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ABSTRACT 

 Using state-level panel data, I revisit literature on the likelihood of an Environmental Kuznets 

Curve (EKC) relationship among U.S. states with respect to carbon dioxide emissions. Using panel-

corrected standard errors to correct for nonspherical error structure, energy intensity, carbon intensity, 

and electricity trade effects are regressed upon appropriate sets of explanatory variables. Parameter 

estimates are incorporated into a calculation of total income elasticity of per capita CO2 emissions, using 

decomposition analysis inspired by the Kaya equation. I find that econometric flaws in some of the 

models have skewed the results of prior studies in the form of unrealistically high-income thresholds at 

which income elasticity turns negative. I find evidence of an EKC curve with respect to trade-adjusted 

per capita emissions when correcting for these problems. 

 This paper contributes new analysis in the form of newer data, better-defined resource 

endowment variables, inclusion of demographic variables and, most importantly, an acknowledgment of 

possible structural change between two time periods, with the transition occurring in the mid- to late-

nineties. Evidence of structural change was found and attributed to a variety of factors, including 

regional shifts with regard to institutional arrangements concerning the North American Electric 

Reliability Corporation (NERC) region boundaries, new electricity regulation in the 1990s, and a change 

in GDP data methodology reported by the Bureau of Economic Analysis (BEA). It is recommended that 

future studies provide more detail with regard to this structural change and more closely account for 

complex policy scenarios such as renewable portfolio standards (RPS).  
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CHAPTER I 

INTRODUCTION 

 Carbon dioxide (CO2) emission has been a significant topic in the national political dialogue of 

the U.S. for the past few years, and it is likely to receive further attention in the future in the context of 

technological change and the continued national debate about climate change. Though no 

comprehensive national emission regulation has yet taken effect, examination of the socioeconomic 

processes affecting emissions can be considered a responsible investment in optimal design of future 

policy goals. This paper has three main parts in pursuit of just such an examination. It aims to explain a 

method for attributing carbon dioxide emissions more accurately to the states responsible for particular 

emissions levels, define and investigate a per capita emissions identity equation that accounts for a 

variety of energy-related economic activities, and to reveal, through econometric analysis, the factors 

that influence these key economic activities. Econometric analysis will reveal whether or not income 

growth can lead to actual reductions in per capita emissions.  

 A considerable body of economics literature exists that focuses on Environmental Kuznets 

Curves (EKCs). In general, the theory is that the relationship between pollutant levels and per capita 

income tends to exhibit an inverted U-shape; that is, in the nascent stages of economic development, 

concentration of pollutants will tend to increase (with diminishing returns) along with rising per capita 

income until a particular income threshold is reached. Once per capita income surpasses this threshold, 

further increases will bring about an overall decrease in pollutant levels. This inverted U-shape could 

result as follows. First, pollution could increase with growth in economic activity such as industrial 

expansion or a heightened level of manufacturing and other energy-intensive practices. Next, pollution 

could later decline as enough income is available to pay for pollution-reduction measures or as the 

economy transitions to a less energy-intensive, more service-based structure. Scholarly research has 
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revealed evidence that supports this theory for some pollutants, while research has also discredited it in 

the case of others. There has been work that refutes the presence of an EKC in the case of CO2 

emissions, but there remains additional work to be done in this area. This will be further discussed in the 

literature review section. 

 The collection of socioeconomic variables affecting climate change originally became known in 

the form of the Kaya equation, an algebraic identity that links the level of carbon dioxide emissions with 

several other key variables. The equation is the following (Jancovici 2011): 

CO2 = (CO2/E) x (E/GDP) x (GDP/Pop) x Pop 

Where CO2 represents carbon dioxide emissions, E represents world energy consumption, GDP indicates 

gross domestic product, and Pop is population. The ratios can be considered individually as intuitive 

economic concepts; (CO2/E) measures the carbon content of energy, (E/GDP) is the energy intensity of 

an economy (the amount of energy consumed per dollar of goods and services produced), and 

(GDP/Pop) is the per capita income. The Kaya equation inspires the decomposition analysis in this paper, 

in which each constituent part is closely analyzed in terms of how much it contributes to the level of 

emissions and the potential for a policy change to manipulate emissions through certain components. In 

addition, each part will be regressed on its own collection of explanatory variables to gain an even 

deeper glimpse at this identity and the income elasticity of the individual parts. 

 This paper analyzes the contributing factors that determine differences between emissions 

levels of states in the U.S. As such, a panel data set is employed that considers annual variables across 

states, including the District of Columbia, from the year 1990 to 2010. Due to differing size and state 

population having obvious effects on the absolute emissions differences between states, per capita 

emissions levels will be the focus of the analysis rather than absolute measures. Fortunately, the 

corresponding modification to the Kaya equation is simple and straightforward. Dividing each side of the 
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equation by population brings attention to per capita emissions without causing any confusing 

distortions: 

(CO2/Pop) = (CO2/E) x (E/GDP) x (GDP/Pop) 

When appropriate, other variables involved in this paper are also measured on a per capita basis. Using 

the components of this equation, regression analysis can reveal the possibility of an EKC existing with 

regard to per capita carbon dioxide emissions in the U.S. 

 One key distinguishing factor of this study is its organization based on time and its tests for 

structural change. In the initial research phase, it was discovered that the state-level GDP data reported 

by the Bureau of Economic Analysis (BEA) underwent a change in classification methodology between 

1997 and 1998 that casts doubt on the appropriateness of combining pre-1997 data with later periods. 

The BEA has recommended not splicing these data together due to this discontinuity, as it could distort 

analysis of changes through time. Furthermore, the Federal Energy Regulatory Commission (FERC) 

introduced new regulation in late 1996 that made the U.S. electricity market considerably more open to 

competition, which could drive structural changes between periods. Consequently, this paper departs 

from the conventional approach of splicing these data and instead conducts two regressions for each 

dependent variable. One regression period examines data from 1990-1997, while the other includes 

data for 1998-2010. If results are consistent between the two periods for each model and there is no 

detection of structural change, it adds a new degree of reliability to the insight gained from the 

modeling process. If structural change is detected, it calls for a new way of looking at these periods. 

 The econometric analysis in this paper includes variables that have been designed to allow more 

direct and practical conclusions from the modeling process compared to prior studies, and some 

demographic variables are included as well. Energy resource endowment data were compiled in an 

especially meticulous manner and aggregated to allow a direct look at the relationship between 
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resource endowments and per capita emissions. Here, data for coal, crude oil, liquid natural gas, and dry 

natural gas reserves (rather than production) are aggregated based on the carbon dioxide emissions 

their consumption produces.  Each fuel type is converted to million metric tons of CO2 embodied in their 

possible consumption, using individual specific conversion ratios. The result is an overall measure of fuel 

reserves that controls for differences in emission intensity between fuel types, allowing a direct 

interpretation of the link between fuel reserves and emissions levels in a state. In addition, nuclear 

power capacity is included with hydropower capacity to produce a wide-ranging clean fuel variable. 

 This paper also addresses the possibility that household energy consumption may vary with age 

due to behavioral differences among people in different stages of life. The proportional age distribution 

of each state’s population is thus included in econometric analysis. Overall, the goal of this paper is to 

discover additional nuances to improve the understanding of carbon dioxide emissions levels in the 

United States in the face of potential structural change, and to determine whether an EKC relationship 

exists for consumption-based carbon dioxide emissions as opposed to production-based emissions. The 

economics of energy use is likely to continue to grow in importance for many years in the midst of 

changing natural and political environments. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Environmental Kuznets Curves and Carbon Dioxide Emissions 

 Joseph E. Aldy of Harvard University’s Department of Economics has produced substantial 

research on factors affecting state-level carbon dioxide emissions and the associated Environmental 

Kuznets Curves (EKCs). He acknowledged that EKCs in most cases do not apply to carbon dioxide as a 

pollutant, due to its barely detectable presence (Aldy, 2005a). However, he suggests that the 

relationship between emissions and income may nevertheless exhibit essentially the same inverted U-

shape to reflect structural changes in an economy and changing directions of net electricity trade. For 

example, states with growing per capita incomes are likely to move from agriculture to manufacturing to 

services, with an inverted U-shaped curve due to differing emissions intensities of these economic 

activities. With his state-level 1960-1999 data set, Aldy found evidence that “consumption-based EKCs 

peak at significantly higher incomes than production-based EKCs, suggesting that emissions-intensive 

trade drives at least in part the income-emissions relationship” (1). Aldy’s findings that temperature 

extremes and coal endowment have been positively associated with state CO2 emissions inspired this 

paper’s inclusion in the regression analysis of heating degree-days (HDDs) and cooling degree-days 

(CDDs), which were both employed by Aldy, and historical fuel endowment data (also employed by Aldy, 

but included here in more specific and direct measurements).  

In this thesis, calculation of production- and consumption-based emissions estimates is done the 

same way as Aldy, subtracting emissions embodied in exports (estimated using the exporting state’s 

average electricity carbon intensity to convert to emissions) from production to calculate consumption-

based emissions for net exporters and adding emissions embodied in imports (calculated using the 

average carbon intensity of electricity imports) in the case of net importers. One attribute of Aldy’s 
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study that this paper improves upon is his econometric methodology; Aldy chose a feasible generalized 

least squares (FGLS) approach to correct for cross-sectional heteroskedasticity with a  one-year-lag 

autoregressive error structure, which has been shown in the literature to be a sub-optimal approach to 

such error adjustments with panel data sets. As will be discussed later in the literature review, a more 

reliable approach is to use panel-corrected standard errors (PCSE) in this context. 

One paper examined historic international emissions distributions and forecast future 

distributions to look for evidence of future per capita emissions convergence (Aldy, 2005b). Important 

for our analysis, Aldy also explained some of the shortcomings of EKC regressions and models in 

predicting future distributions of emissions.  While Aldy finds through graphical analysis that “the EKC 

yields ambiguous conclusions about convergence during the transition to the steady state,” he does not 

dispute the conceptual relationship between per capita emissions and per capita income for a single 

cross-sectional entity (13). Aldy acknowledges the importance of understanding factors contributing to 

future levels of emissions and their relative distribution. He adds that a major shortcoming of EKCs in 

this context is that “empirical EKC regressions may not appropriately estimate long-run emissions 

distributions especially if factors such as trade in energy-intensive goods are important, as appears to be 

the case in work on the U.S. states” (16). This paper’s intimate dealings with trade-adjusted carbon 

dioxide emissions attempts to correct for this shortcoming while also identifying the impacts major 

socioeconomic characteristics have on these emissions levels and their direction of flow, the importance 

of which Aldy seemed to suggest for further research. 

A third paper looked at U.S. states to determine whether or not income convergence is 

sufficient for per capita CO2 emissions convergence to take place (Aldy, 2006). This paper also does 

important work in comparing production- and consumption-based per capita CO2 emissions among the 

states, using these measures (along with per capita income) to test for convergence. Aldy claims that, 
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because per capita incomes in the U.S. states have been converging over the past century, he could 

examine the states to determine whether per capita emissions converge because of this income 

convergence. The novel aspect of Aldy’s paper was his accounting for emissions-intensive trade to 

produce a measure of consumption-based emissions for testing. Aldy “converted energy consumption to 

CO2 emissions using national sector- and fuel-specific emissions factors provided by EIA” (3). Although 

this paper uses an average carbon-intensity approach, the spirit of the calculation is the same as that 

employed by Aldy. Aldy found that production-based CO2 emissions have been diverging in the midst of 

economic convergence in the U.S., while “the consumption CO2 measure does appear to be converging 

in a stochastic sense” and “the different distributional dynamics between production emissions and 

consumption emissions reflect the effect of increasing interstate electricity trade over time” (14). 

Analysis herein is guided by these revelations while simultaneously expanding upon this conceptual 

knowledge base. 

One previous study is particularly helpful in providing a solid overview of the theoretical and 

empirical underpinnings relating to the possibility of EKCs occurring with regard to certain types of 

pollutants (Dinda, 2004). In the study, Dinda recalls that some of the existing literature on the EKC 

echoes the assumed graphical relationship and, in general, claims, “economic growth may be a 

precondition for environmental improvement” (433). The survey recalls theory that suggests a lack of 

environmental awareness and clean technologies at low levels of economic development, which 

supports the initial portion of the EKC curve. The falling pollutant portion of the EKC curve has been 

attributed to a variety of actions that can arise after a threshold level of per capita income is reached, 

including the emergence of information-intensive industry, increased environmental awareness, 

environmental regulations, cleaner technology, and expenditures relating to environmental 

improvement (when sufficiently high incomes indicate that such expenditures are affordable). Dinda 

also acknowledges the importance of trade, albeit in an international context, writing “the pollution 
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from the production of pollution-intensive goods declines in one country as it increases in other country 

[sic] via international trade” (436). The trade adjustment for carbon dioxide emissions levels in the 

United States is one way of responding to this trade effect to accurately measure carbon footprints of 

cross-sectional entities. 

In terms of empirical results, Dinda’s paper finds that a variety of pollutants empirically exhibit 

the inverted U-shape of the EKC, while air pollutants that have “little impact on health”  fail to show any 

empirical evidence of the curve (441). Dinda goes further in specificity, stating “both early and recent 

studies find that the global pollutants (such as carbon dioxide emissions) either monotonically increase 

or decrease as income grows” (441). According to Dinda, this is likely due to CO2’s nature as a pollutant 

with indirect impact and the fact that it is a global environmental indicator rather than a local one (442). 

Inclusion of additional variables and adjustment for trade in the level of emissions could offer different 

conclusions, however. Thus, our trade adjustments and our attention paid to the multi-variable Kaya 

equation may contribute to a better-fitting model with regard to per capita carbon dioxide emissions. 

Earlier literature more generally examined the relationship between economic growth and 

carbon dioxide emissions (Holtz-Eakin and Selden, 1995). The paper leveraged a global panel data set to 

estimate the relationship between per capita income and emissions and to forecast future global 

emissions. One major conclusion of the paper was recognition of a “diminishing marginal propensity to 

emit (MPE) CO2 as economies develop,” a result that was more detectable when including a time series 

element to the econometric analysis rather than using only cross-sectional data (0). Holtz-Eakin and 

Selden’s paper also notes the inverted U-shaped relationship between per capita income and some 

pollutants not including carbon dioxide while emphasizing, like Dinda, the “significant health and 

environmental effects” characteristic of these pollutants (3).  
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Holtz-Eakin and Selden, however, acknowledge the possibility of a similar relationship occurring 

in the case of carbon dioxide. They acknowledge that carbon dioxide’s global nature and its high 

abatement cost make it possible to exhibit a different relationship. Yet, they also argue that greenhouse 

gases are often “produced jointly with other pollutants” and therefore “emissions of greenhouse gases 

may fall as a byproduct of other abatement efforts” (4). With their panel data econometric analysis, 

their paper finds the diminishing MPE along with economic growth. Holtz-Eakin and Selden leave out a 

number of exogenous variables in their model, that they acknowledge might be worthwhile to include; 

several of these mentioned variables are employed in this thesis paper, including climate, geography, 

resource endowments, and others. Furthermore, Holtz-Eakin and Selden’s paper omits the emissions 

embodied in imports and exports, admitting that “trade-adjusted fossil fuel consumption estimates 

would be preferable,” an objective met in this thesis paper through the trade adjustment calculation 

described later (9). 

