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Abstract

Quantile Regression Analysis of 
Asymmetrically Distributed Residuals

In Consumer Demand Equations

Lester D. Taylor
University of Arizona

Apart from examining for autocorrelation and heteroscedasticity, applied
econometricians seldom give much attention to the properties of the stochastic terms
of their regression models.  Most of the time, least-squares estimation (in some form
or another) is employed, based upon a belief (often no more than implicit) that the
conditions needed for the validity of the Gauss-Markov and Classical Normal
Central-Limit Theorems are ever present.  In fact, there are a lot of reasons as to
why real-world error terms may not behave in ways that these conditions require.
Residuals from Engel curves and demand functions estimated from data from the
BLS quarterly consumer expenditure surveys provides a rather striking instance of
this, in that the distribution of these residuals are almost invariably asymmetrical
and fat-tailed.  The focus of the present exercise is on the use of quantile regression
as a robust corrective.

This paper is part of an on-going analysis of data from the quarterly BLS consumer
expenditure surveys.  Earlier exercises include Taylor (2003, 2004a, 2004b, and
2004c).  I am grateful to Sean McNamara of the American Chambers of Commerce
Researchers Association (ACCRA) for making EXCEL files of ACCRA surveys
available to me and to the Cardon Chair Endowment in the Department of
Agricultural and Resource Economics at the University of Arizona for financial
support.  Construction of data sets and econometric estimation have all been done in
SAS. 



1 The model is a simple double-logarithmic equation that relates the logarithm of a
households’s housing expenditures to the logarithms of the household’s total consumption
expenditure and the logarithms of prices for food consumed at home, housing, utilities,
transportation, health care, and miscellaneous expenditures, plus a list of socio-demographical
variables.  The data set will be described in  Section III below and in greater detail in the
appendix.  The kernel-smoothing employed is described in a footnote in Section IV.

Quantile Regression Analysis of 
Asymmetrically Distributed Residuals

In Consumer Demand Equations

Lester D. Taylor
University of Arizona

I. Introduction

Apart from examining for autocorrelation and heteroscedasticity, applied econometricians
seldom give much attention to the properties of the stochastic terms of their regression models.  Most
of the time, least-squares estimation (in some form or another) is employed, based upon a belief
(often no more than implicit) that the conditions needed for the validity of the Gauss-Markov and
Classical Normal Central-Limit Theorems are ever present.  In fact, there are a lot of reasons as to
why real-world error terms may not behave in ways that these conditions require.  If, for example,
even one of the factors subsumed in an error term has an infinite variance, then neither of the
theorems can be assumed to hold.  Given the pervasiveness of phenomena (both natural and socio-
economic, including in economics the distributions of income and wealth and of short-term
speculative price changes) that are empirically described by scaling distributions with exponents
greater than -2, that such phenomena may occasionally find presence in the error terms of
econometric models is obviously to be expected.  However, the concern of the present exercise is
not with absence of second moments, per se, but rather with a phenomenon that has revealed itself
steadily over the last couple of years in connection with my research using data from the BLS
quarterly consumer expenditure surveys, namely, a rather marked asymmetry in the distributions of
residuals from estimated Engel curves and consumer demand functions.

The graph in Figure 1 is typical.  The graph in this figure is a kernel-smoothed density
function of the residuals from a double-logarithmic equation fitted by ordinary least squares to 8056
observations on housing expenditures of individual households from the four quarterly BLS CES
surveys for 1996.  Quite clearly, the distribution is not symmetrical, but rather is left-skewed (i.e.,
has a longer tail on the left than on the right), and has peak density well to the right of its OLS mean
of 0.  As illustration of the analysis to follow, the graphs in Figures 2 and 3 show residuals from the
same model for two quantile regressions.  The graph in Figure 2 is for the residuals from a median
quantile regression, which corresponds to estimation by minimizing the sum of absolute errors, while
the graph in Figure 3 is for the residuals from a quantile regression estimated at the mode of the
density function for the residuals from the median regression.1
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Kernel-Smoothed Density Function
OLS Residuals for Housing

BLS-CES Surveys 1996

Figure 2

Kernel-Smoothed Density Function
Median Regression Residuals for Housing

BLS-CES Surveys 1996
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2 Outliers affect quantile regressions only in terms of numbers above and below the
regression hyperplane at the specified quantile, while OLS regressions are affected by both
numbers and value.
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Kernel-Smoothed Density Function
Modal Regression Residuals for Housing

