables. 

Each of these issues will be discussed in turn. 

Temporal Aggregation.  Because the ARIMA model utilizes hourly data, the most useful kind of 

weather data would be measured at hourly intervals.  Daily averages, minima, or maxima likely 

do not display sufficient variability relative to hourly load readings to be of much value in 

ARIMA models.  But if hourly data are not available at all sites, experiments with daily weather 

variables should be pursued.   

It is worth emphasizing that long historical series of hourly weather data are not 

necessary for forecasting purposes. In its current form, the ARIMA model only uses the previous 

28 days of load data.  Similarly, only the previous 28 days of hourly weather data would be 

necessary to incorporate into the ARIMA model.  This suggests that hourly data from new 

weather stations could be used as it becomes available. 

Spatial Aggregation.  Regardless of the observation interval of the weather data—hourly or 

daily—the question of appropriate location of the weather stations needs attention.  Obviously, 

the location of currently functioning weather stations will determine the available set of possible 

weather stations.  Within any Class A member’s service area, there is considerable variation in 

micro-climates, which suggests fine tuning weather-load relationships might call for data from 

more than one weather station.   When forecasting coincidental loads, the question of spatial 

aggregation again deserves attention.  Anza and Mohave Electric Cooperatives are situated in 
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areas with weather patterns distinct from those found in southwest Arizona.  But even across 

members in southwest Arizona there is considerable variation in weather patterns.  How to best 

incorporate weather variables across such varying areas will be a challenge. 

 One simple option for incorporating weather variables would be to work on objective 3 of 

the project, namely, generating forecasts of next-day 24-hour load profiles for each Class A 

member.  Once the individual ARIMA models are estimated with transfer functions including 

weather variables, the coincidental 24-hour profiles could be generated by adding up the 

individual Class A member forecasts. 

Selection of Weather Variables.  Weather variables of possible interest to include in a transfer 

function are dry bulb temperature, relative humidity, wind speed, rainfall, and sky conditions.  

The academic literature is rife with different approaches to selecting and using various weather 

variables.  Even when using only temperature, various nonlinear, threshold, and cumulative 

relationships are posited to account for load-temperature relationships.  Figure A1, page 50, 

indicates the contemporaneous relationship between hourly load and temperature is nonlinear. 

Choosing weather variables to use and discerning how to use them in transfer functions for 

models for each Class A member could easily take an entire semester of work. 

Forecasted Weather Variables.  Although it is obvious to an econometrician, it is worth 

emphasizing that in order to generate next-day forecasts of load, it is necessary to have 

forecasted values of the weather variables included in the model.  Without forecasted weather 

values, it is impossible to obtain load forecasts.  Ideally, weather forecasts would be obtained 

from a reputable government or commercial source.  If hourly weather observations are used for 

the previous 28 days in the ARIMA-transfer function model, then the forecasted values of the 

weather variables must also be hourly.    
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Appendix 
 

Table A1.  Maximum Likelihood Estimation Results, Multiplicative ARIMA Model 
 

Parameter Parameter 
Estimate Standard Error t-statistic p-value 

a1 0.778 0.039 19.89 <.0001 

a2 -0.142 0.039 -3.66 0.0003 

a168 0.051 0.043 1.18 0.2361 

b24 0.475 0.040 11.86 <.0001 

b48 0.148 0.040 3.71 0.0002 

     
Std. Error of Estimate 2.248   
Akaike Information Criterion 2900.2   
Schwarz Bayesian Criterion 2922.5   

 
Sample:  Hour 1, May 11 – Hour 24 June 7, 2005 (672 observations). 
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Table A2.  Forecasting Results, January 27 – February 2, 2004 
 