Additional work also contributed to the CO2-GDP relationship literature with analysis on an 

international time series cross-section data set (Tucker, 1995). Like the model presented in this thesis 

paper, Tucker’s regression analysis included a squared term for per capita income (in addition to the 

simple per capita income variable) as an explanatory variable in his per capita emissions model. As 

Tucker eloquently puts it, “changes in GDP per capita squared measures the acceleration or deceleration 

of changes as income increases. If this term is negative, it will reflect declining marginal increases in 

emissions as GDP across countries increases” (219). Indeed, this squared term was found to be negative 

and significant in many of Tucker’s regressions. 
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2.2 Decomposition Analysis and Energy Intensity 

As was discussed in the introduction, the Kaya equation introduces multiple components that 

determine per capita carbon dioxide emissions, one of which is known as energy intensity. A relevant 

paper in the literature looks at how energy intensity in the United States has changed over time 

(Metcalf, 2008). Furthermore, the paper looks for empirical changes that can reveal specifically what led 

to these decreases in energy intensity. Essentially, Metcalf conducted an econometric analysis of energy 

intensity over time to see if efficiency improvements or changes in the mix of economic activity (both 

constituents of the decomposition analysis equation for energy intensity) were more substantial in 

affecting energy intensity over a thirty-year period.  

Metcalf also sought to uncover the drivers of changes to these individual efficiency and activity 

components. He found that rising per capita income and increases in energy prices were significant 

drivers of decreased energy intensity, mostly in an efficiency sense (e.g. consuming fewer Btus to 

accomplish a given task) rather than through changes in the mix of economic activity. In the paper, 

Metcalf applied decomposition analysis to energy intensity, breaking it down mathematically into 

efficiency and activity components. This provides a precedent for the type of decomposition analysis 

carried out in this thesis paper, in addition to the regression analysis of constituent parts. Here, we 

provide a more comprehensive combination of decomposition and regression analysis by including three 

constituent components of per capita carbon emissions, rather than just one: energy intensity, 

electricity trade effects, and carbon intensity. 

Additional demonstration of relevant decomposition analysis is also provided in another recent 

paper (Vinuya et al, 2009). The model used by the authors analyzes state-level CO2 emissions changes 

from 1990 to 2004, decomposing the changes into emissions per unit of fossil fuel, share of fossil fuel in 

total energy consumption, energy intensity, gross state product per capita, and population. The paper 
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also attributed gains in energy efficiency, among other effects, to reduction effects in carbon dioxide 

emissions.  Declines in energy intensity were also said to play a large role in emissions reduction, with 

the authors encouraging deeper research on energy intensity specifically in future studies. 

2.3 Panel-Corrected Standard Errors 

A critical portion of the econometric techniques employed in this thesis were influenced by a 

helpful quantitative study (Beck and Katz, 1995). Beck and Katz showed with evidence from Monte Carlo 

experiments that the generalized least squares (GLS) approach, which was a conventional strategy for 

this particular type of data in many prior studies, tended to underestimate variability by 50% or more in 

many cases.  Beck and Katz argue that, due to the large number of parameters in the error process of 

time-series cross-section (TSCS) models, the error process cannot really be known, in contrast to the 

assumption of the feasible generalized least squares (FGLS) approach; therefore, in these cases, FGLS 

estimation leads to understating the true variability of estimated coefficients’ standard errors. In this 

sense, confidence is unrealistically high when FGLS is employed for TSCS models. 

Beck and Katz’s proposed method retains OLS estimates of model parameters but replaces their 

standard error estimates with panel-corrected standard errors (PCSE), the accuracy of which was 

supported by additional Monte Carlo analysis. The PCSE method was shown to perform very well, even 

in cases of highly complex error structures. Beck and Katz also show that the Parks FGLS method would 

not sensibly apply to this thesis due to the structure of the data set; they find that “it is impossible to 

use the Parks method if the length of the time frame, T, is smaller than the number of units, N” (644). In 

light of this analysis, this paper uses the PCSE approach when necessary to correct for nonspherical error 

structure. 
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2.4 Combination of Decomposition Analysis with EKC Analysis for Trade-Adjusted CO2 Emissions 

 Many fundamental aspects of this paper – the panel data structure, the PCSE estimation 

methodology, the EKC exploration, and others – are inspired by a recent master’s thesis (Subramaniam, 

2010). In many ways, this paper is a spiritual successor to Subramaniam’s study. Subramaniam 

performed decomposition analysis and regressed energy intensity, carbon intensity, and electricity trade 

effects using PCSE in large part to determine the elasticities of these components with respect to 

income. Evaluating these elasticities at their minimum, mean and maximum values, she showed the 

point at which each elasticity became negative. Summing up all the constituent elasticities, 

Subramaniam found evidence of an EKC curve from 1990 to 2007, with just a few high-income states 

having surpassed the threshold at which additional per capita income gains bring about a reduction in 

carbon dioxide emissions. Subramaniam utilized trade-adjusted – or consumption-based – emissions in 

her study, just as this paper does. 

 This paper contributes more data, more detailed natural resource endowment variables, and 

inclusion of demographic variables for the energy intensity regression. Importantly, this study also 

recognizes the temporal break in the BEA’s public GDP data as well as its warning not to combine these 

data for analyses through time. Finally, this paper introduces the idea that changing electricity market 

mechanisms in the mid-1990s creates the possibility of structural change that could necessitate 

estimating separate regressions for periods before and after these regulations were established. The 

analysis herein will check whether Subramaniam’s detection of an EKC with respect to carbon dioxide 

emissions can be upheld in the context of these market changes and the data discontinuity. This paper 

also compares the income-emissions relationship between production- and consumption-based CO2 

emissions. 
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2.5 Age Distribution and Energy Use 

A new element to the econometric analysis in this paper with regard to energy intensity is the 

influence of age demographics. Inclusion of age group variables takes inspiration from prior work 

(O’Neill and Chen, 2002). O’Neill and Chen suggest that, in addition to direct effects, “aging could also 

have indirect impacts through an associated decline in household size and consequently a loss of 

economies of scale in energy use at the household level,” leading to possible increases in per capita 

energy use (53). Other factors affected by age that might change energy use include income and labor 

force status. The authors also point to possible cohort effects (characteristics of people born in the same 

period), which can be estimated using the age range variables in our energy intensity regression model. 

In addition, other studies have found ample reason to consider population by age group as a relevant 

demographic variable that could affect energy consumption and carbon dioxide emissions; some have 

even suggested that aging leads to lowered transportation energy demand but higher residential energy 

demand (Dalton et al, 2006; Hardee and Jiang, 2010). Figure 1.1 depicts mean per capita energy 

consumption by age of householder (or head of household) for 1993 and 1994. Although the plausibility 

of some spikes in this figure could be questioned, one can see that there is clear variation with respect 

to age. 
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Figure 1.1: Mean Per Capita Energy Consumption by Age of Householder 1993-94 

Source: Chen, Belinda S. and Brian C. O’Neill, “Demographic Determinants of Household Energy Use in the United States,” 
Methods of Population-Environment Analysis, A Supplement to Population and Development Review, 2002, Web, figure 1. 
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CHAPTER 3 

STATE-LEVEL CO2 EMISSIONS 

3.1 Production-Based Emissions and Population Change 

 While absolute emissions are important from the perspective of climate science, per capita 

emissions are especially indicative of an overall state’s carbon footprint that results from the structure 

of its economy and its policies. Examining emissions growth in conjunction with population growth 

yields the most accurate glimpse of each state’s emissions trajectory over time due to its specific 

characteristics (states with higher populations are obviously predisposed to higher emissions due to 

more total consumption). In some cases, absolute emissions have actually declined; from figure 3.1, this 

appears to be the case for several states including New York, Delaware, and Washington, D.C. between 

1990 and 2010. In the case of Washington, D.C. it seems to have helped the city to go through 

essentially a net zero change in population, while it seems particularly striking that Delaware, New York, 

and a handful of other states were able to reduce absolute emissions even in the midst of a net gain in 

population. This is, of course, ignoring the possibility that electricity and other goods could have been 

imported from elsewhere, thereby giving rise to emissions not observed at home. 

 The percent change in total emissions is plotted together with percent change in population 

growth in figure 3.1, separated by a 45-degree line. States falling below this line have undergone 

emissions growth at a slower pace than population growth, indicating a drop in CO2 emissions per 

capita. In total, there were 36 states with declining emissions per capita from 1990 to 2010, while 15 

states experienced increases in per capita emissions. Iowa had the largest gain in per capita emissions 

with a 35% gain, while Delaware had the largest decline in emissions per capita at -49%.  It is visible from 

the graph that West Virginia experienced declines in both absolute and per capita emissions (-3% and -

6%, respectively) from 1990 to 2010 despite consistently leading the nation in carbon dioxide emissions 
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embodied in electricity exports. It will be apparent later that, when considering emissions in trade-

adjusted amounts, West Virginia’s decline in emissions was even greater. Indeed, this graph shows that 

population growth can be associated with growth in emissions, but that loose association does not tell 

the whole story. 
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Figure 3.1: Percent Change in Total Production-Based CO2 Emissions vs. Percent Change in Population, 

1990-2010 
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3.2 Discussion and Comparison of State Production- and Consumption-Based CO2 Emissions 

 The traditionally reported method of carbon dioxide emissions, with its basis on production 

within a state’s geographic borders, often does not fully account for the emissions incurred because of 

consumption within a given state. Consequently, some states’ reported per capita emissions actually 

underestimate the emissions resulting, however indirectly, from populations within them. Electricity 

trade is a large source of this discrepancy; often, states with relatively high population density, high 

income, or low reserves of conventional fuels import electricity from other states. The emissions 

resulting from the electricity produced elsewhere can be said to result from activity within the importing 

states, rather than those that actually produce the electricity. The difference between these two 

measures can be quite striking. 

Figure 3.2: Percentage Difference Between Adjusted and Unadjusted Emissions Per Capita 

 

1990       2010 

 Positive percentage values in Figure 3.2 above indicate states that have higher adjusted 

emissions per capita than unadjusted emissions; that is, when emissions per capita is transformed from 

a production-based value to a consumption-based one, emissions figures go up. A value of 200% in a 

map above indicates a state that consumes twice as much in carbon dioxide as the amount produced at 

home. It is clear that, in 1990, Wyoming’s consumption-based emissions figure is over 50% lower than 

the amount emitted within the state. Wyoming is a significant electricity exporter to states such as 

California, whose consumption-based emissions per capita were between 1% and 25% higher than its 
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production-based emissions in both 1990 and 2010. These discrepancies of course fluctuate over time. 

Virginia’s consumption-based emissions rose to over 25% greater than its production-based emissions 

between 1990 and 2010, so it is clear that Virginia began importing proportionally more electricity 

throughout that period. These complex geographical and temporal fluctuations make this situation well 

suited for econometric analysis that involves cross-section time-series data. 

3.3 Delineation of Periods; Electricity Deregulation and Structural Change in the Mid-Nineties 

 Apart from the changing nature of the income data in this study, there exists additional 

motivation to split analysis into two periods. The Federal Energy Regulatory Commission (FERC), which 

regulates prices and access concerning interstate electricity transmission, issued new regulations in the 

mid-1990s that considerably changed the nature of electricity trade in the United States, which has a 

direct bearing on the economic forces surrounding trade-adjusted carbon dioxide emissions. 

Transmission has historically behaved like a natural monopoly, because there has usually only been one 

regional owner or operator with access to the necessary infrastructure for electricity delivery. Owners of 

these transmission systems have, for the most part, also owned generation assets. This relationship 

between generation and delivery assets has made it difficult for new competitors to enter the electricity 

generation market (FFC 7). 

 These strong barriers to entry caused high price variability because buyers and sellers could not 

behave as freely as in typical markets. In 1996, the FERC issued Order 888 and Order 889 in order to, 

according to the Federal Facilities Council (FFC), “speed the progress of the electric utility industry 

toward a competitive structure” (FFC 7).  These orders required all public utilities to file tariffs to provide 

open transmission access in a non-discriminatory manner to all wholesale users, set up a framework for 

stranded cost recovery (with regard to debt or other obligations resulting from existing infrastructure 

investment prior to regulatory change), established procedures and guidelines for sharing information 
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about transmission systems, and implemented various additional guards against discrimination, among 

other things. Transmission owners also had an information monopoly in the past, with private access to 

essential technical data; for example, transmission owners could refuse access to competing generation 

suppliers claiming no available capacity, while those seeking access had no information of their own to 

verify such claims. Order 889 established the Open Access Same-Time Information System (OASIS), an 

online database that transmission owners are required to maintain, that makes more of this crucial 

information available to interested parties. Utilities were required to post information concerning total 

transfer capability and available transfer capability for the next hour, day, and week (FFC 10). Requests 

for transmission service as well as responses to these requests were required to be made through the 

OASIS, keeping such interactions public and less vulnerable to preferential bias. The OASIS and related 

market changes were planned for implementation in late 1996. Given that this system likely took some 

time to become widely adopted, our break in time between 1997 and 1998 is appropriate to test for 

structural change beginning in this new era of regulation. 

 In addition to establishing the OASIS around this time, the FERC began to require “functional 

unbundling.” This requirement was designed to reduce unfair market advantage that resulted from the 

vertically integrated structure of most major transmission owners. This effectively split vertically 

integrated utilities into relatively separate power services and transmission services, with the 

requirement that each utility obtain transmission from itself with the same priority and under roughly 

the same terms as other market participants. Advantages such as being first in line for available service 

or unfair price deals were prevented through mandatory separation of utilities’ marketing functions and 

transmission functions, which were thereafter required to “deal with each other at arm’s length” (FFC 

9). 



34 
 

Public utility transmission owners were required to provide transmission services to other 

market participants in roughly the same way it provided for itself; furthermore, the utilities were 

required to provide all transmission services they were capable of providing, rather than capping 

transmission services at the supply they needed only for themselves. In addition, all wholesale 

customers became eligible for transmission under a FERC tariff, including foreign utilities, as long as they 

were willing to provide similar market access to U.S. producers. This invited additional market 

participation, further smoothing price variability across the country and increasing competition. 

Transmission owners were also required to gain their information in the same way as everyone else – 

through OASIS – rather than passing information from their transmission operation branch to the 

wholesale marketing portion of the utility; such an exchange would now be considered unfair provision 

of inside information. It is clear that these new regulations were a game changer for the U.S. electricity 

market, and the splitting of this study’s regressions allow empirical testing of the consequences. 
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CHAPTER 4 

GROWTH DECOMPOSITION ANALYSIS, DESCRIPTION OF THEORY, AND TRADE ADJUSTMENT 

CALCULATIONS 

4.1 Review of Carbon Emissions Identity 

 Decomposition of carbon dioxide emissions is inspired from the Kaya equation, which was 

modified in the introduction to reflect per capita emissions: 

(CO2/Pop) = (CO2/E)1 x (E/GDP) x (GDP/Pop) 

Whereas the usual reporting method conveys production-based carbon dioxide emissions, a method 

that is consumption-based in nature yields the more accurate carbon footprint measurement. The 

difference between the two is due to interstate electricity trade, such that the traditional method 

reports larger emissions measurements for net electricity exporting states and reports smaller figures 

for net importers compared to the emissions resulting from their consumption. Fortunately, the 

necessary calculations for obtaining the consumption-based emissions estimates are straightforward. 

Adjustments depend on emissions embodied in each state’s net electricity exports or imports. 