BLS-CES Surveys 1996

At this point, three things are to be noticed about these graphs.  The first thing is that the
asymmetrical density function of Figure 1 is definitely preserved in the quantile regressions.
However, since the only material change is in the minimizing metric employed in estimation, this
is probably to be expected.  The second thing to notice is a lengthening of the lower tail of the
density function for the quantile equations, especially for the residuals from the modal regression.2
This latter, of course, is a reflection of the strong OLS sensitivity to outlier observations.  Finally,
the third thing to notice is the movement of the peak (or mode) of the densities to 0.  The modal
density, obviously, has the mode right at 0, and nearer to 0 for the median regression residuals than
for the OLS residuals.  All this, of course, is simply a reflection of the well-known relations to one
another of the mean, median, and mode in skewed distributions. 

While it might be thought that the use of a robust method of estimation might lead to the
disappearance of the asymmetrical OLS residuals in this context, this quite clearly is not the case.
Quantile regression, which is being increasingly viewed as one of the most powerful robust
regression methods, appears only to lead to a sharpening of the asymmetry.  Thus, the big question
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remains: Why such asymmetries?  Are these a true implication of nature? Or are they simply a
consequence of misspecification?  Unfortunately, I do not know the answer to this question, but
actually having an answer  is not the concern of this exercise.  My concern in what follows is to take
the asymmetry at face value, and to suggest that quantile regression provides a useful instrument for
mitigating its effects.  Accordingly, in Section III an exercise involving quantile-regression
estimation of an additive double-logarithmic demand system applied to a data set consisting of
observations for individual households on six exhaustive categories of expenditure from the
quarterly BLS consumer expenditures surveys will be undertaken.  However, before doing this, a
brief overview of the theory and mechanics of quantile regression is in order.

II. Quantile Regression

Since the seminal articles of 1978 of Bassett and Koenker, quantile regression has emerged
as a powerful robust alternative to least-squares procedures in situations in which the assumptions
underlying least-squares estimation are questionable. As a point of departure, consider the standard
regression model, which postulates a relationship between a dependent variable y and N independent
variables x (viewed as a non-stochastic row vector), in terms of the conditional expectation of y,
given x:

(1) E(y|x)     =     g(x), 

for some function g.  If g(x) is assumed to be linear in x, then we have the conventional linear
regression model,

(2) y    =    Xβ + u,

where u is assumed to be an unobservable stochastic term of mean zero with density function f(u).
If f(u) has a finite variance, then, as is well-known, the Gauss-Markov for Least Squares states that
the estimator of β that minimizes the quantity:

(3) φ(y, X, β)     =     (y  - Xβ)�(y  - Xβ) ,

with respect to β,

(4) b     =     (X�X)-1 X�y ,

is the minimum-variance unbiased estimator of β in the class of all unbiased estimators linear in y.
If, in addition, f(u) should be distributed normally (even if only asymptotically), then all of the
apparatus of conventional statistical inference is available for hypothesis testing and confidence
interval construction.



5

3 Koenker and Bassett (1978, p. 35).

4 See Bassett and Koenker (1978, 1982), Koenker and Bassett (1978) , Hahn (1995),
Buchinsky (1994a, 1994b, 1995, 1998), Horowitz (1998), Bassett and Chen (2000), and Mello
and Perrelli (2003).

5 What “above” and “below” mean in this context is that half of the residuals will be
positive and half will be negative.  In saying “half-and-half”, however, I am ignoring the fact that
(degeneracy aside) that N of the residuals (with N independent variables) will be exactly zero. 
The median for a single random variable can according be viewed as the LAE regression of the
variable on a vector of 1's.  Assuming that the linear model has an intercept (i.e., that one of the
columns of X is a vector of 1's), the intercept with LAE can accordingly be interpreted as shifting
the (N-1)-dimensional hyperplane defined by the N-1 non-constant variables so as to “split” the
residuals half-and-half between positive and negative.

6 See Bassett and Koenker (1978).

However, as Koenker and Bassett note,3 one of the dark secrets of applied statistics and
econometrics is that faith in the validity of Gauss-Markov and Normality assumptions is often
misplaced, in which case it is wise to consider non-linear, or even, biased, estimators that may be
superior to least squares.  One such estimator, which in Gauss and Laplace has essentially the same
progenitors as least squares, is the one associated with minimizing the sum of absolute errors (as
opposed to the sum of squared errors), or LAE.  Historically, LAE was never able to compete with
least squares because of mathematical intractability and lack of a suitable sampling theory.
Fortunately, this is no longer the case, for in the 1960's it was recognized that LAE estimators can
be obtained as solutions to linear programming problems,4 and, thanks to Koenker and Bassett, a
workable sampling theory is now available -- not only for LAE, but also for its generalization to
quantile regression.