Peak Levels Peak Hours 
Period 

Actual Forecast Error Percent Error Actual Forecast 
MAPE 

Tuesday 269.1 266.1 -3.0 -1.1% 8 8 4.7% 

Wednesday 258.1 252.2 -5.9 -2.3% 8 8 2.7% 

Thursday 259.7 243.1 -16.6 -6.4% 8 8 3.0% 

Friday 254.5 252.4 -2.1 -0.8% 8 8 2.2% 

Saturday 233.4 232.4 -1.0 -0.4% 20 8 5.1% 

Sunday 237.7 234.1 -3.6 -1.5% 21 20 4.0% 

Monday 271.7 245.4 -26.3 -9.7% 8 8 8.3% 

Week       4.3% 
 
 

Table A3.  Forecasting Results, March 30 – April 5, 2004 
 

Peak Levels Peak Hours 
Period 

Actual Forecast Error Percent Error Actual Forecast 
MAPE 

Tuesday 263.9 255.1 -8.8 -3.3% 16 20 2.7% 

Wednesday 257.4 260.0 2.6 1.0% 14 20 2.3% 

Thursday 237.6 252.4 14.7 6.2% 20 20 4.2% 

Friday 226.6 230.2 3.6 1.6% 20 20 4.3% 

Saturday 219.0 234.1 15.1 6.9% 20 20 5.5% 

Sunday 225.7 239.9 14.2 6.3% 20 20 7.9% 

Monday 227.5 245.9 18.4 8.1% 20 20 9.0% 

Week       5.1% 
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Table A4.  Forecasting Results, June 8 – 14, 2004 
 

Peak Levels Peak Hours 
Period 

Actual Forecast Error Percent Error Actual Forecast 
MAPE 

Tuesday 392.4 421.7 29.2 7.5% 18 17 5.2% 

Wednesday 340.8 403.0 62.2 18.2% 17 17 10.0% 

Thursday 338.2 349.2 11.0 3.3% 17 17 4.8% 

Friday 363.3 356.8 -6.5 -1.8% 17 17 1.6% 

Saturday 374.8 372.5 -2.3 -0.6% 18 17 1.9% 

Sunday 405.6 373.4 -32.2 -7.9% 17 17 5.2% 

Monday 425.9 373.0 -52.9 -12.4% 17 17 7.0% 

Week       5.1% 
 
 

Table A5.  Forecasting Results, August 3 – 9, 2004 
 

Peak Levels Peak Hours 
Period 

Actual Forecast Error Percent Error Actual Forecast 
MAPE 

Tuesday 427.8 409.4 -18.4 -4.3% 15 17 2.4% 

Wednesday 405.1 409.5 4.5 1.1% 17 16 2.4% 

Thursday 403.6 411.5 7.9 2.0% 17 17 3.7% 

Friday 405.5 403.4 -2.1 -0.5% 16 17 2.4% 

Saturday 417.6 409.7 -7.9 -1.9% 16 16 2.6% 

Sunday 438.4 405.8 -32.6 -7.4% 17 16 5.6% 

Monday 446.6 406.7 -40.0 -8.9% 16 16 7.5% 

Week       3.8% 
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Table A6.  Forecasting Results, October 26 – November 1, 2004 
 

Peak Levels Peak Hours 
Period 

Actual Forecast Error Percent Error Actual Forecast 
MAPE 

Tuesday 225.7 225.0 -0.7 -0.3% 19 19 0.8% 

Wednesday 223.5 223.8 0.3 0.2% 19 19 0.9% 

Thursday 218.7 212.5 -6.2 -2.8% 19 19 2.3% 

Friday 207.1 216.5 9.3 4.5% 19 19 2.7% 

Saturday 204.1 214.1 9.9 4.9% 19 19 3.1% 

Sunday 200.9 223.0 22.1 11.0% 19 19 6.0% 

Monday 232.9 228.7 -4.1 -1.8% 19 19 3.1% 

Week       2.7% 
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Figure A1. Hourly Load –Temperature Relationships, Jan. 1, 2004 – May 31, 2005 
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Note:  Temperature is from Tucson International Airport; load is the total for all 6 Class A 

members. 
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