First, carbon emissions embodied in state electricity exports (CX
it, with i standing for state and t 

for year) must be approximated. This is accomplished with the following formula: 

CX
it = Xe

it x [Ce
it / Ee

it ] 

 

                                                             
1
 The “E” above refers to total energy consumption as reported by the EIA; rather than reporting this consumption 

as a sum of different end-use types such as transportation, commercial, industrial, and residential, this amount 
was calculated by summing the consumption of each fuel type – including consumption of fossil fuels, nuclear 
power electricity, renewable energy, U.S. electricity imports, and net interstate electricity sales. 
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Here, Xe
it stands for net exports of electricity in Btus, Ce

it represents carbon emissions from total 

electricity generation, and Ee
it stands for the electric power sector’s energy consumption in Btus in each 

state (interpreted as the state’s electricity generation in Btus). Now the trade-adjusted emissions figures 

for net exporting states can be determined simply by subtracting the emissions embodied in electricity 

exports CX
it from each state’s total carbon dioxide emissions (from all sources), Cit: 

 

CT
it  = Cit –  CX

it 

 

The above formula yields the trade-adjusted measure of carbon dioxide emissions (CT
it) from states that 

are net exporters of carbon dioxide based on interstate electricity trade. 

For net importers, the process is slightly different. Because the Energy Information 

Administration (EIA) does not track where imports are coming from in the case of states that are net 

electricity importers, the emissions approximation cannot use a state-specific ratio as in the case of 

exports. Therefore, a national-level ratio (average) is used to approximate the amount of emissions 

present in each Btu of imported energy. Intuitively, one can think of this approximation as if electricity is 

sent to a central node in which all traded electricity is mixed together, taking on one uniform level of 

carbon dioxide per Btu of electricity. This method also ensures a trade balance in carbon dioxide; 

emissions of exports equals emissions of imports.To obtain this overall ratio for a particular year, it is 

necessary to first sum up all the values of CX
it from each exporting state and derive the total amount of 

carbon emissions embodied in electricity exports, ∑i C
X

it. Dividing this by the total exports of electricity in 

Btus, ∑i X
e

it, derives the overall average emissions per Btu in interstate electricity exports: 

 

∑i C
X

it / ∑i X
e

it 
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Then, this average ratio can be multiplied by a state’s net imports of electricity in Btus, Ie
it, to 

approximate the carbon emissions embodied in imports, CI
it (for each net importing state only): 

 

CI
it = {∑i C

X
it / ∑i X

e
it} x Ie

it 

 

Finally, the trade-adjusted carbon emissions figures can be calculated for net importing states by simply 

adding the emissions embodied in each state’s electricity imports to their reported “production-based” 

total carbon dioxide emissions (from all sources), Cit. The following formula represents this final step: 

 

CT
it  = Cit +  CI

it 

 

Now one can see the differences between trade-adjusted (consumption-based) and the traditionally 

reported production-based emissions figures, which can be substantial. 

 There is a way to express trade-adjusted emissions figures such that a common notation can be 

used for both net exporters and net importers. This common notation can be achieved with the 

expression 

 

CT
it = (1 + S) x Cit, 

 

where S is equal to a state’s share or percentage of Cit when expressed in a ratio along with net imports 

CI
it. This net import variable is defined such that it is negative in the case of a net exporter, equal to the 

negative of the net electricity exports. While sharing a common notation, we can also think of this 

intuitively as two similar equations: 
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(1 + S) = 1 – (CX
it / Cit ) 

 

for net exporters, and 

 

(1 + S) = 1 + (CI
it / Cit ) 

 

for net importers. Notice that (1 + S) < 1 for net exporters while (1 + S) > 1 for net importers. This is 

because, for net importers, consumption-based emissions are greater than the production-based 

figures; meanwhile, net exporters have lower consumption-based emissions than the emissions 

resulting from production.  

The (1 + S) variable can be particularly handy in several cases. For example, in constructing a 

regression equation to analyze or predict trade-adjusted emissions, a natural logarithm can be applied 

to turn the formula into a simple sum that can be used to obtain intuitive parameter estimates. In 

addition, it is rather easy to see that a larger value of (1 + S) will reflect regions in which electricity 

imports make up a larger amount relative to total emissions produced within geographical boundaries. 

In our analysis, we were able to rank regions by (1 + S) and observe that Washington, DC was 

consistently at the top. This fueled speculation that certain attributes of the District of Columbia – such 

as relatively high per capita income and population density with small land area – likely drove relatively 

high interstate electricity imports flowing into the area. 

Orienting our per capita Kaya equation toward trade-adjusted emissions, the identity becomes 

(CO2
T/Pop) = (CO2

T/E) x (E/GDP) x (GDP/Pop) 

which, when we substitute the formula for trade-adjusted emissions, becomes 

(CO2
T/Pop) = (CO2

P/E) x (1 + S) x (E/GDP) x (GDP/Pop) 
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with the P superscript denoting production-based emissions. This can be rewritten in turn as 

CO2
C = CI x (1 + S) x EI x Y 

where CO2
C is consumption-based per capita emissions, CI is carbon intensity, (1 + S) is the trade 

variable, EI is energy intensity, and Y is per capita income. Taking the natural logarithm of this formula 

results in a convenient sum: 

lnCO2
C = lnCI + ln(1 + S) + lnEI + lnY 

If one were to simply regress lnCO2
C on the right-side variables, the effect of income on per capita 

emissions would be simple; its influence would not be detectable in a way that leads to the inverted U-

shape in a typical EKC. However, as Subramaniam shows in her 2010 thesis, such a shape would be 

detectable if one were to treat each of these right-side variables as functions of income themselves – 

such that: 

lnCO2
C = lnCI(Y) + ln[(1 + S)(Y)] + lnEI(Y) + lnY 

The derivative of this equation with respect to income yields the following, which represents the total 

elasticity of consumption-based emissions with respect to per capita income: 

dlnCO2
C/dlnY = [∂lnCI/∂lnY]dlnY + [∂ln(1-S)/∂lnY]dlnY + [∂lnEI/∂lnY]dlnY + dlnY 

The following must hold at some observed level of income for an inverted U-shape to describe the 

income-per capita emissions relationship: 

[∂lnCI/∂lnY] + [∂ln(1-S)/∂lnY] + [∂lnEI/∂lnY] < -1 

Thus it is possible to explore the existence of such a relationship through growth decomposition analysis 

and regression analysis of each of the components (which obtains income elasticity values). This paper 
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aims to see if these results are obtained for consumption- and production-based emissions in the 

presence of new data and variables, and while accounting for regulation-driven structural change 

between periods. 

4.2 Growth Decomposition and the Log-Log Specification 

 Natural logarithms can be subtracted from one another - the “before” quantity from the “after” 

quantity – to give rise to what some call a “platonic change” between the two (Kimball 2012). In this 

sense, one can take the identity we have set up and simply subtract the initial quantities from the later 

ones to display an equation that expresses the percent change between two periods, paying attention 

to all individual components of the carbon dioxide emissions equation: 

ln(CO2t) – ln(CO20) = [ln(CIt) – ln(CI0)] + [ln(EIt) – ln(EI0)] + [ln(Yt) – ln(Y0)] 

where the initial year is marked with a 0 subscript and the later year is marked with subscript t. This 

provides a simple way to examine the relative proportions in which each component contributes to an 

overall change in carbon dioxide emissions. Figures 4.1, 4.2 and 4.3 show the relative contributions of 

changes in carbon intensity, electricity trade effects, per capita income, and energy intensity to per 

capita emissions. Each color-coded section shows the individual contribution of each effect, and the 

total height equals the sum of the total positive or negative percent changes. For example, Connecticut 

from 1990 to 1997 experienced positive effects from a 24% increase in trade effects and a 13% increase 

in per capita income, totaling a 37% positive influence on emissions. This is, however, not the net 

percentage change; each figure shows both positive and negative effects (Connecticut showed declining 

energy intensity in this period).  
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In the 1990-1997 period, growth in per capita income was the main driving force of growth in 

per capita emissions in almost all states. There are a few striking outliers, though; Rhode Island’s 

positive influences came mainly from an increase in carbon intensity, while Connecticut’s main positive 

influence arose from an increase in electricity imports. This makes intuitive sense, as Connecticut is a 

relatively small state with a dense population and generally high income – which makes it a very sensible 

candidate as an electricity importer. Higher incomes denote the ability to pay, while dense populations 

usually indicate a general preference to place electricity-generating infrastructure elsewhere. Alaska’s 

gains came almost entirely from increases in energy intensity – not too surprising, considering the fact 

that Alaska’s relatively extreme climate includes the need to use electricity for heating households. 

 Given that policy controls generally do not aim to lower incomes, it is helpful to examine the 

components that can reasonably be controlled should it become a serious objective to lower per capita 

emissions. On a national level, the distribution of emissions should not be a major concern because CO2 

is a nonlocal pollutant; therefore, electricity trade effects might also become a lower priority than the 

other components. That leaves carbon intensity and energy intensity. From 1990 to 2004, energy 

intensity appears to have played a major role in declining influences on per capita emissions, which 

suggests that electricity has been used more efficiently over the years. It appears that carbon intensity 

has had moderate effects in both directions across all states; this effect deserves further study as 

another possible policy lever. 

 The picture looks a bit different when viewed in the context of time from 2004 to 2010. Per 

capita income growth plays a positive role in fewer states and to a lesser extent, while it also has a 

downward effect in many states for this period; this is likely due to the financial crisis and subsequent 

slow rate of economic growth starting around early 2008. For the most part, energy intensity and carbon 

intensity both had negative influences on per capita carbon emissions throughout this time period; this 
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suggests hope for future policy initiatives that aim to continue or possibly intensify this downward 

trend, especially when per capita income returns to pre-recession growth rates. 
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CHAPTER 5 

ECONOMETRIC SPECIFICATION AND DATA 

5.1 Brief Description of Data 

 Data for this study came from a variety of sources (mainly federal agencies), and often required 

some manipulation or estimation for aggregation purposes. The following section provides a brief 

description of the data compiled for regression analysis. For additional details on sources, the data 

gathering process, and variable construction, see Appendix 1. 

CO2 Emissions, Trade Balance, and (1+S) 

 Data for total (energy-related) state-level carbon dioxide emissions from all sectors were 

downloaded in January 2013 from the Energy Information Administration’s website.  Construction of the 

variable (1+S) required these data along with interstate electricity trade data (reporting billion Btu of net 

interstate sales of electricity) and electricity sector carbon dioxide emissions, both of which came from 

the EIA. In the manner previously described, electricity sector emissions were used in conjunction with 

the EIA’s state-level energy production data to estimate the average amount of carbon dioxide released 

per Btu of importers and exporters. Then, these averages were applied to trade balance data to adjust 

total carbon dioxide emissions and to construct the (1+S) variable for each state. 

Carbon Intensity 

Carbon intensity, measured as the general amount of carbon dioxide released per Btu of energy 

consumed in each state, was created from two different data series. The previously discussed all-sector 

CO2 emissions data were divided by total state energy consumption as reported online by the EIA 

(originally reported in billions of Btu). Giving an indication of the degree to which “dirty” fuel is used in 

each state, carbon intensity was used as another dependent variable. 
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Energy Intensity 

 Energy intensity, or total energy consumed per chained 2005 dollar of real gross 

domestic product, was another state-level dependent variable. This variable was gathered online 

directly from the EIA. Energy intensity can be said to represent how efficient a state uses its energy with 

respect to economic activity, and can even show similarity to a representation of energy demand. 

Population Density 

 Population density, expected to have a positive effect on (1+S) due to a preference of 

concentrated populations to locate energy generation elsewhere, was created from two data series. The 

population component was available online from the Bureau of Economic Analysis (BEA). Population 

figures were divided by time-invariant state land area figures. State land area information was gathered 

online from the U.S. Census Bureau. 

Per Capita Income 

 Per capita income, an essential component of income elasticity calculations, was created from 

two data series. Real GDP was gathered for construction, in addition to the previously discussed 

population data. GDP data came from the BEA website in the “Regional Data - GDP & Personal Income” 

section. GDP figures were deflated as necessary for comparability, such that the entire time series 

represented GDP in chained 1997 dollars. The change of industrial classification methodology between 

1997 and 1998 raises questions on the validity of bridging these data for a single time series. The details 

are provided in the data section of this paper’s appendix. 

Natural Resource Endowment Data 

 Natural resource endowment data were included to account for the likelihood that states will 

react accordingly to the fuel supplies they have in relative abundance – that is, they will leverage these 
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assets for economic gain in the form of exports and will have relatively more carbon intensive 

economies when fossil fuels are abundant. Two major variables were included to represent relatively 

carbon-intensive or “dirty” fuels (fossil fuel endowment) and the cleaner renewable sources (nuclear 

and hydropower). The latter variable is comprised of the sum of hydroelectric and nuclear nameplate 

capacity in each state in Megawatts, per capita. These data were gathered from the EIA’s website, 

summed together, and divided by the previously mentioned population data. 

Fossil fuel endowment data were treated as carbon dioxide emissions embodied in the supply of 

fuel. Construction of this variable started with collection of reserve data for coal, dry natural gas, liquid 

natural gas, and crude oil. All four reserve types were downloaded online from the EIA. Various 

conversion techniques were used to aggregate these endowment variables into one measure, utilizing 

formulas from the EIA and Iowa State University. Much more detail concerning this process is provided 

in the data section of the appendix. 

NERC Regional Dummy Variables 

 Regional dummy variables were employed to allow for regional fixed effects.  Included were the 

eight regional entities that work with the North American Electric Reliability Corporation (NERC) to 

ensure power supply reliability and manage risk in North America. They include the Florida Reliability 

Coordinating Council (FRCC), Midwest Reliability Organization (MRO), Northeast Power Coordinating 

Council (NPCC), ReliabilityFirst Corporation (RFC), SERC Reliability Corporation (SERC), Southwest Power 

Pool Regional Entity (SPP), Texas Reliability Entity (TRE), and the Western Electricity Coordinating 

Council (WECC). All dummies were included in regressions with no penalty from a “dummy variable 

trap” because each state can be a part of more than one region. State dummies were treated as time-

invariant with the exception of Florida; Florida is treated purely as part of SERC until the year 1996 in the 

dataset, at which point it is treated as part of both FRCC and SERC due to an organizational change. 
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There is much regulatory complexity arising from the definition of these regional dummies, and future 

researchers would be wise to spend more time researching how they change over time. Such a process, 

however, is outside the scope of this study. The map below, Figure 5.1, was used to construct the state 

regional dummy variables. 

Figure 5.1: Map of NERC Regions 

 

Source: North American Electric Reliability Corporation, “NERC Regions” (2013): Web.  

  

Fossil Fuel Composite Price 

Annual real fossil fuel composite prices were incorporated into the analysis, gathered online 

from the EIA. The EIA derived these data by multiplying price per Btu by the total Btu content of the 

production of each fossil fuel, then dividing this accumulated value of total fossil fuel production by the 

accumulated Btu content of total production of fossil fuel. Among other forms, the natural logarithm of 

the five-year lagged moving average of the real fossil fuel composite price was used; that is, for 

example, the 1990 five-year moving average was calculated as the average real fossil fuel composite 
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price among the years 1985, 1986, 1987, 1988, and 1989. It was expected that this variable’s coefficient 

would reflect a negative influence on energy intensity. Future studies might benefit by using more 

detailed prices instead of a composite price; this price was at the national level and did not vary 

between states. 