For a single random variable x, the LAE estimator is simply the median of x, that is, the point
on the distribution of x for which half of the values of x lie above and half below.  With the linear
model, y = Xβ + u, the LAE estimator of β also corresponds to a median, though in this case to the
“median”  hyperplane , defined by Xb, for which half the values of y will lie “above” Xb and half
will lie  “below”.5  Quantile regression (QR) is a generalization of the LAE estimator to quantiles
other than the median.  Specifically, the quantile regression for the qth quantile (0 �q �1), the QR
vector, bq , for q will be given by minimizing with respect to β the expression:6

(5) θ(β|y, X, q)     =     �ρq|y  - Xβ| ,

where:
                   q         if  y  - Xβ  � 0

(6) ρq     =    
    1 - q       if  y  - Xβ  > 0.



6

7 Provided, of course, that f(q) is not 0.  See Koenker and Bassett (1978).  A number of
finite sample approximations, including bootstraps, to the asymptotic covariance matrix have
been proposed and investigated in Monte Carlo studies.  Buchinsky (1995) provides a good
discussion and evaluation of these.

8 A more detailed discussion of this model is given in Taylor (2004c).

The solution vector bq to this minimization problem is obtained straightforwardly as the solution to
a linear programming problem.

Just as the LAE regression, which corresponds to q = 0.5, has half of the residuals positive
and half negative, the quantile regression for q  (and T observations) will have qT residuals  less than
or equal to 0 and (1 - q)T residuals greater than 0.  This is true for all q.  Under fairly lenient
regularity conditions, the QR estimators are distributed asymptotically normal with mean vector βq
and covariance matrix ω (X�X)-1, where

(7) ω     =     q(1 - q)/f(q)2

and f(q) is the value of the density function of u at q.7  These asymptotic results hold even if u should
lack a second moment.

III. Quantile Regression Applied to CES Demand Equations

We now turn to the main purpose of this paper, which is investigation, using quantile
regression, of asymmetrically distributed residuals from consumer demand functions estimated with
data from the U. S. BLS consumer expenditure surveys.  However, unlike in the introduction, which
illustrated the phenomenon using residuals from a simple double-logarithmic demand function, we
will now utilize a system of additive double-logarithmic demand equations, as applied to six
exhaustive categories of  expenditure.  The six categories of expenditure are food consumed at home,
housing, utilities, transportation, health care, and miscellaneous expenditures.

Despite their often superior fit and convenience of estimation, simple double-logarithmic
demand functions (i.e., equations in which logarithms of goods purchased are related linearly to
logarithms of income and prices) have the important drawback that they are not additive, in that the
sum of predicted expenditures from them do not satisfy the budget constraint.  The demand functions
to be employed here start out double-logarithmic as just described, but are made additive using a
mathematical device first introduced by Houthakker in his famous Econometrica paper of 1960 on
additive preferences.8

The mathematical device in question enables any non-additive function θi(y) to be made
additive in terms of y by the transformation,
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9 The particular identifying restrictions imposed will be discussed below.
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The denominator in this expression for fj (y, p) is obviously a very complicated function of
prices (p) and income (y), indeed so much so that estimation of the functions directly is pretty much
intractable.  However, following Houthakker’s 1960 derivation of the indirect addilog model, the
messy denominators can be eliminated through division of fj(y, p) by fi(y, p), so that:
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Upon taking logarithms, this expression becomes:

(12) lnpjqj  -   lnpiqi     =     aij    +   (βj  -  βi)lny +  �(γjk -  γik)lnpk ,   i, j, k = 1, ..., n,  j � i ,

where aij   = lnAj  -  lnAi .

Expression (12) is thus seen to be consist of n - 1 double-logarithmic equations, in which the
“dependent” variables are logarithmic differences, and the “independent” variables are the
logarithms of income and the n prices. The coefficients that are estimated in the these equations are
not βj and γjk , but rather (βj  -  βi) and (γjk -  γik), which would appear to leave the  individual β’s and
γ’s unidentified.  However, by making use of a variety of additivity and other constraints, estimates
of these underlying parameters can be obtained.9
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10 See http://www.ACCRA.com for descriptions of these surveys.  A list of the items
included in the surveys is given in the appendix.

11 Since the information collected in the CES surveys refer to pjqj, rather than to qj and pj
separately, the logarithms of  “quantities” have been calculated as lnpjqj  - lnpj, where pj is the
ACCRA price for category j.  Because both expenditures and prices are in logarithms, the only
difference in estimation (with lnqj -  lnqi as the dependent variables, rather than lnpjqj -  lnpiqi) is
that the coefficients on lnpj and lni differ by 1 (or -1).  

12 A full listing of the variables included is given in the appendix.

13 To save space, graphs for the QR median residuals are suppressed.  As in Figures 2 and
3, the QR median and mode residuals are very similar, the only real difference being movement
of the mode to 0 in the modal regression.The kernel-smoothed density functions [g(ui)] have been
calculated using the unit normal density function as the kernel weighting function and a ‘support’
of k = 1000 intervals. Silverman’s rule-of-thumb,
 

h     =     (0.9)min[std. dev., interquartile range/1.34](N-1/5),

has been used for the smoothing parameter h.  Two standard references for kernel density estimation
are Silverman (1986) and Wand and Jones (1995).  Ker and Goodwin (2000) provide an interesting
practical application to the estimation of crop insurance rates.

14 It must be kept in mind that the coefficients in Table 1 refer to elasticity differences,
rather than elasticities themselves.  Tables of the latter will be presented in the next section.

We now turn to the empirical analysis.  The equations in expression (12), with n = 6, are
applied, using both OLS and QR, to a data set consisting of 8056 observations from the four
quarterly U. S. BLS consumer expenditure surveys for 1996, augmented with price data obtained
from quarterly cost-of-living surveys conducted by the American Chambers of Commerce
Researchers’ Association (ACCRA).10  The ‘left-out” category in the equations is miscellaneous
expenditures.  Although the model is formulated in terms of expenditures, the equations have been
estimated with lnqj -  lnqi as the dependent variables, rather than lnpjqj -  lnpiqi.11  The independent
variables in the equations are, as noted in footnote 1, the logarithms of total expenditure and of the
six prices, plus socio-demographical and regional variables, such as age and education of head of
household, family size, ethnicity, and region of residence.12

The estimated regression coefficients and t-values (asymptotic for the QR equations) for the
five estimating equations are tabulated in Table 1, while the kernel-smoothed distributions of
residuals are given in Figures 4 - 8.13  The coefficients in the quantile regressions are generally very
similar, as are also the coefficients on total expenditure for OLS and QR.  Often, however, there are
rather marked differences between the OLS and QR price coefficients.14  On the other hand, the real
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Table 1

Additive Double-Log Regression Equations
CES Surveys 1996

(t-ratios in parentheses)
                                                    Food                                                             Housing                                                        Utilities                          
Variable                 OLS           QR(Med.)      QR(Mode)              OLS          QR(Med.)      QR(Mode)             OLS         QR(Med.)      QR(Mode)

pfood                 -1.2085           -0.7179           -0.7668             -0.9667          -0.8665           -0.8494            -0.9727         -0.8703          -0.7235
                            (-3.45)            (-2.10)             (-2.26)              (-2.69)            (-2.45)            (-2.40)             (-2.51)           (-2.44)           (-2.07)

phous                  0.2840            0.1006             0.1074             -0.6254         -0.6717           -0.6665              0.2548          0.1471           0.1289
                             (3.19)             (1.16)               (1.25)              (-6.85)           (-7.48)             (-7.43)               (2.59)           (1.62)            (1.45)

putil                    0.3134            0.2227             0.2266              0.5077           0.3997            0.4046             -0.4839         -0.6233         -0.7446
                             (2.79)             (2.03)              (2.08)                (4.40)             (3.52)             (3.56)              (-3.89)           (-5.45)          (-6.64)

ptrans                -0.0960           -0.1484           -0.1435              0.2314            0.1815            0.1727              0.0509         -0.0430         -0.0605
                           (-0.76)            (-1.20)             (-1.17)               (1.78)              (1.42)             (1.35)               (0.36)           (-0.33)          (-0.48)

phlthcare             0.0026            0.2563            0.2198              0.2337           0.1938             0.2031            -0.3291         -0.0755          -0.1435
                            (0.02)             (1.56)               (1.35)               (1.35)             (1.14)              (1.19)             (-1.77)            (-0.44)          (-0.85)

pmisc                  0.8421            0.4984            0.6040              0.6745            0.7991            0.7673             1.5005           1.4356          1.4604
                            (2.38)              (1.45)              (1.76)                (1.86)             (2.24)              (2.15)              (3.84)            (3.99)           (4.14)

totexp                -0.9106           -0.8944           -0.8998             -0.4279           -0.3668           -0.3685           -0.8428          -0.8381        -0.8377
                         (-43.46)           (-43.84)           (-44.43)            (-19.91)          (-17.35)          (-17.44)           (-36.40)         (-39.34)        (-40.14)