State-Level Age Group Distribution 

Four age range variables are included in the energy intensity model. The ranges correspond to 

percentages falling between the ages of zero and 19, 20 and 39, 40 and 54, and 55 and over. The 40 to 

54 age range was dropped in the regression equation to serve as a base range. Counts of individuals in 

each age group were divided by population to construct the percentages, which are theorized to 

influence energy intensity as detailed in the literature review. The age group data is time varying, and 

the original counts were reported as of July 1st for each year. For 1990-1999, the estimates were 

computed by the U.S. Census Bureau using a demographic change model that accounts for birth and 

death rates as well as migration since the previous census date of April 1st, 1990. A similar methodology 

is used for 2000-2010 resident population estimates; the July 1st, 2010 value applies estimates of 

population change to the 2010 census count. While it does not explicitly say so in the metadata, it can 

be inferred that the 2000 census count used similar demographic change methods to estimate the 2000-

2009 values. 

Climate Variables: HDD and CDD 

 Data for heating degree days (HDD) and cooling degree days (CDD) were gathered from the 

National Climatic Data Center’s website. These figures represent cumulative degrees by which mean 

daily temperatures exceeded or dipped below a temperature threshold considered comfortable for 

humans. The expectation is that higher values of HDD and CDD represent increased climate variability 
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that drives additional energy demand. Consequently, they are both expected to show a positive 

influence on energy intensity. 

5.2 Electricity Trade Effect 

 As previously stated, three econometric regression models were examined to determine the 

multiple ways in which income affects overall consumption-based emissions. The data set used in 

analysis was comprised of fifty states and the District of Columbia from the year 1990 to 2010, totaling 

1,071 observations; 408 observations from 1990 to 1997 and 663 observations from 1998 to 2010. The 

first equation takes (1 + S) as the dependent variable; a large value for this variable indicates a positive 

influence on total trade-adjusted carbon dioxide emissions due to imports. The equation is specified 

thus: 

ln(1 + S)it = α1 + β1’X1it + γ11lnYit + γ22(lnYit)
2 + δ1lnPOPit + η2Rit + ε1it 

Where X1it is a vector of energy resource endowment variables, including carbon dioxide embodied in 

fossil fuel reserves (crude oil, liquid and dry natural gas, and coal) and renewable reserves, lnPOP is the 

natural logarithm of a state’s population density in a particular year, Y is a state’s per capita income, and 

R is a vector of the regional dummy variables (created from NERC regions). 

 The energy resource endowment variables in X are all expected to have a negative effect on 

(1+S) because, whether they come from fossil fuels or from renewable energy sources, abundance of 

resources makes it less necessary for a state to import electricity; a state is more likely to generate its 

electricity independently or even to export electricity, both of which lower (1 + S). Population density, 

conversely, is likely to have a positive effect on (1 + S), for the reason that states with denser 

populations typically have tighter regulations on electricity production. These processes generate 

additional carbon dioxide. The attentive reader will point out that carbon dioxide emissions alone are 
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unlikely to disturb population dense areas because CO2 is a global pollutant with no immediate local 

adverse effects. However, as Aldy and others have pointed out, electricity production is also associated 

with higher emissions of other, more local pollutants that can cause immediate adverse impacts to 

public health. Because these local pollutants would likely spur opposition, electricity is more likely to be 

imported in population dense states, thus raising (1 + S). The per capita incomes are included to test for 

the presence of an EKC curve, with a positive sign expected on the first coefficient and a negative one 

associated with the squared term. 
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5.3 Carbon Intensity Effect 

 Carbon intensity is a reflection of the fuel mix a state has employed to generate its energy. Just 

as it sounds, a fuel mix with higher carbon intensity typically leads to higher emissions of carbon dioxide 

(all else constant). I regress the natural logarithm of carbon intensity CI (measured in metric tons of 

carbon dioxide per billion Btu of total energy consumed) on a host of explanatory variables with the 

following equation: 

lnCIit = α2 + β2’X2it + γ21lnYit + γ22(lnYit)
2 + δ2lnPOPit + η2R + μ2Pit + ε2it 

The variables here are all the same as in the (1 + S) regression equation, with the exception of one new 

variable, P. This is the national composite price of fossil fuels. Although this price was included in various 

forms throughout regression analysis, its most prominent form was the lagged five-year moving average 

because states are expected to take some time to adjust their fuel mix in response to price changes. 

These adaptations are, in other words, not instantaneous. 

 Again, the coefficient for population density is expected to have a negative sign in this equation, 

due to the previously discussed pollutants often released in conjunction with carbon dioxide during 

fossil-fuel burning activities, which have localized adverse effects. These effects can be thought of as 

especially pernicious when taking place in densely populated areas due to the more concentrated effect 

on public health. Of course, the fossil fuel endowment variables are expected to have a positive sign 

here, whereas the renewable (combined hydro and nuclear) capacity variable will be likely to have a 

negative sign. The effect of an increase in P is also expected to be negative, especially as constructed 

when a state has ample time to respond to a trend of price increases. One key take-away from this 

regression and the others is the particular elasticity with respect to per capita income. Here, the 

elasticity is as follows: 
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dlnCIit / dlnYit = γ21 + 2γ22lnYit 

The value depends on the parameter estimates and the particular value of income. The elasticities with 

respect to income of all three regression equations will be examined jointly to determine whether an 

EKC curve exists for per capita carbon dioxide emissions in the United States. 

5.4 Energy Intensity Effect 

 Perhaps the most complex regression equation in this analysis is that for the energy intensity 

effect, measured by the number of Btu consumed in a state per dollar of real GDP (in 2005 dollars). The 

EIA provides a direct source for energy intensity data on their website, so no additional calculations 

were needed to construct this variable. The energy intensity effect can be said to represent energy 

efficiency because it represents how much “bang for the buck” each state gets out of its energy 

consumption. It is quite intuitive that high energy intensity is likely to lead to high carbon dioxide 

emissions, all else constant. The initial equation used in regression analysis is the following: 

lnCIit = α3 + β3’X3it + γ31lnYit + γ32(lnYit)
2 + δ3lnPOPit + η3R + μ3Pit + λ’Zit + θ’Ait + ε3it 

Here the variables are largely the same as in the carbon intensity equation, with the introduction of a 

few new ones.  

In this model, new variable coefficients are contained within the λ and θ vectors, while the 

observations are contained in the associated matrices (Z and A, respectively). The former contains 

coefficients for climate variables HDD and CDD. HDD, or heating degree days, represents the annual 

cumulative number of degrees by which daily mean temperature dropped below what is considered 

comfortable for human living (usually around 65 degrees Fahrenheit), thus requiring indoor heating to 

reach the comfortable temperature threshold. A cooling degree day, or CDD, is just the opposite; CDD 

measures by how many cumulative degrees mean daily temperature exceeded the comfortable 
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threshold in a given year, thus requiring cooling to reach a comfort level. θ contains coefficients for age 

distribution variables. These variables describe the percentage of each state’s population falling into a 

particular age group. The groups are organized loosely around what was found in the literature to be 

age ranges between which energy use varied considerably due to behavioral norms, changing household 

structure, and other characteristics typical to individuals of particular ages. 

It is acknowledged that the presence of income in both sides of the regression equation could 

be problematic for the model. GDP appears in the denominator of the dependent variable, energy 

intensity (Btu per dollar of real GDP), in addition to appearing in the numerator of per capita income 

(real GDP divided by population). Thus, to promote a well-rounded view of regression results and allow 

for a different (perhaps more reliable) perspective on the relationship between energy consumption and 

the explanatory variables, an additional regression was performed to examine any major differences 

between forms. This secondary regression equation retains the same explanatory variables but uses the 

natural log of total energy consumption (in billion Btu), rather than energy intensity, as the dependent 

variable to eliminate any problems of a shared variable between both sides of the equation. These 

regression results show some reversals in sign of parameter estimates. Using these estimates changes 

the total elasticity calculation we later examine to determine the possible presence of an EKC. 
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CHAPTER 6 

REGRESSION RESULTS AND CONCLUSIONS 

6.1 Time and Structural Change in the Data Set 

As previously mentioned, this paper breaks up each regression into two periods, 1990-1997 and 

1998-2010, to allow for structural change rather than estimating each model exclusively over one 

continuous time. Regulation-driven electricity market changes and discontinuous classification 

methodology in BEA income data suggest the periods should be treated differently in regression 

analysis. Indeed, two different tests of structural change were conducted on each model – one for 

panel-corrected standard errors (PCSE), and one for pooled OLS – and the null hypothesis of equal slope 

coefficients was rejected every time. Thus, it is deemed appropriate that – in contrast to prior studies – 

these two periods should be treated separately in making conclusions about trade-adjusted carbon 

dioxide emissions. Two separate periods of results will be reported for each specification. All 

specifications, unless otherwise noted, use Beck and Katz’s panel-corrected standard errors estimation 

method, due to the finding that each regression equation displayed heteroskedasticity, 

contemporaneous correlation and autocorrelation; see the appendix for these test calculations and the 

tests of structural change. 

6.2 Electricity Trade Effect Regression Results 

 Three specifications were tested for the electricity trade effect: (S1) a model with “raw” 

measurements of natural resource endowments in embodied metric tons of carbon dioxide (for fossil 

fuel reserves) and megawatts of renewable capacity (nuclear and hydropower), including a squared 

renewable term; (S2) “transformed” natural logarithm versions of the endowment variables, excluding 

the squared renewable term; and (S3) one with the “raw” capacity value for the renewables but with 
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the transformed fossil fuel endowment variable, including the squared renewable term.  The 

transformed fossil fuel variable was the natural logarithm of the original observation plus one (to avoid 

undefined solutions concerning the natural log of zero), while the renewable energy adjustment was the 

natural logarithm of the original observation multiplied by one million and adding one. The 

multiplication was simply to change the data from very small decimals to larger numbers that were 

easier to handle. Adding one was expected to make very little difference on the parameter estimates, 

making it worthwhile to transform them for the sake of the simpler elasticity interpretation. All 

specifications included the eight NERC region dummy variables, natural log of population density, 

natural log of per capita income, and the squared natural log of per capita income. 

 The population density variable is significant in the expected direction across all specifications 

for both periods; its positive sign indicates that more population-dense areas are inclined to import 

more electricity, which agrees with theory and prior studies. These population dense areas are more 

sensitive to the emission of local harmful pollutants that occur with domestic electricity production. The 

log of income is negative and significant across all periods and specifications, while the square of the log 

of income is unanimously positive and significant. This could be reflective of the development path, as 

later rises in income may be coming from services that do not generate electricity at home. Fossil fuel 

endowment variables have significant effects in the negative direction as expected, indicating a shift to 

electricity exports with a richer fossil fuel endowment. One striking difference between periods is worth 

noting. While the renewable endowment variable is never significant in the initial period, the model 

with the best fit (R squared = .5133) in the latter period shows significance in both renewable capacity 

variables. The first term is positive, while the squared term is negative – indicating that states with low 

levels of renewable capacity might import more, whereas states with relatively higher capacity start to 

import less or export electricity.  
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This difference in signs demonstrates a difference in electricity trade between states with lower 

renewable capacity and those with a higher capacity. More research could illuminate why this would be 

the case, but one possible explanation could be Renewable Portfolio Standards (RPS), policies which 

require electricity supply companies to produce a specified percentage of their electricity from 

renewable sources. When the process is expensive to meet these goals, the result could be a small 

investment in renewable capacity and the shift to importing a higher percent of electricity to meet the 

goal. States with higher renewable capacity, on the other hand, might have invested more heavily in 

renewable technologies, to the point of shifting the trade balance toward exports. More research is 

needed to add reliability to this explanation, however. All regression results for the electricity trade 

effect are provided in Table 6.1 and Table 6.2; see the appendix for “all years” regressions and dummy 

variable coefficients. 
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Table 6.1: Electricity Trade Effect Parameter Estimates, Period 12 

 

 

 

 

 

                                                             
2
 Here, and in all subsequent regression results tables, values in parentheses indicate corresponding standard 

errors. 



60 
 

Table 6.2: Electricity Trade Effect Parameter Estimates, Period 2 

 

 Staying focused on the potential for an EKC, it is prudent to examine the values of each 

dependent variable’s elasticity with respect to income. Thanks to the natural logarithm form of income, 

it is relatively simple here to examine the elasticity. Temporarily referring to the ln(Income) coefficient 

as β1 and calling the ln(Income) Squared coefficient β2, the income elasticity of the electricity trade 

effect is derived by simply differentiating ln(1+S) with respect to ln(Income), obtaining: 

dln(1+S)/dlnY = β1 + 2β2lnY 
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Figures 6.1 and 6.2 show the relationship between ln(Income) and the income elasticity of the electricity 

trade effect. In each time period, the outliers with high income and high (1+S) include only the District of 

Columbia. Table 6.3 presents the elasticities evaluated at the minimum, mean, and maximum for the 

two periods as well as the ”all years” period. 

Figure 6.1: Income Elasticity of Electricity Trade Effect, Period 1 (408 Observations) 
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Figure 6.2: Income Elasticity of Electricity Trade Effect, Period 2 (663 Observations) 

 

Table 6.3: Selected Income Elasticities of Electricity Trade Effect 

 

 It is clear from these figures that, no matter which time period is under consideration, the 

income elasticity of the electricity trade effect does indeed cross over from a net negative to a net 

positive influence. In contrast to the overall message of EKCs, this shows that initial increases in income 

have a negative effect on carbon dioxide embodied in electricity imports; in fact, they may cause more 

exports. However, when a certain per capita income is exceeded, further increases are likely to cause 

more electricity to be imported. Thus, increasing incomes have a positive effect after this point, 
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increasing trade-adjusted per capita emissions. If this positive effect is strong enough, it could prevent a 

true EKC structure from taking hold for consumption-based per capita carbon dioxide emissions. 

6.3 Carbon Intensity Regression Results 

 Three main specifications were analyzed for the carbon intensity regression. All three included 

the familiar log of population density and log of per capita income (including the squared term), 

including various combinations of logarithm-adjusted and raw endowment variables, including the 

squared nuclear/hydropower term. A key difference here also was the inclusion of price as a variable; 

the natural logarithm of the national composite fossil fuel price was included in all regressions in various 

forms. Goodness of fit is solid in all specifications, exceeding 0.98 in each regression. Population density 

is negative and significant across all specifications and time periods, again showing that dense 

populations prefer cleaner electricity production when such activity is more likely to affect concentrated 

groups of people living in the area. 

 Tables 6.4 and 6.5 show that, unanimous across periods and specifications, the log of per capita 

income is positive while its squared term is negative. Again, this likely represents a shift in favor of 

carbon-intensive manufacturing and other activities at initial rises in income, followed by a willingness 

and ability to pay for cleaner energy generation at high incomes. Nuclear and hydropower capacity is 

negatively significant, as expected, in each case. Cleaner endowment naturally leads to less carbon-

intensive production. What seems perplexing is the significance and positive sign of the nuclear-hydro 

squared term when it is included in regression. This would imply that, after an initial phase in which 

more clean energy infrastructure leads to lower carbon intensity, it begins to increase carbon intensity 

after a certain threshold. Alternatively, it could imply that the negative influence of the first term is 

simply diminishing in magnitude. 
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 Fossil fuel endowment variables are always positive and significant, as was expected.  The fossil 

fuel price was largely insignificant, with the exception of a few transformations being positive and 

significant, which is counterintuitive. This is likely because the variable was constructed at the national 

level. Its composite nature, coupled with its lack of variation between states (an unrealistic 

construction), explains its flawed interpretation. This variable should be disaggregated into detail for 

future regressions. The difference between periods here is most likely explained by differences in the 

NERC regions, which underwent some structural change in the mid-nineties. The specific nature of these 

changes could be addressed in more detail in future research. 
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Table 6.4: Carbon Intensity Parameter Estimates, Period 1 
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Table 6.5: Carbon Intensity Parameter Estimates, Period 2 

 

 In both periods, the income elasticity of carbon intensity goes from positive values at low 

incomes to negative ones at high incomes. Consistent with theory, this suggests that incomes initially 

increase as relatively cheap emissions-intensive fuels are relied upon to develop the economy and 

societies begin to invest in cleaner technologies when they are able to pay for such an investment. 

Sufficient wealth also allows people to care more about their impact on the environment, driving 

research and investment due to this attitudinal shift. The same eventual transition from positive to 
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negative is shown for both periods, as presented in figures 6.3 and 6.4. As has been observed fairly 

consistently, the outliers with high income (and highly negative elasticity) in each time period are 

composed solely of the District of Columbia. 

Figure 6.3: Income Elasticity of Carbon Intensity, Period 1 
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Figure 6.4: Income Elasticity of Carbon Intensity, Period 2 

 

Table 6.6: Selected Income Elasticities of Carbon Intensity 

 

6.4 Energy Intensity Regression Results 

 Energy intensity was regressed on a set of explanatory variables for the two separate periods as 

well, including a new set of demographic variables indicating the share of each state’s population in 

each year of several distinct age groups. Also included were the two climatic variables HDD and CDD. 

Except for one specification in the 1998-2010 period, the log of the per capita income variable is 

significant and negative in all cases, while its squared term is positive in all cases. Initially, it appears that 
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increases in income cause diminishing marginal reductions in energy intensity, possibly becoming 

positive at higher levels of income due to the positive sign of the squared term’s coefficient. This 

counterintuitive result is similar to that observed by Subramaniam (2010), who was also surprised by the 

significant negative coefficient on the log-linear term. It is likely that the shared presence of GDP in the 

dependent variable and in the per capita income explanatory variables caused bias to give rise to the 

observed negative coefficient of income. This justifies investigation of the alternative total energy 

consumption model rather than relying upon the typical energy intensity model. 

 When the alternative total energy consumption specification was regressed, the income 

coefficients were more consistent with theory. Two different specifications were analyzed for each 

period – one with the “raw percentage” age distribution variables, and one without. Indeed, the natural 

log of per capita income became positive and significant, while its squared term was negative and 

significant. These results make much more sense, indicating increased energy consumption per dollar as 

new infrastructure and technology becomes available with rising incomes; the negative direction of the 

squared term indicates that this positive effect is diminishing and can even cause net decreases once a 

particular income threshold is surpassed, possibly implying higher efficiency. This also resembles the 

general structure of the EKC, making these results more solid. 

 One striking result of this new regression is the reversal in direction of the log of population 

density, which is significant and positive; denser populations typically use electricity more heavily in 

daily life. All endowment variables are significant and positive, as expected, as is the case with HDD. 

Oddly, CDD was insignificant in each of these regressions. This is likely due to the fact that heating and 

cooling often consume energy in different ways, and the use of air conditioning differs from heating oil 

and natural gas in terms of how much CO2 is released. The “55 and over” variable was significant in the 

negative direction, consistent with theory, across periods. In the literature, a significant dip in electricity 
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use is noted past the age of 55 due to less extensive use of transportation with age, among other 

factors. The 0-19 percentage is significantly negative as expected, as well; young people living with 

parents likely use energy more efficiently due to shared household activities, while those living 

independently typically have lower incomes that are used primarily on more essential consumption. 

Future work will be well informed to remain aware of the possible impact of these demographics, and 

can perhaps improve upon this way of estimating their effects. See Tables 6.7 and 6.8 for the energy 

consumption regression results; the energy intensity results are contained in the appendix. 
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Table 6.7: Energy Consumption Parameter Estimates, Period 1 
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Table 6.8: Energy Consumption Parameter Estimates, Period 2 
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 The elasticity curves for energy intensity effects, shown below in Figures 6.5 and 6.6, are 

somewhat surprising, just like its parameter estimates. Again, the District of Columbia is responsible for 

all the high income outliers in each period. The elasticity is always negative; although it diminishes in 

absolute value with higher incomes, it never quite crosses the threshold into positive values. This 

suggests that people tend to use their electricity more efficiently per dollar as income increases. A more 

intuitive parameter result would be a positive elasticity at lower incomes, with negative elasticity later 

on. It appears that the total energy consumption parameter estimates might yield this more intuitive 

result. That will be addressed in a moment, but first let us observe energy intensity elasticity for 

comparison. 

Figure 6.5: Income Elasticity of Energy Intensity, Period 1 
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Figure 6.6: Income Elasticity of Energy Intensity, Period 2 

 

Table 6.9: Selected Income Elasticities of Energy Intensity 

 

As has been shown in previous studies, total elasticity of consumption-based per capita 

emissions with respect to income, with Y representing per capita income, is calculated as follows: 

∂Per Capita Carbon Emissions/∂lnY = [∂lnCI/∂lnY] + [∂ln(1+S)/∂lnY] + [∂lnEI/∂lnY] + [∂lnY/∂lnY] 

and, in words, this can be stated thus (Subramaniam 72): 
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Total Elasticity = Elasticity of Carbon Intensity + Elasticity of Electricity Trade Effect + Elasticity of Energy 

Intensity + 1 

Calculating the individual components of elasticity at the level of income corresponding to each 

observation, one can generate graphs of the total elasticity at various income levels and determine 

whether an EKC takes shape for the total effect of income. Observing the relevant visuals, we can see 

that there is no relationship resembling an EKC with respect to trade-adjusted emissions in our data 

when we ignore the energy intensity model’s flaws. See Figures 6.7 and 6.8 for the total income 

elasticities of period 1 and period 2, respectively. 

Figure 6.7: Total Income Elasticity of Emissions, Period 1 
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Figure 6.8: Total Income Elasticity of Emissions, Period 2 

 

 As can be seen above, total elasticity never becomes negative in either period. The closest to 

zero elasticity becomes in period 1 is 0.115% in the case of Washington, D.C. in 1997 with an income of 

over $87,500. Another state with low elasticity is Alaska in 1990 with an elasticity of 0.172% and a per 

capita income of roughly $52,000. In the latter period, the lowest elasticity is 0.263%, again shown by 

the District of Columbia, this time in 2008 with a per capita income of $114,540. Next in line for this 

period was Delaware in 2007, with a per capita income of $52,582. Note that both Washington, D.C. and 

Delaware are small, high-income areas with high population density. Alaska’s appearance in the first 

period with one of the lowest elasticities is surprising due to its sparse population. It can be seen in the 

above graphs that elasticities show a positive (but diminishing) elasticity relationship between per capita 

income and per capita emissions, albeit with an overall downward trend as per capita incomes increase. 

Because these elasticities never become negative, these states all appear to be in the initial stage of an 
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EKC. An EKC does not appear to be present in each of its stages, in contrast to the findings by 

Subramaniam (2010) with her examination of similar data using this same energy intensity model. 

 A striking difference here puts the distinction between consumption- and production-based per 

capita emissions measures into context. When one removes the income elasticity of electricity trade 

effects from the total elasticity calculation, a transition into negative territory does emerge. This 

suggests that an EKC does indeed materialize in the case of production-based emissions, but not for the 

consumption-based measure. High income states likely prefer to import more electricity in order to 

report lower production-based carbon dioxide emissions, to minimize disturbances to dense 

populations, and to invest in the relatively cleaner service-based industry, but they do not appear to be 

drastically reigning in their overall carbon footprints as their incomes rise. See figures 6.9 and 6.10 

below for graphical demonstration. 

Figure 6.9: Total Income Elasticity of Production-Based Emissions, Period 1 
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Figure 6.10: Total Income Elasticity of Production-Based Emissions, Period 2 

 

 Contrary to the case of consumption-based emissions, there are clear points at which 

production-based emissions dip into negative elasticity, providing evidence of the downward-sloping 

portion of the conventional EKC curve. In the first period, Washington in 1996 shows the lowest per 

capita income that ventures into negative elasticity territory, at just over $30,370. The latter period 

shows a higher necessary per capita income for negative elasticity. Massachusetts in 1999 displays the 

per capita income that, at the margin, sparks a transition to negative elasticity at just over $39,000. 

 These results arise when one is constrained to the energy intensity model in Subramaniam’s 

2010 thesis. However, there is fortunately a way to replace this flawed energy intensity model with the 

more reliable energy consumption model and apply its parameter estimates to the total elasticity 

calculation. It is apparent how these parameter estimates can be substituted into the total calculation 
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with a few simple algebraic steps. Refer first to the energy intensity elasticity calculation (with Y 

representing per capita income and E representing total energy consumption in Btus): 

Elasticity of Energy Intensity = ∂ln(E/GDP)/∂lnY = ∂ln[E/(YxPop)]/ ∂ln(Y) = ∂[lnE-lnY-lnP]/ ∂lnY = 

∂lnE/∂dlnY – 1 

Knowing this, we can simply subtract 1 from the estimated income elasticity of energy consumption, 

∂lnE/∂lnY, and apply this value to the total elasticity calculation. Applying this value creates a new 

portrait of income elasticity of trade-adjusted per capita emissions. See Figures 6.11 and 6.12 for graphs 

of this alternative total elasticity calculation for each period. 

Figure 6.11: Alternative Total Income Elasticity of Per Capita Emissions, 1990-1997 
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Figure 6.12: Alternative Total Income Elasticity of Per Capita Emissions, 1998-2010 

 

 Using parameter estimates from the arguably more reliable energy consumption model and 

applying it to the elasticity calculation appropriately, a large discrepancy is revealed between the two 

approaches. Here it appears that there does exist evidence for a legitimate EKC with respect to trade-

adjusted per capita CO2 emissions in the U.S. Subramaniam’s 2010 paper, which relied upon the flawed 

energy intensity model, concluded that the necessary per capita income threshold for negative elasticity 

was roughly $53,000, much higher than Aldy (2005a) had previously suggested. With the alternative 

total elasticity calculation presented above, the evidence suggests a turning point at lower income 

levels. In the first period, an income of roughly $30,500 was necessary to turn the corner. Colorado 

reached this point in 1995. Other states in the negative elasticity income range included California, 

Massachusetts, Georgia, Illinois, Wyoming, Texas, Virginia, New Hampshire, Nevada, Minnesota, 

Washington, New York, New Jersey, Hawaii, Connecticut, Delaware, Alaska, and of course the District of 

Columbia. The threshold in the second period was roughly the same at a per capita income of just under 
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$36,000, with many of the same states transitioning into the negative elasticity portion of the EKC, along 

with a few newcomers. 

6.5 Summary and Concluding Remarks 

 Previous studies have found evidence of an EKC with respect to carbon dioxide emissions in the 

years since 1990. This paper responds with more detailed resource endowment variables, more data, 

and close attention paid to structural change in the mid-nineties. This paper finds that regression model 

construction can have a dramatic impact on the conclusion arising from time-series cross-section data. 

Building upon the energy intensity model introduced in prior studies, this paper finds evidence that an 

EKC structure has yet to take hold for trade-adjusted CO2 emissions in the U.S. When the energy model 

is corrected for endogeneity problems in the dependent variable, however, the conclusion differs 

dramatically. With this correction and the corresponding modification of the total elasticity calculation, 

an EKC structure materializes. The flaws in the energy intensity model seem to skew threshold incomes 

up, underreporting the degree to which states have moved along the EKC curve as incomes have 

increased. This alternative specification finds a threshold income level considerably lower than the 

$53,000 turning point Subramaniam found in 2010. 

Should policymakers reach a consensus to make lower emissions a goal for the U.S., the issue 

should be treated as a national goal. Furthermore, national policy should focus on energy intensity and 

carbon intensity as modifiable components of the per capita emissions equation. More in-depth 

research can be conducted on how the FERC regulations of the mid-90s may have changed electricity 

markets, in addition to changes among the NERC regions. There could be additional variables arising 

from these market and regulatory changes that this paper failed to consider. Additionally, other policy 

variables should be more clearly built into the analysis, possibly through incorporating renewable 

portfolio standard policies, though these would be quite difficult to transform into numeric variables 
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and would require a longer project timeline. Although income growth may lead to shifts toward local 

environmental improvement, the issue of carbon dioxide emissions is uniquely a global one, and not all 

regions of the world can expect their incomes to rise fast enough for a convenient solution. All economic 

and technological components of emissions will remain crucial on the state level and beyond. 
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APPENDIX 

Appendix 1: Detailed Variable Construction Information 

1. State-Level Carbon Emission Data 

 State-level electricity sector carbon dioxide emissions data were downloaded on November 27, 

2012 from the Energy Information Administration’s website at: 

http://www.eia.gov/electricity/data/state/. Data for total (energy-related) state-level carbon dioxide 

emissions from all sectors were downloaded on January 31, 2013 from the Energy Information 

Administration’s website at: http://www.eia.gov/environment/emissions/state/state_emissions.cfm. 

2. Procedure for Calculation of Carbon Emissions 

 In order to calculate energy-related carbon dioxide emissions for all sectors, the EIA first 

summed up the consumption of each fuel type for each sector, measured in billions of Btu, for each 

state and year. These Btu values are then multiplied by carbon coefficients to convert them to million 

metric tons of carbon dioxide. At the time of this writing, the EIA was currently engaged in updating data 

documentation to publish the specific coefficients.  After conversion to million metric tons, the values 

are adjusted by subtracting “adjustment values” to account for nonfuel use of fossil fuels that result in 

carbon storage rather than release into the atmosphere (credit to Perry Lindstrom 2013). Adding all 

adjusted emissions for each fuel and sector produced a “grand total,” and the resulting values reflected 

millions of metric tons of carbon dioxide emissions for each state and year. 

 Energy-related carbon dioxide constitutes over 80 percent of total emissions, so the EIA believes 

the state energy-related emission levels can be treated as a reliable indicator of individual states’ 

contributions to total national emissions. State-level estimates are generated from energy consumption 

data for a diverse array of fuel categories, including coal, natural gas, and ten different petroleum 

http://www.eia.gov/electricity/data/state/
http://www.eia.gov/environment/emissions/state/state_emissions.cfm
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products. The estimates net out carbon and carbon dioxide emissions that are sequestered due to the 

fact that a small amount of energy consumption is used for nonfuel purposes rather than undergoing 

combustion. The EIA uses a simplified process to allocate national-level nonfuel sequestration values to 

individual states, using distinct methods based on which nonfuel source is being calculated (the 

adjustment calculation step). 

 In the case of state-level electricity sector carbon dioxide emissions data, which are part of the 

Electric Power Annual data series, CO2 emissions are estimated by the EIA using information collected on 

Form EIA-923 and prior versions describing fuel heat content and consumption in physical units. Physical 

units are converted to millions of Btu (MMBtu) consumed, using appropriate heat content information. 

Next, each fuel-specific emission factor is multiplied by the fuel consumption in MMBtu to estimate CO2 

emissions. This procedure results in figures for uncontrolled CO2 emissions; no commercial CO2 control 

systems are currently installed, according to the EIA, and such control technologies are only in the early 

stages of research. Therefore, no estimates of controlled carbon dioxide emissions are available. 