   R2                    0.3962            0.3933             0.3931              0.2289            0.2267            0.2264             0.3172           0.3144         0.3137

mode                                                                 0.4784                                                            0.4962                                                       0.4559

                                                                            Transportation                                                 Health Care                          
                                 Variable               OLS           QR(Med.)       QR(Mode)             OLS         QR(Med.)      QR(Mode)    

                                   pfood              -1.4176           -0.5409            -0.3084             -1.9658        -1.8155           -1.7564
                                                            (-2.99)            (-1.17)             (-0.68)               (-3.86)         (-3.42)             (-3.33)         

                                   phous               0.1731            0.0125            -0.0040               0.0525         0.0635            0.0098        
                                                            (1.44)              (0.17)              (-0.03)                (0.41)          (0.47)              (0.07)          

                                   putil                 0.1650            0.0136             0.0389               0.4332         0.1625             0.0882       
                                                            (1.08)              (0.09)               (0.27)                (2.65)          (0.95)               (0.52)

                                  ptrans              -1.2485           -1.1576            -1.2697              0.0494         -0.0228           -0.0171         
                                                           (-7.28)            (-6.96)              (-7.81)                (0.27)          (-0.12)            (-0.09)

                               phlthcare           - 0.5675           -0.3620            -0.2003             -0.6667        -0.8908           -0.9595
                                                           (-2.49)            (-1.63)              (-0.92)               (-2.72)         (-3.49)             (-3.78)         

                                 pmisc                 3.0436            2.2411             1.9042               1.7214         2.1671            2.3660
                                                            (6.35)              (4.82)               (4.20)                 (3.35)         (4.05)              (4.44)          

                                 totexp                0.1704            -0.1018            -0.1318             -0.7661        -0.7730          -0.7765       
                                                            (6.00)             (-3.70)              (-4.90)             (-25.16)        (-24.37)          (-24.59)       

                                   R2                    0.0705             0.0560             0.0531               0.3064         0.3039            0.3039        

                                 mode                                                                 0.4545                                                          0.5209                                
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15 Expression (13) will hold if the error term appended to qj is exponential, while (14) will
if hold is the error term is multiplicative.  At this point, since skewness and long tails in the
estimating equations are facts, it makes little difference for present purposes which of the two
specifications is taken to be correct.
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story (for now) is in Figures 4 - 8, for in these we see that all of the residuals distributions (except
for the one for health care) are skewed and all have a long tail (or tails).  These long tails are
obviously very ominous for least-squares estimation.

What is particularly interesting about the skewness and long-tails in Figures 4 - 8 is that,
unlike for the residuals in Figures 1 - 3, the error terms vj underlying the residuals in these figures
are themselves transforms, specifically, differences either of the form:

(13) vj     =     uj   -   ui ,     j   �   i

or

(14)             vj     =    lnuj   -   lnui ,     j   �   i ,

where uj denotes the error term attaching to the demand function for qj in expression (9).15

Accordingly, one might have thought that the skewness and fat tails manifested by the residuals in
Figures 1 - 3 would be undone by the differencing, but Figures 4 - 8 show that this is obviously not
the case.  
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16 For other estimates of total expenditure and price elasticities for the data set used in this
exercise using a variety systems of demand functions (both non-additive and additive), see
Taylor (2004a, 2004b, 2004c).

17 The elasticities in these tables are calculated according to the following formulae:

ηtot.exp.          =        βj ,        j = 1, ..., 6. 