3. Gross Domestic Product (GDP) Data 

 The GDP data used in this study were constructed from a variety of different datasets. Two main 

documents were used to construct a dataset with state-level GDP data for the 1998-2010 period, both 

retrieved from the Bureau of Economic Analysis (BEA) website in the “Regional Data - GDP & Personal 

Income” section. The quantity indexes for 1997-2011 were downloaded after selecting “Quantity 

indexes real GDP,” for NAICS (1997 forward) for the “All industry total” measure. Next, this dataset was 

used in the first step for adjusting the GDP-by-state data for this period. During this step, each state’s 

annual quantity indexes were divided by the corresponding 1997 quantity index. This adjusted the 

quantity indexes such that the index for 1997 took a value of 1. 
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 Next, the current-dollar GDP for 1997 was retrieved. The data were gathered from the “Gross 

domestic product” section, for NAICS (1997 forward) for the “All industry total” measure, for all states. 

This current-dollar GDP file was multiplied with all the corresponding state values for each year in the 

re-based quantity indexes dataset. This resulted in a new dataset containing state-level real GDP in 

millions of chained 1997 dollars for the period of interest. 

 For the 1990-1997 period, state-level real GDP data were downloaded from the BEA website. 

The data were presented in the SIC classification, using the “All industry total” measure. These figures 

were reported in millions of chained 1997 dollars, so they did not need to be deflated for consistency 

with the other GDP dataset. Due to an industrial classification methodology change, there is a 

discontinuity problem with the 1990-2010 period for the state-level real GDP data included in this study. 

The Bureau of Economic Analysis currently reports state-level GDP data using two different classification 

systems; 1963 to 1997 data are reported using the Standard Industrial Classification (SIC) system, while 

1997 to 2011 data are reported on the basis of the North American Industry Classification System 

(NAICS) methodology. Prepared by the Office of Management and Budget, the SIC has typically been 

used to present industry-level state and local estimates of earnings and employment. The SIC classifies 

establishments by their primary activities, assigning an industry code to each. NAICS eventually replaced 

the SIC system, after being jointly developed by the U.S., Canada and Mexico. NAICS was designed to 

ease comparison of business statistics across North America. State-level GDP estimates currently use the 

2002 NAICS. 

 The detail industries are different between the SIC and NAICS classification systems, and 

bridging the two for time-series analysis is an ongoing research project. Given that the “All industry 

total” figures are the only ones used for GDP throughout the 1990 to 2010 period in this study, one 

might expect that these two systems could be used continuously regardless. Unfortunately, this is not 
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necessarily the case. A BEA contact warned that, although the industry differences are not apparent 

when using the “All industry total” figures, differences may cause a discontinuity between SIC and NAICS 

years. Discontinuity arises from differences in source data and estimation methodologies between the 

two systems. Furthermore, NAICS-based state-level GDP estimates are consistent with U.S. GDP while 

SIC-based estimates are consistent with U.S. gross domestic income (GDI). The BEA warns against 

appending these two data series into a single time series and no convention is suggested for combining 

them; a BEA contact suggested building something into the model itself to account for the discontinuity. 

 In spite of this discontinuity, it has nevertheless been worthwhile to convert these two different 

data series into U.S. dollars from the same year to make the data as comparable as possible. There is no 

way to convert pre-1997 (SIC) data to chained dollars of a later year due to a lack of SIC-based data for 

1997 or later, so all state-level GDP figures were converted to 1997 dollars. Data for 1990 to 1997 were 

already reported in millions of chained 1997 dollars, so that left only the task of converting the post-

1997 (NAICS) portion to millions of chained 1997 dollars. As briefly described earlier, two different data 

files were necessary to accomplish this task. 

 BEA’s set of annual quantity indexes (by state) were downloaded for 1997 and later. The 

quantity index for each state and each year were all divided by the corresponding quantity index for the 

year 1997. This adjusted the quantity indexes such that each value for 1997 took on a value of 1. Next, 

current-dollar state-level GDP was obtained for the year 1997. Then, the previously calculated adjusted 

quantity indexes for each state and year were all multiplied by the corresponding 1997 current-dollar 

GDP values. The procedure generated real GDP for the 1997 to 2010 period in millions of chained 1997 

dollars. 

 Several individual BEA staff contacts provided advice for this calculation and other issues during 

the research process. Clifford Woodruff explained the detailed systematic process for converting GDP 
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data to adjusted values appropriate for a particular year. Both Clifford Woodruff and Catherine Wang 

confirmed the status of the NAICS and SIC discontinuity problem. Their contact information is provided 

below. 

Clifford Woodruff 

(202) 606-9234 

gdpbystate@bea.gov 

 

Catherine Wang 

(202) 606-9670 

gdpbystate@bea.gov 

4. Energy Generation Data 

 This study also utilizes data on state-level total energy production, in billion Btu. These data are 

part of the State Energy Data System (SEDS) and were compiled by the Office of Survey Development 

and Statistical Integration, U.S. Energy Information Administration, from data collected by the EIA and 

other public information. The energy sources included in the total energy production calculation are 

coal, crude oil, natural gas (marketed production), and renewable energy and nuclear-generated 

electricity. Energy data from these sources was converted from physical units (such as short tons, 

barrels, and cubic feet) to British thermal units (Btu) using estimated heat content. 

5. Population Data and GDP Per Capita 

mailto:gdpbystate@bea.gov
mailto:gdpbystate@bea.gov
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 Annual state-level population data were collected for use in this study, the primary purpose of 

which was to calculate real GDP per capita. GDP per capita was calculated by dividing the real GDP data 

by population data for each state and year, the result of which represented per capita income (and its 

squared term) in the regressions. Population data were available in the “Regional Data - GDP & Personal 

Income” section of the BEA’s website, as part of the state personal income data. Population is reported 

as number of persons in each state; the figures represent midyear population estimates of the Census 

Bureau. 

6. Interstate Electricity Trade Data 

 Interstate electricity trade data were also necessary to include in this study. These annual data 

were available on the state level on the Energy Information Administration’s (EIA) website as part of the 

“Consumption” section in the State Energy Data System (SEDS). The figures represent state-level net 

interstate sales of electricity and associated losses, reported in billion Btu. The data are estimates of the 

energy used to produce the electricity coming from other states or going to other states, excluding 

imports or exports associated with Canada and Mexico. The estimates include associated energy losses 

from generation, transmission, and distribution. Origins and destinations of electricity flow were not 

tracked, so for states with net electricity inflow, the EIA has applied an average Btu-to-kWh ratio to 

estimate the heat content of the electricity flowed in. This average ratio was calculated by dividing total 

electricity outflow (in Btu) with total electricity outflow (in kWh) for all states with net electricity 

outflow. If the net interstate flow of electricity is negative, the state is a net exporter of electricity to 

other states; a positive number conversely represents a net importer. 

7. Electricity Production Data 

  Included as a measure of state-level electricity production is the total energy consumed 

by the electric power sector in a state (TEEIBZZ, where ZZ denotes the two-letter abbreviation for a 
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particular state). This measure was also taken from EIA’s SEDS. This amount, expressed in billion Btu, is 

the sum of all primary energy used to generate electricity, and it includes net imports of electricity 

across U.S. borders in billion Btu, or ELNIBZZ. The calculation methodology for TEEIBZZ is as follows: 

TEEIBZZ = CLEIBZZ +NGEIBZZ + PAEIBZZ + NUEGBZZ + GEEGBZZ + HYEGBZZ + SOEGBZZ + WWEIBZZ + 

WYEGBZZ + ELNIBZZ – SFEIBZZ 

Where CLEIBZZ is coal consumed by the electric power sector, NGEIBZZ is natural gas consumed by the 

electric power sector including supplemental gaseous fuels, PAEIBZZ is all petroleum products consumed 

by the electric power sector, NUEGBZZ is electricity produced from nuclear power by the electric power 

sector, GEEGBZZ is electricity produced from geothermal energy by the electric power sector, HYEGBZZ 

is hydroelectricity produced by the electric power sector, SOEGBZZ is electricity produced from 

photovoltaic and solar thermal energy by the electric power sector, WWEIBZZ is wood and waste 

consumed by the electric power sector, WYEGBZZ is electricity produced from wind energy by the 

electric power sector, and SFEIBZZ is supplemental gaseous fuels consumed by the electric power sector 

(all expressed in billion Btu). 

Supplemental gaseous fuels are already accounted for in the fossil fuels from which they are 

derived, which is why they are subtracted out in the preceding equation to obtain TEEIBZZ (to avoid 

double counting). The components of the equation were summed together by the EIA specifically to add 

up all the energy used to produce electricity in a state. Before adding, the EIA converted each of these 

energy sources to the common unit of Btu. Coal, natural gas, petroleum, renewable energy sources, and 

nuclear electric power each used distinct conversion methods. The electric power sector also produces 

heat for use as energy, but the SEDS variable does not capture that. Year-to-year stock changes are also 

not captured; furthermore, the dataset did not include energy sources used in commercial and industrial 

combined heat-and-power plants and electricity-only plants, but these are relatively small amounts. The 
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EIA believes it is generally safe to assume that these fuel amounts consumed by the electric power 

sector are used to generate electricity for that year. Below is the contact information for Yvonne Taylor, 

the EIA SEDS expert who helped interpret the meaning of the data and confirm that it could be used to 

represent electricity production. 

Yvonne Taylor 

(202) 586-1455 

Yvonne.taylor@eia.gov 

8. Energy Intensity Data 

  Annual energy intensity data by state was an important variable included in the analysis. 

Energy intensity is defined as the total energy consumed per dollar of real gross domestic product in 

that state, and the measure is reported in thousand Btu per chained 2005 dollar. This variable was 

obtained directly from the EIA as a component of SEDS. EIA recognizes the discontinuity after 1997 in 

state-level real GDP calculation methodology due to the BEA releasing figures for real GDP calculated 

with the SIC system prior to 1997 and the NAICS system after 1997. Nevertheless, the EIA compares 

energy intensity over time and, for data from 1977 to 1996, applies the quantity indexes to the 1997 real 

GDP to calculate real GDP in SEDS. The EIA employs the following calculation to obtain state-level energy 

intensity data (called “TETGR”): 

TETGR = TETCB/GDPRX 

In the above equation, TETCB indicates total energy consumption in billion Btu and GDPRX indicates real 

GDP by state (SIC classification for years prior to 1997 and NAICS for 1997 forward). 
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9. Energy Consumption Data and Carbon Intensity Calculation 

 State-level total energy consumption was incorporated into this study. Measured in billion Btu, 

these data were also gathered from the EIA’s website in the “Consumption” section of SEDS. Appendix A 

in the Consumption section of EIA’s Technical Notes & Documentation section, available online, 

describes the calculation of total energy consumption (TETCB) as the following: 

TETCBZZ = FFTCBZZ + NUETBZZ + RETCBZZ + ELNIBZZ + ELISBZZ 

Where FFTCB represents total consumption of fossil fuels (in billion Btu), NUETB is electricity produced 

from nuclear power (billion Btu), RETCB is total consumption of renewable energy (billion Btu), ELNIB is 

net imports of electricity into the United States (billion Btu), and ELISB is net interstate sales of 

electricity and associated losses – the measure of interstate electricity trade (billion Btu). The “ZZ” at the 

end of each of these variable names represents the two-letter U.S. Postal Service codes for each of the 

fifty states and the District of Columbia; each state (and DC) has its own annual value for each variable. 

State-level carbon dioxide emissions were divided by energy consumption to produce the carbon 

intensity variable (metric tons of carbon dioxide per billion Btu consumed), which was a dependent 

variable in regression analysis. 

10. Population Density 

 Population density was incorporated into regression analysis. To obtain a measure of population 

density, the aforementioned annual population measures were divided by each state’s land area. The 

land area data reflected square miles of land in the year 2000 for each state – that is, the measure was 

time invariant. It is possible that some land area change – due to shrinking wetlands, for example – 

could have occurred between 1990 and 2000, but such change is likely to be effectively negligible. The 

land area data were gathered online from the U.S. Census Bureau. 
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11. Heating Degree Days (HDD) and Cooling Degree Days (CDD) 

 Heating Degree Days (HDD) and Cooling Degree Days (CDD) were included on an annual basis for 

each state to represent energy demanded for heating and cooling buildings. Base temperatures are 

chosen to represent an indoor temperature that is suitable for humans to feel comfortable.  If a day’s 

average temperature is less than the base temperature, the average temperature is subtracted from the 

base temperature to calculate HDD for particular day. If the average temperature does not fall below 

the base temperature, there are zero HDD for that day. The National Climatic Data Center (NCDC), from 

which these data were obtained, generally uses sixty-five degrees Fahrenheit as a base temperature for 

HDD and CDD. 

 HDD were calculated on a monthly basis by NCDC and were then summed together to produce 

annual values for this study. NCDC obtained monthly figures by weighting each division within a state 

according to its share of the state population, assuring that overall state values were more indicative of 

the conditions in especially populous regions of each state. Each new series of monthly data used the 

most recently completed census to determine population weights for each division during the 

calculation of state HDD. CDD used essentially the same weighted calculation procedure. Both HDD and 

CDD are available for the 48 conterminous states, treating Washington, DC as part of the state of 

Maryland; because of this designation, this study uses the same HDD and CDD figures for Maryland and 

DC. Monthly values for 1990-2010 were downloaded and summed up separately for each state using an 

online tool. 

12. Hydroelectric and Nuclear Nameplate Capacity 

 Annual state-level hydroelectric and nuclear nameplate capacity were summed together to 

construct a variable that would reflect endowment of relatively cleaner energy sources. The nameplate 

capacity (in Megawatts) for each of these energy types were summed together and then divided by the 
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population data to produce a per capita clean energy endowment variable. These data were obtained 

online from the Energy Information Administration, in the Electricity section of the EIA’s website. In the 

Electricity section of their online glossary, the EIA defines generator nameplate capacity as “the 

maximum rated output of a generator, prime mover, or other electric power production equipment 

under specific conditions designated by the manufacturer.” 

13. Fossil Fuel Endowment Per Capita: Liquid and Dry Natural Gas, Coal, and Crude Oil 

 Conventional fossil fuel endowment is likely to have a significant impact on a state’s carbon 

intensity as well as the carbon dioxide embodied in its electricity trade. In recognition, a variable was 

constructed to represent this endowment. The fossil fuel endowment variable is the sum of four 

different types of fossil fuels present in each state on an annual basis. Included were reserves of coal, 

dry natural gas, liquid natural gas, and crude oil. In order to sum these reserves together into one 

variable with a common unit of measurement, the reserves of each type were converted into carbon 

dioxide emissions that would result from consumption of the quantity of fuel – producing, in effect, 

carbon dioxide emissions embodied in state fossil fuel reserves. 