                    ηownprice     =    (1- wj)γjj  -   �wkγjk , k = 1, ..., 6, k � j

ηcross-price   =     -  �wkγjk ,     i, k = 1, ..., 6, k � j , 

where wj is the budget weight of the jth expenditure category.  The elasticities, it should be noted,
are aligned by column.  Hence, the cross-elasticity for food with respect to the price of housing is
0.4058 (not -0.0750, which is the cross-elasticity of housing with respect to the price of food).
The six βj�s are easily obtained from the five coefficients on lny, plus a sixth equation
representing the constraint that the budget-share weighted income elasticities sum to 1. 
Calculation of the γjk�s, on the other hand, is a bit more complicated.  Thirty-six equations are
required to solve for them, 30 of which are obviously the equations connecting the γ�s to the
coefficients on lnpj -  lnpi  in the five estimating equations.  One would then think that the Hicks-
Allen additivity conditions (i.e., that the income and own- and cross-price elasticities sum to 0
for each expenditure category) would provide the additional equations needed for identication. 
However, this is unfortunately not the case, for when linear relationships embodying these
restrictions are included, 5 of the 6 price coefficients in the “left-out” equation turn out to be co-
linear with the 31 other coefficients.  Consequently, to achieve identification, I have assumed that
the own-price elasticity for food is the negative of food’s total expenditure elasticity.  This
identifies γ11 (and therefore implicitly γ61).  For the remaining identifying restrictions, I have used

What are the implications of the skewness and long tails displayed in these figures?  In truth,
I am not really sure.  The only thing that is really clear is that long tails (since they carry the danger
of infinite variance) are ominous for least squares estimation, but not for quantile regression.
Skewness, on the other hand, would seem to be another matter, for there is nothing in the statement
of the Gauss-Markov theorem that precludes error distributions being asymmetrical about their
means (so long, that is, that they are not so skewed as to have an infinite variance).   However, since
quantile regression is clearly more robust than least squares in the presence of fat tails, and since it
can be applied at any quantile, it seems reasonable (at least to me) to deal with skewness by moving
the quantile of estimation to the mode.

IV. Price and Total Expenditure Elasticities16

The price and total expenditure elasticities calculated from the coefficients in Table 1 are
tabulated in Tables 2 - 4.17  Three things stand out in these tables:
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the five apparent co-linear relationships between γ6k (for k = 2, ..., 6), γ61 , and γji for j = 1, ..., 5
and i = 1, ..., 6.   

18 This, of course, is obviously only an argument of prima facie plausibility.

discrepancy is in the own-price elasticities for health care -- -0.94 for the modal QR value vs. -0.58
for OLS.

(1). There is close agreement across the three tables in estimates of the
total expenditure elasticities.

(2). There is also fairly close agreement, although not as strong as for the
expenditure elasticities, in the own-price elasticities.  The biggest
discrepancy is in the own-price elasticities for health care -- -0.94 for
the modal QR value vs. -0.58 for OLS.

(3). Estimates of cross-price elasticities are the most affected between
OLS and QR, particularly  in the estimates for transportation
expenditures.  This, in all likelihood, is a reflection of the fact that the

(4). As noted, the own-price elasticities for the QR median and modal
models are close in magnitude, but this is less the case for the cross-
elasticities.  Not surprisingly, differences (for a given expenditure
category) seem pretty much to be related to discrepancies between the
median and the mode.  For housing, the mode of distribution of the
residuals (as calculated from the median QR regression) is virtually
the same as the median (the mode is at quantile 0.4962), and there is
in general little difference in the estimated elasticities.  On the other
hand, the differences are noticeably larger (again, as a general
proposition) in the cross-price values for utilities and transportation,
which would appear to be a consequence that, for both of these
categories, the mode differs from the median by nearly five
percentiles.18

V. Conclusions

The focus in this study has been on what may be an unappreciated problem in applied
econometrics, namely, a situation in which the distribution of regression residuals is asymmetrical
with fat tails, a circumstance that clearly has ominous implications for least-squares estimation.  The
“corrective” proposed in this exercise has been the use of quantile regressions, which is an
increasingly used robust regression procedure that corresponds to estimation by minimizing the sum
of absolute errors at particular quantiles on the distribution of a model’s residuals.  Two quantile
regressions have been estimated, the first at the quantile corresponding to the median of the 
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Table 2

Price and Total Expenditure Elasticities
Additive Double-Logarithmic Model

BLS-ACCRA Surveys 1996
OLS Regressions

(calculated at mean values)
              Total

                            Food     Housing     Utilities     Trans.     Healthcare     Misc.     Expenditure

       Food          -0.4275    -0.0750      -0.0811    -0.5258      -1.0742       0.8916        0.4275
       Housing      0.4058    -0.5036       0.3766      0.2949       0.1743       0.1218        0.9102
       Utilities        0.0927     0.2870      -0.7046    -0.0558       0.2125      -0.2207        0.4953
       Trans.         0.0308      0.3583       0.1778    -1.1216       0.1763       0.1269        1.5085
       Healthcare  0.0889      0.3100      -0.2428    -0.4912      -0.5806      0.0863         0.5721
       Misc          -0.3261    -0.4678        0.3323     1.8754       2.4787       1.1682        1.3381