 Annual state-level dry natural gas reserve data were downloaded from the EIA’s website in the 

Natural Gas section, measured in billion cubic feet. Some states had separate amounts reported for dry 

natural gas proved reserves and federal offshore dry natural gas proved reserves; in these cases, the two 

measures were summed together to produce a total measure of each state’s reserves. On occasion, 

states’ collective federal offshore reserves were bundled together and reported as such – this occurred 

in the case of Alabama’s and Louisiana’s collective reserves. To estimate the disaggregated individual 

state federal offshore totals, a simple ratio was employed. Each state’s share in the collective total of 

state onshore reserves was used as a proportion to estimate its share in federal offshore reserves. This 
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example shows the formula used to estimate Alabama’s individual federal offshore reserves, which 

could then be added to its on shore total: 

Estimated AL federal offshore reserves = [(AL onshore reserves) / (AL onshore reserves + LA onshore 

reserves)] x (Combined federal offshore reserves of AL and LA) 

In addition, a “Miscellaneous” category reported the combined reserves of several states with small 

amounts of dry natural gas reserves. These states included Arizona, Illinois, Indiana, Maryland, Missouri, 

Nebraska, Nevada, Oregon, South Dakota, and Tennessee. Because there were ten states in this 

category, each state was allocated one-tenth of reserves in the category – an equal allocation. Although 

this estimation is a rough one, it accomplishes the task of signaling that each state has nonzero, but 

scarce, reserves of dry natural gas. States that were not mentioned at all in this data set were assigned a 

value of zero for dry natural gas reserves. 

 To convert these data to units of carbon dioxide, it was necessary to consult the EIA’s Carbon 

Dioxide Emissions Coefficients web page in their Environment section. The web page gives common 

ratios that allow relatively convenient conversion to carbon dioxide from various fuel types. The ratio 

provided for natural gas is 117.1 pounds of CO2 per thousand cubic feet. The dry natural gas proved 

reserves totals, which were initially measured in billion cubic feet, were each multiplied by one billion to 

produce measures in terms of single cubic feet, then divided by one thousand and multiplied by 117.1 to 

produce a measure of pounds of CO2. Finally, the weight in pounds was divided by 2,204.62 (to convert 

the weight to tons) and then divided by one million to convert the units into million metric tons of 

carbon dioxide. 

 Liquid natural gas was also incorporated into the fossil fuel reserve endowment variable. Some 

states reported two measures of reserves in the case of liquid natural gas as well; in the same vein, the 

separate reserves (proved reserves of natural gas plant liquids and federal offshore reserves) were 
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added together in such cases to reflect a state’s total reserves. These data were reported in terms of 

million barrels, and thus needed a slightly different treatment to be converted into million metric tons of 

carbon dioxide. First, the liquid reserves were converted to cubic feet equivalent so that the previously 

discussed ratio could be used for the final conversion to metric tons of carbon dioxide. The ratio 

employed at this intermediate step was the following: 

1 million barrels oil equivalent = 5.61 billion cubic feet of natural gas 

This ratio was obtained from the Natural Gas and Coal Measurements and Conversions page in the 

Extension and Outreach section on Iowa State University’s website. The ratio of 117.1 pounds of CO2 to 

every one thousand cubic feet was again used to convert to metric tons of carbon dioxide, which was 

then divided by one million to be transformed into million metric tons of carbon dioxide. 

 Again, states that were not mentioned in the data set were assumed to have zero reserves. The 

liquid natural gas data gathering process did include additional complexities, though. The liquid natural 

gas reserves data file also included a “Miscellaneous” category that reported collective reserves for a 

few states that contained small amounts of reserves. These states included Arizona, Illinois, Indiana, 

Maryland, Missouri, Nebraska, Nevada, New York, Ohio, Oregon, Pennsylvania, South Dakota, 

Tennessee, and Virginia. Because there were fourteen states in the category, each received one 

fourteenth of the total reserves reported as “Miscellaneous.” 

 In addition, there were cases where federal offshore reserves were reported as a collective total 

for multiple states at once, rather than for individual ones. In such a case, federal offshore reserves were 

allocated to individual states in the same proportion each state had in the total onshore reserves. In this 

data file, there was again a column for combined Louisiana and Alabama federal offshore reserves. To 

estimate the offshore reserves for Louisiana and Alabama individually, the same formula as previously 

mentioned was used for each state: 
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Estimated AL offshore reserves = [(AL onshore) / (LA onshore + AL onshore)]*(LA offshore + AL offshore) 

These estimated individual offshore values were then added to the reported individual onshore values 

to approximate total state reserves. 

 Utah and Wyoming exhibited unique problems in the original data set. They reported individual 

reserves for 2007 – 2010 only, so their reserves from 1990 to 2006 had to be approximated. Before 

2007, Utah and Wyoming’s reserves were reported as a combined total between the two states. Utah 

and Wyoming’s individual reserves before 2007 were also approximated with proportions; this time, 

though, the proportions of reserves each state held in the total from 2007 to 2010 were used to 

approximate prior data. This formula for Wyoming’s reserves (in a year prior to 2007) shows the method 

mathematically: 

WY estimated reserves in year X = [(sum of WY reserves 2007 - 2010) / (combined sum WY and UT 

reserves 2007 - 2010)] x (combined sum of WY and UT reserves in year X) 

 Coal reserves were taken into account as another component of the fossil fuel endowment 

variable. Recoverable coal reserves (in million short tons) were obtained from various Annual Coal 

Reports, some of which were past issues. In general, annual figures for a particular year were taken from 

the most recent Annual Report that contained data for that year. Some data manipulation was 

necessary to fill in gaps with reasonable estimates for states with missing coal reserve data. Several 

states in each Annual Report displayed a “W” in place of reserve data, which indicated numbers 

“withheld to avoid disclosing private company data.” 

Reserves of the “W” states were approximated in the following manner. Total U.S. reserves 

were obtained from each corresponding Annual Report; then, coal reserves for states that did report 

their figures were summed up as the total reported reserves by individual states. This figure was then 



102 
 

subtracted from the total U.S. coal reserves, producing a figure that reflected the total coal reserves 

collectively attributable to the remaining “W” states. These remaining reserves were then allocated 

proportionately. Annual Reports did release production data, even for the “W” states. Production 

quantities were totaled collectively for the “W” states, and each “W” state’s share in this total 

production quantity, as a proportion, was calculated. Finally, the sum of “W” state reserves was 

multiplied by each state’s production share to approximate each state’s coal reserves in a given year. 

Some states, such as Arkansas, occasionally had a “-“ instead of a “W” where their reported coal 

reserves would be in the table. These states were treated the same as the “W” states, unless they also 

had no reported production. States that had no reported reserves and no reported production in a given 

year were assumed to have zero coal reserves in that year. 

When all the approximation and data manipulation was complete, overall annual state-level coal 

reserve figures were obtained in million short tons. Next, the EIA’s Carbon Dioxide Emissions 

Coefficients web page was again consulted for the conversion factor from short tons of coal to carbon 

dioxide. The ratio provided was 4,631.5 pounds of CO2 per short ton. Therefore, the final recoverable 

coal reserves figure, in million short tons, was multiplied by 4,631.5 to obtain CO2 in million pounds, 

which was then divided by 2,204.62 to convert the figure to million metric tons of CO2. 

 The fourth and final component of the fossil fuel endowment variable was crude oil. Also 

obtained from the EIA, these data were reported and compiled in a manner similar to the reserves of 

dry and liquid natural gas. State totals were reported in million barrels of crude oil proved reserves. In 

some cases, such as for California and Texas, state totals and federal offshore reserves were reported as 

separate figures. In these cases, the federal offshore reserves were again added to the state totals to 

produce the overall figures for use in this study. Some states provided separate state-owned offshore 
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reserves, but these were not added to the regular state totals because they had already been counted in 

those totals. This method applies to natural gas and liquid natural gas data compilation as well.  

If a particular state was not included in this crude oil data set, it was assumed to have zero 

reserves in all years. Finally, like the natural gas data files, the crude oil data file also reported a 

“Miscellaneous” category. In this case, the states in that category were Arizona, Missouri, Nevada, New 

York, South Dakota, Tennessee, and Virginia. However, research showed that Arizona and Virginia truly 

possessed no such reserves. This is apparent in EIA’s Figure 9 on their “U.S. Crude Oil, Natural Gas, and 

NG Liquids Proved Reserves” web page: http://www.eia.gov/naturalgas/crudeoilreserves/. Therefore, in 

this data set, the miscellaneous disaggregation was slightly different than in previous data sets. Instead 

of allocating the total miscellaneous reserves equally among all seven states, Arizona and Virginia were 

removed and assigned a value of zero for all years. The five states that remained in that category each 

received one fifth of the total miscellaneous reserves in each particular year. Once all four fossil fuel 

types had been compiled and converted to million metric tons of CO2, they were summed together to 

produce a variable that reflected the total CO2 embodied in a state’s fossil fuel reserves in a given year. 

14. NERC Regional Dummy Variables 

 In order to account for effects that may be associated with the inherent identity of a particular 

state or group of states, regional dummy variables were employed in regressions. These regional 

dummy variables came from the eight regional entities that work with the North American Electric 

Reliability Corporation (NERC) to ensure a reliable bulk power system in North America. The different 

NERC regions include the Florida Reliability Coordinating Council (FRCC), Midwest Reliability 

Organization (MRO), Northeast Power Coordinating Council (NPCC), ReliabilityFirst Corporation (RFC), 

SERC Reliability Corporation (SERC), Southwest Power Pool Regional Entity (SPP), Texas Reliability Entity 

(TRE), and the Western Electricity Coordinating Council (WECC). Because of the apparent lack of an 

http://www.eia.gov/naturalgas/crudeoilreserves/
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easily-accessible data file of which states were included in each region, a dataset was constructed from 

simply viewing a regional entity map available online from NERC. 

 These dummy variables do not reflect a perfect identification through time for which states 

belonged to which regions in each year. Due to past structural changes within the industry, there is 

much ambiguity as to how these variables should be treated over time. The clearest change over time 

associated with these regional identifications involves a relationship between the FRCC and SERC 

regions. The state of Florida was included in SERC until 1996, when the Florida peninsula became a 

separate region (FRCC). Because of this clear change, Florida is treated purely as part of SERC until the 

year 1996 in the dataset, at which point it is treated as part of both FRCC and SERC. This is because, as 

one can see in the previously mentioned map, part of Florida became the FRCC while part of the state 

remained a portion of SERC. 

 The other NERC dummy variables are treated as time-invariant, based upon the appearance of 

the current NERC map, for the simple reason that regional and structural shifts since 1990 have been 

too complex to lend themselves to the construction of a dataset that perfectly incorporates these 

changes. While certain regions may not even have been in effect until after 1990, it is assumed that 

particular current NERC regions contain clusters of states that have gone through similar regulation 

experiences and it is thus deemed appropriate to treat them as such for the purposes of the regression 

analysis in this study. The various regions, sub-regions, and their associated predecessors have gone 

through enough restructuring over the past forty or more years to warrant their own standalone paper 

on the history of NERC and electricity supply reliability in the United States. This complex history is 

outside the scope of this analysis. It must also be noted that, in the NERC dummy dataset employed in 

this analysis, it is not remotely unusual for a state to be considered part of multiple NERC regions 
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(individual states frequently take a value of one for more than just one NERC dummy variable). This 

allows inclusion of all dummy variables in a model without succumbing to the dummy variable trap. 

15. Real Fossil Fuel Composite Price 

 Included in some regressions was a variable accounting for national fossil fuel prices. Annual real 

fossil fuel composite prices were obtained from the EIA for this purpose. The EIA derived these data by 

multiplying each fossil fuel’s price per Btu by the total Btu content of the production of each fossil fuel, 

then dividing this accumulated value of total fossil fuel production by the accumulated Btu content of 

total production of fossil fuel. The composite price was reported in chained (2005) dollars, calculated by 

using gross domestic product implicit price deflators. This variable took three potential forms 

throughout regression analysis. The first was the natural logarithm of the price itself for each year. The 

second was the natural logarithm of the five-year lagged moving average of the real fossil fuel 

composite price; that is, for example, the 1990 five-year moving average was calculated as the average 

real fossil fuel composite price among the years 1985, 1986, 1987, 1988, and 1989.  

Real fossil fuel composite price was obtained for regression analysis because of the idea that 

some states may choose to utilize less fossil fuel to react to increases in price. The five-year lagged 

moving average is included because such shifts might take time, rather than occurring immediately. A 

third form of this variable - the difference between the particular year’s real composite price and the 

moving average - was also included in some regressions. The difference could be included in a regression 

together with the moving average to account for current prices and lagged effects simultaneously, while 

avoiding the collinearity problems that would likely occur if the regular current price were included in 

the same regression with the moving average. 
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16. (1+S) 

 One of the dependent variables in regression analysis is the quantity (1+S), which can be 

thought of as a proxy for trade balance of carbon dioxide emissions – that is, whether a given state is a 

net exporter or net importer of carbon dioxide, and to what degree. With subscript i standing for a 

particular state and t for a particular year, the expression S can be thought of as the share of total state 

carbon emissions from all sources (Cit) that comes from carbon emissions embodied in electricity 

imports. (1+S) equals 1 – (CX
it / Cit ) for net exporters. On the other hand, because a trade balance 

indicating net imports is treated as a positive quantity, the formula is a bit different for net importing 

states. In the case of net importers, (1+S) equals 1 + (CI
it / Cit), where CI

it represents carbon emissions 

embodied in electricity imports. Because of this particular construction, (1+S) is less than one for net 

exporters and is greater than one for net importers. 

 Of course, in order to construct this (1+S) expression, it was first necessary to calculate the 

carbon emissions embodied in net exports and in net imports for exporters and importers, respectively. 

For net exporters, carbon dioxide exports CX
it equals Xe

it x [Ce
it / Ee

it ], where Xe
it is net exports of 

electricity in Btus, Ce
it is carbon emissions from total electricity generation, and Ee

it represents the 

electric power sector’s energy consumption in Btus. For net importing states, the procedure was slightly 

different. Because the origin of electricity imported to these states (that is, the state which originally 

produced the energy) was not tracked for the original data set, the specific ratio of emissions per Btu 

was not known for individual importers. Therefore, this ratio needed to be substituted with the 

collective average emissions per Btu embodied in electricity exports ∑i C
X

it / ∑i X
e

it as a method of 

approximation. This is because, for exporting states, emissions quantities from the electricity sector and 

total electricity generation were both tracked. So, for net importers, the carbon dioxide emissions 
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embodied in net imports CI
it equals {∑i C

X
it / ∑i X

e
it} x Ie

it where Ie
it denotes net imports of electricity in 

Btus. 

 Now, with these carbon dioxide exports and imports calculated, the (1+S) variable can be 

constructed. For exporters, (1+S) equals 1 – (CX
it / Cit ) and for importers, (1+S) equals 1 + (CI

it / Cit ). It is 

visible from this methodology that a carbon dioxide trade ratio is treated as positive in the case of net 

imports and negative in the case of net exports. It is also apparent now that (1+S) can represent a proxy 

for carbon dioxide trade balance; when (1+S) rises for a particular state, that indicates an increase in 

electricity imported (and thus an increase in carbon dioxide emissions exported to other states that 

generate this electricity), relative to total statewide production of carbon dioxide. It can also reflect a 

decrease in electricity exported (and thus a decrease in carbon dioxide effectively imported from other 

states that are importing the electricity).  