Table 3

Price and Total Expenditure Elasticities
Additive Double-Logarithmic Model

BLS-ACCRA Surveys 1996
Median QR Regressions

(calculated at mean values)
              Total

                            Food     Housing     Utilities     Trans.     Healthcare     Misc.     Expenditure

       Food          -0.4556    -0.2239      -0.2277     0.1017      -1.1729       0.6426        0.4556
       Housing      0.2929    -0.4793       0.3395      0.2049       0.2559       0.1923        1.0112
       Utilities        0.1008     0.2779     -0.7452    -0.1082       0.0407      -0.1219        0.5119
       Trans.        -0.0013      0.3286       0.1041    -1.0105       0.1243       0.1471        1.2481
       Healthcare  0.2821      0.2196      -0.0497    -0.3362      -0.8651      0.0258         0.5770
       Misc          -0.5663    -0.2656        0.3709     1.1764       3.1780      -1.0647        1.3500
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19 However, it must be kept in mind that in order to identify the parameters for the “left
out” category (miscellaneous expenditures), I have assumed that the own-price elasticity for food
is the negative of the total expenditure elasticity.

20 The cross-price elasticity in Table 4 that most obviously stands out is the value of 3.29
for the elasticity of health care with respect to the price of miscellaneous expenditures.  It will be
interesting to see whether this strong substitution effect holds up in future research, or is simply
an artefact of this particular data set.

Table 4

Price and Total Expenditure Elasticities
Additive Double-Logarithmic Model

BLS-ACCRA Surveys 1996
Modal QR Regressions

(calculated at mean values)
              Total

                            Food     Housing     Utilities     Trans.     Healthcare     Misc.     Expenditure

       Food          -0.4658    -0.2591      -0.1332     0.2819      -1.1661       0.5903        0.4658
       Housing      0.3047    -0.4692       0.3262     0.1994        0.2071       0.1973        0.9971
       Utilities       0.1096     0.2910      -0.8583    -0.0747      -0.0254      -0.1136        0.5279
       Trans.         0.0647      0.3842      -0.3936    -1.0582       0.1932       0.2115        1.2339
       Healthcare  0.1790      0.2141      -0.1324    -0.1893      -0.9484       0.0110        0.5892
       Misc          -0.4193    -0.2509        0.4402     0.8860       3.2860      -1.0202        1.3657

regression residuals and the second at the mode of the median regression’s residuals.  The procedure
has been “illustrated” with a system of additive double-logarithmic demand functions applied to a
cross-sectional data set consisting of 8056 household observations for six exhaustive expenditure
categories from the four quarterly BLS consumer expenditure surveys (augmented with price data
collected quarterly by the American Chambers of Commerce Researchers Association) for 1996.

The residuals from the estimating equations (whether from least squares or quantile
regressions) all display the asymmetries in question.  Empirically, in the face of these asymmetries,
OLS appears reasonably robust in the estimation of income (or total-expenditure) effects, but much
less so in estimation of price (especially cross-price) effects.  Not surprisingly, differences appear
particularly sensitive to low R2�s and strong asymmetry in the distribution of residuals.  In terms of
magnitude, the empirical estimates of total expenditure elasticities from the modal QR regressions
(and even the OLS models, for that matter) make sense, the only mild surprise (for me) being the
fairly high value (1.23) for transportation expenditures.  The own-price elasticities also seem
plausible.19  The cross-price elasticities, though, are another matter, for accumulated knowledge of
cross-price effects is in general meager, hence remarks concerning their plausibility pretty much lack
a basis.20
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In closing, I would like to emphasize that the asymmetries that have been the focus of this
exercise are a real phenomenon.  I say this on the basis of estimating numerous (indeed, hundreds!)
of Engel curves and demand functions with data for 1996 through 1999 from the quarterly BLS
consumer expenditure surveys.  Virtually without exception, residuals from the equations that have
been examined have an asymmetrical distribution.  To use estimation that is more robust than least
squares in this situation seems mandatory.  Whether quantile regression at the mode of the
distribution of the residuals is the best for the circumstances, I do not know.  However, as mentioned
earlier, the procedure has intuitive appeal, and this seems sufficient reason, for now, for investigating
its use.
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21 See http://www.bls.gov/cex/home.htm.