Conversely, when (1+S) falls, it indicates a decrease in imports or an increase in exports of 

electricity, relative to total statewide production. In the case of an increase in electricity exports, this 

means a higher proportion of statewide carbon dioxide emissions generated at home that can be 

attributed to the consumption of other states (in other words, an effective increase in carbon dioxide 

imports). On the other hand, in the case of a decrease in electricity imports, this indicates a lower ratio 

of carbon dioxide from imported electricity to total CO2 emissions produced at home (in other words, a 

relative decrease in carbon dioxide exports that cause additional emissions in other states from which 

this electricity is imported). The interpretation of this variable may seem unnecessarily complex, but the 

peculiar construction is due to a mathematical necessity to avoid attempts to calculate the natural 

logarithm of zero in the event of zero exports and zero imports. 
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17. Age Distribution 

 The age variables measure the percentage of each state’s population that falls within a 

particular age range. Four age range variables are constructed in this panel data set from data files 

available from the U.S. Census Bureau. The ranges correspond to percentages falling between the ages 

of zero and 19, 20 and 39, 40 and 54, and 55 and over. The 40 to 54 age range was dropped in the 

regression equation to avoid problems resulting from perfect collinearity occurring with the inclusion of 

all four variables. 

 The age range variables in this paper’s panel data set were aggregated from two different data 

files. One was used for age distribution from the year 1990 to 1999, while the other corresponded to the 

year 2000 through 2010. The 1990-1999 data set reported the numbers of individuals falling into age 

ranges in increments of five years; ranges corresponded to under 5 years, 5 to 9 years, 10 to 14, 15 to 

19, 20 to 24, 25 to 29, 30 to 34, 35 to 39, 40 to 44, 45 to 49, 50 to 54, 55 to 59, 60 to 64, 65 to 69, 70 to 

74, 75 to 79, 80 to 84, and 85 years and over. From this raw data set, individuals falling within certain 

five-year age ranges were summed together to create each new bin. For example, the “under 5 years” 

count was added to 5 to 9, 10 to 14, and 15 to 19 to create the new value for the “zero to 19 years” 

variable. This continued until values were obtained for all four of the new bins. Then, each of these 

values were divided by the population values previously discussed. Simple addition showed that these 

percentages all added up to one hundred percent (or extremely close), indicating no major human 

errors during the data manipulation process. 

 Age distribution data for 2000 to 2010 were collected in a similar manner. These data were 

reported in the exact same five-year increments as in the case for 1990 through 1999, with one very 

small difference. According to the “file layout” PDF file that accompanied the data file on the U.S. 

Census Bureau’s website, a value of zero for “AGEGRP” in the original data file indicated the number of 
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individuals with an age of zero, while a value of 1 for “AGEGRP” indicated total individuals within the age 

range of 1 to 4 years. However, this did not seem accurate once the data were closely examined.  

As in the case of the 1990 to 1999 data, all ages were added together to obtain totals for the 

new bins previously discussed, then divided by state population to convert these numbers to 

percentages. However, once all percentages were added together, the totals were equal to 200 percent 

instead of 100 percent. Upon closer inspection, it was apparent that the totals for the zero value in 

“AGEGRP” – that is, the population of individuals with an age of zero, according to the companion 

document – were all equal to the total state population. These values matched the values in the 

population data file used in this study. It was thus concluded that the U.S. Census Bureau likely made an 

error with labeling in their metadata document. Once these totals for each zero in “AGEGRP” were 

dropped, the sum of the percentages were again equal to 100 percent (or extremely close), making it 

very likely that the metadata document had made a slight error. It is likely that the “1 to 4” age group 

includes all ages under 5 years, including individuals with an age of zero, and was treated as such in this 

study during variable construction. All of the age group populations in this file and in the 1990 to 1999 

data file reflect numbers of correspondingly aged individuals residing in the state as of July 1st of each 

particular year. 
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Appendix 2: NERC Dummy Variable Coefficients for Selected Regressions 

Table A2.1: NERC Dummy Coefficients for Electricity Trade Effect, Period 1 
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Table A2.2: NERC Dummy Coefficients for Electricity Trade Effect, Period 2 
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Table A2.3: NERC Dummy Coefficients for Carbon Intensity, Period 1 
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Table A2.4: NERC Dummy Coefficients for Carbon Intensity, Period 2 
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Table A2.5: NERC Dummy Coefficients for Energy Intensity, Period 1 
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Table A2.6: NERC Dummy Coefficients for Energy Intensity, Period 2 
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Appendix 3: Regression Results for “All Years” Time Period: 1990-2010 

Table A3.1: Electricity Trade Effect Parameter Estimates, 1990-2010 
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Table A3.2: Carbon Intensity Parameter Estimates, 1990-2010 
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Table A3.3: Energy Intensity Parameter Estimates, 1990-2010 
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Table A3.4: Energy Consumption Parameter Estimates, 1990-2010 
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Appendix 4: Elasticity Graphs for “All Years” Time Period: 1990-2010 

Figure A4.1: Income Elasticity of Electricity Trade Effect, 1990-2010 
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Figure A4.2: Income Elasticity of Carbon Intensity, 1990-2010 

 

Figure A4.3: Income Elasticity of Energy Intensity, 1990-2010 
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Figure A4.4: Total Income Elasticity of Per Capita Emissions, 1990-2010 

 

Figure A4.5: Total Income Elasticity of Per Capita Emissions (No Trade Effect): 1990-2010 
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Appendix 5: Tests of Structural Change 

Chow Test Calculations3 

Total observations equals 1071 in each case. 

Sc = Sum of squared residuals from combined data 

S1 = Sum of squared residuals from first group 

S2 = Sum of squared residuals from second group 

k = Total number of parameters, including intercept 

 

Electricity Trade Effect (S2) Chow Test Results 

Sc = 22.614 

S1 = 13.249 

S2 = 8.4347 

k = 14 

Chow statistic = 3.196287995; with 14 numerator degrees of freedom and 1045 denominator degrees of 
freedom, table value = 1.7522. REJECT null hypothesis of equal coefficients across periods at 5% 
significance. 

 

Carbon Intensity (S2) Chow Test Results 

Sc = 36.150 

S1 = 20.969 

S2 = 14.143 

k = 15 

Chow statistic = 2.051640465; with 15 numerator degrees of freedom and 1041 denominator degrees of 
freedom, table value = 1.6664. REJECT null hypothesis of equal coefficients across periods at 5% 
significance. 

 

 

 

                                                             
3 These Chow tests were conducted using pooled OLS regressions. 
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Energy Intensity Effect (S5) Chow Test Results – No Age Variables 

Sc = 30.426 

S1 = 16.852 

S2 = 12.512 

k = 17 

Chow statistic = 2.206170821; with 17 numerator degrees of freedom and 1037 denominator degrees of 
freedom, table value = 1.6664. REJECT null hypothesis of equal coefficients across periods at 5% 
significance. 

 

Energy Intensity Effect (S4) Chow Test Results – With Age Variables 

Sc = 30.196 

S1 = 15.989 

S2 = 11.780 

k = 20 

Chow statistic = 4.505450322; with 20 numerator degrees of freedom and 1031 denominator degrees of 
freedom, table value = 1.5705. REJECT null hypothesis of equal coefficients across periods at 5% 
significance. 

 

Crump, et al Nonparametric Subpopulation Test Calculations: Alternative Tests of Structural Change 

The test statistic is the following: 

T’ = (β0-β1)’(Ω0,11/N0+Ω1,11/N1)-1(β0-β1) 

where N0 and N1 are the sample sizes for each time period, Ω0 and Ω1 are corresponding consistent 
estimators for normalized asymptotic covariance matrices, the subscripts 11 denote the second row, 
second column elements from Ω matrices for each subpopulation partitioned into parts corresponding 
to variance of the intercept and of the slope coefficients, respectively, like so: 

 

This nonparametric test serves in this context as an alternative test of structural change between 
subpopulations or periods in panel data models (Crump et al, 2008). The results follow below. 
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Electricity Trade Effect (S2) Subpopulation Test Result 

Test statistic = 15475.902; with k-1 (including intercept) degrees of freedom, the Chi square table value 
= 22.36. REJECT the null hypothesis of equal coefficients across periods at 5% significance. 

 

Carbon Intensity (S2) Subpopulation Test Result 

Test statistic = 25747.574; with k-1 = 15 degrees of freedom, the Chi square table value = 25.00. REJECT 
the null hypothesis of equal coefficients across periods at 5% significance. 

 

Energy Intensity Effect (S5) Subpopulation Test Result – No Age Variables 

Test statistic = 41419.54; with k-1 = 16 degrees of freedom, the Chi square table value = 26.30. REJECT 
the null hypothesis of equal coefficients across periods at 5% significance. 

 

Energy Intensity Effect (S4) Subpopulation Test Result – With Age Variables 

Test statistic = 44230.87; with k-1 = 19 degrees of freedom, the Chi square table value = 30.14. REJECT 
the null hypothesis of equal coefficients across periods at 5% significance. 

 

Energy Consumption Subpopulation Test Result – No Age Variables 

Test statistic = 50721.033; with k-1 = 16 degrees of freedom, the Chi square table value = 26.30. REJECT 
the null hypothesis of equal coefficients across periods at 5% significance. 

 

Energy Consumption Subpopulation Test Result – With Age Variables 

Test statistic = 55292.95; with k-1 = 19 degrees of freedom, the Chi square table value = 30.14. REJECT 
the null hypothesis of equal coefficients across periods at 5% significance. 
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Appendix 6: Tests for Heteroscedasticity, Autocorrelation, and Contemporaneous Correlation4 

 

Electricity Trade Effect (S2) Test Results 

Cross-section heteroskedasticity: LM test statistic = 1593.9; Chi square table value with 50 degrees of 
freedom yields a p-value of 0.00000. REJECT null hypothesis of no heteroskedasticity. 

Contemporaneous correlation: Breusch-Pagan LM test statistic = 12181; Chi square table value with 
1275 degrees of freedom yields a p-value of 0.00000. REJECT null hypothesis of no contemporaneous 
correlation. 

Autocorrelation: Durbin-Watson test statistic = 0.0707; with 51 and 13 degrees of freedom, REJECT null 
hypothesis of no autocorrelation at 5% significance. 

 

Carbon Intensity (S2) Test Results 

Cross-section heteroskedasticity: LM test statistic = 1189.9; Chi square table value with 50 degrees of 
freedom yields a p-value of 0.00000. REJECT null hypothesis of no heteroskedasticity. 

Contemporaneous correlation: Breusch-Pagan LM test statistic = 13381; Chi square table value with 
1275 degrees of freedom yields a p-value of 0.00000. REJECT null hypothesis of no contemporaneous 
correlation. 

Autocorrelation: Durbin-Watson test statistic = 0.0592; with 51 and 14 degrees of freedom, REJECT null 
hypothesis of no autocorrelation at 5% significance. 

 

Energy Intensity Effect (S5) Test Results – No Age Variables 

Cross-section heteroskedasticity: LM test statistic = 3210.3; Chi square table value with 50 degrees of 
freedom yields a p-value of 0.00000. REJECT null hypothesis of no heteroskedasticity. 

Contemporaneous correlation: Breusch-Pagan LM test statistic = 12015; Chi square table value with 
1275 degrees of freedom yields a p-value of 0.00000. REJECT null hypothesis of no contemporaneous 
correlation. 

Autocorrelation: Durbin-Watson test statistic = 0.0614; with 51 and 16 degrees of freedom, REJECT null 
hypothesis of no autocorrelation at 5% significance. 

 

Energy Intensity Effect (S4) Test Results – With Age Variables 

Cross-section heteroskedasticity: LM test statistic = 3360.4; Chi square table value with 50 degrees of 
freedom yields a p-value of 0.00000. REJECT null hypothesis of no heteroskedasticity. 

                                                             
4
 Test results shown are for “all years” (1990-2010) regressions. Test results had the same conclusions for both 

subperiods and for the “all years” regressions. 
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Contemporaneous correlation: Breusch-Pagan LM test statistic = 11539; Chi square table value with 
1275 degrees of freedom yields a p-value of 0.00000. REJECT null hypothesis of no contemporaneous 
correlation. 

Autocorrelation: Durbin-Watson test statistic = 0.0628; with 51 and 19 degrees of freedom, REJECT null 
hypothesis of no autocorrelation at 5% significance. 
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Appendix 7: Energy Intensity Regression Results 

 

Table A7.1: Energy Intensity Parameter Estimates, Period 1 
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Table A7.2: Energy Intensity Parameter Estimates – Regional Dummies, Period 1 
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Table A7.3: Energy Intensity Parameter Estimates, Period 2 

 



131 
 

Table A7.4: Energy Intensity Parameter Estimates – Regional Dummies, Period 2 
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Appendix 8: Descriptive Statistics 

Table A8.1: Summary Statistics, Period 1, Part 1 
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Table A8.2: Summary Statistics, Period 1, Part 2 
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Table A8.3: Summary Statistics, Period 1, Part 3 
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Table A8.4: Summary Statistics, Period 2, Part 1 
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Table A8.5: Summary Statistics, Period 2, Part 2 
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Table A8.6: Summary Statistics, Period 2, Part 3 
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Table A8.7: Summary Statistics, All Years, Part 1 
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Table A8.8: Summary Statistics, All Years, Part 2 
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Table A8.9: Summary Statistics, All Years, Part 3 

 

 

  



141 
 

Appendix 9: Sensitivity Analysis 

 For each model and time period, one can observe some differences when atypical areas – such 

as the District of Columbia, with its unusually high income and population density, as well as the two 

non-contiguous states – are removed from the data set. In particular, income and its squared term lose 

significance in many cases. This is particularly striking given our focus on income as a key variable for 

EKC analysis. Future studies are well advised to pay more attention to these areas and their 

consequences on a possible EKC with regard to CO2 emissions in the United States. The sensitivity 

analysis outcomes are provided in the following tables. 
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Table A9.1: Electricity Trade Effect Sensitivity Analysis 
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Table A9.2: Carbon Intensity Sensitivity Analysis 

 

 

 



144 
 

Table A9.3: Energy Intensity Sensitivity Analysis 
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Table A9.4: Energy Consumption Sensitivity Analysis 
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Appendix 10: Data for Selected Years 

Table A10.1: 1990 Data, Part 1 
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Table A10.2: 1990 Data, Part 2 
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Table A10.3: 1990 Data, Part 3 
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Table A10.4: 1990 Data, Part 4 
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Table A10.5: 1990 Data, Part 5 
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Table A10.6: 1990 Data, Part 6 
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Table A10.7: 1990 Data, Part 7 
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Table A10.8: 1990 Data, Part 8 

 

 

 

  



154 
 

Table A10.9: 1997 Data, Part 1 

 

 

 

  



155 
 

Table A10.10: 1997 Data, Part 2 
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Table A10.11: 1997 Data, Part 3 
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Table A10.12: 1997 Data, Part 4 
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Table A10.13: 1997 Data, Part 5 
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Table A10.14: 1997 Data, Part 6 
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Table A10.15: 1997 Data, Part 7 
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Table A10.16: 1997 Data, Part 8 
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Table A10.17: 1998 Data, Part 1 
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Table A10.18: 1998 Data, Part 2 
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Table A10.19: 1998 Data, Part 3 
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Table A10.20: 1998 Data, Part 4 
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Table A10.21: 1998 Data, Part 5 
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Table A10.22: 1998 Data, Part 6 
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Table A10.23: 1998 Data, Part 7 
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Table A10.24: 1998 Data, Part 8 
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Table A10.25: 2010 Data, Part 1 
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Table A10.26: 2010 Data, Part 2 
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Table A10.27: 2010 Data, Part 3 
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Table A10.28: 2010 Data, Part 4 
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Table A10.29: 2010 Data, Part 5 
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Table A10.30: 2010 Data, Part 6 
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Table A10.31: 2010 Data, Part 7 
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Table A10.32: 2010 Data, Part 8 

 

 

 

 

 