Appendix

A.  Consumption Expenditure Categories Included in ACCRA Price Surveys.

        Groceries       Housing          Utilities     Transportation   Health Care     Miscellaneous

       t-bone stk.     apt. rent          all electric         bus fare         hosp. room     hamburger sand.
       gd. beef         home price      part electric      tire bal.          Dr. appt.         pizza
       sausage         mortgage rate  other energy     gasoline         dentist             2-pc. chicken
       fry chicken   home P+I         telephone                                aspirin            hair cut
       tuna                                                                                                             beauty salon
       gal. milk                                                                                                      tooth paste
       dz. eggs                                                                                                       shampoo
       margarine                                                                                                    dry clean
       parmesan cheese                                                                                         men’s shirt
       potatoes                                                                                                       underwear
       bananas                                                                                                       slacks
       lettuce                                                                                                         washer repair
       bread                                                                                                           newspaper
       cigarettes                                                                                                     movie
       coffee                                                                                                          bowling
       sugar                                                                                                           tennis balls
       cereal                                                                                                          monopoly set
       sweet peas                                                                                                  liquor
       tomatoes                                                                                                     beer
       peaches                                                                                                       wine
       Kleenex
       Cascade
       Crisco
       orange juice
       frozen corn
       baby food
       Coke

B.  Preparation of Data.

The CES quarterly data sets employed in the analysis have been developed from the Public
Use Interview Microdata sets for 1996 that are available on CD-ROM from the U.S. Bureau
of Labor Statistics.21  “Cleansing” of the CES files included elimination of households with
reported income of less than $5000 and then of households with zero (or negative)
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22 See http://www.ACCRA.com.

23 See http://www.census.gov/Press-Release/www/2003/SF4.html

24 In instances in which CES does not code state-of-residence for reasons of non-
disclosure, the households in question are dropped.

expenditures for the commodity category in question.  The CES surveys do not include price
data.  The price data for the analysis are taken from the on-going price surveys of the 62
items of consumer expenditure listed in Table A1 above in more than 300 cities in the U.S.
that are conducted quarterly by ACCRA22.  From the 62 items of expenditure, ACCRA
constructs six price indices (food, housing, etc.), and then from these an all-items index
(which in principle are comparable, on a city basis, to BLS city CPI’s).  The ACCRA city
indices in a state for each quarter are aggregated to the state level using city populations from
the US Census of 2000 as weights.23  The resulting ACCRA prices are then attached to CES
households according to state of residence.24

C.  Definitions of Variables.

lnfood logarithm of expenditures for food consumed at home

lnhous logarithm of housing expenditures

lnutil logarithm of expenditures for household utilities

lntrans logarithm of transportation expenditures

lnhealth logarithm of health care expenditures

lnmisc logarithm of miscellaneous consumption expenditures

lnincome logarithm of household income

lntotexp logarithm of total consumption expenditure

lnpfood logarithm of price index for food consumed at home

lnphous logarithm of price index for housing

lnputil logarithm of price index for utility expenditures

lnptrans logarithm of price index for transportation expenditures
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lnphealth logarithm of price index for health care expenditures

lnpmisc logarithm of price index for miscellaneous expenditures

lnpall logarithm of all-items price index

no_earnr number of income earners in household

fam_size size of household

age_ref age of head of household

dsinglehh dummy variable for single household

drural dummy variable for rural area of residence

dnochild dummy variable for no children in household

dchild1 dummy variable for children in household under age 4

dchild4 dummy variable for oldest child in household between
12 and 17 and at least one child less than 12

ded10 dummy variable for education of head of household:
grades 1 through 8

dedless12 dummy variable for education of head of household:
some high-school, but no diploma

ded12 dummy variable for education of head of household:
high-school diploma

dedsomecoll dummy variable for education of head of household:
some college, but did not graduate

ded15 dummy variable for education of head of household:
Bachelor’s degree

dedgradschool dummy variable for education of head of household:
post-graduate degree

dnortheast dummy variable for residence in northeast
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dmidwest dummy variable for residence in midwest

dsouth dummy variable for residence in south

dwest dummy variable for residence in west (excluded)

dwhite dummy variable for white head of household

dblack dummy variable for black head of household

dmale dummy variable for male head of household

down dummy variable for owned home

dfdstmps dummy variable for household receiving food stamps

D1, D2, D3, D4 seasonal quarterly dummy variables.


