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I. Abstract
Improvements in residential water efficiency and increasingly stressed water supplies

continue to reduce the margin of error in which water utilities are able to operate. Expectations
for increased temperatures and the occurrence of extreme weather events increases the need
for water utilities to be able to adapt operations to account for changes in the future. This
article introduces a probabilistic technique for segmenting single-family residential water users
into consumption groups based on consumption behavior and price thresholds imposed by an
increasing block rate pricing structure. Strategic segmentation of users allows for more precise

analysis of exogenous influences on consumption behavior..

IL. Introduction
Changes in weather patterns as a result of climate change put stress on water supplies,

increasing the need for water utilities to adapt the way they plan for meeting customer demand
and maintaining financial viability. Water utilities operating on a limited revenue stream are
expected to encourage water conservation while keeping water costs affordable. Over the last
several decades, many water utilities have experienced a decreasing trend in water
consumption, making it increasingly difficult to generate sufficient revenue from their users to
cover the high capital costs associated with running a water utility (Tiger, Hughes, & Eskaf,
2014). Though the decrease in consumption is a step toward water conservation and preserving
supplies for the future, the rapid and unexpected rate at which consumption is decreasing
limits the ability of utilities’ to cover long-run capital costs and plan for the future.

This article employs a detailed panel of household level water use data over a 48 month

period to obtain a better understanding of water demand in the Tucson, Arizona metropolitan



area. This detailed panel of household level data is linked to weather and household
characteristics on an observational basis, providing one of the most detailed data sets available
in the literature. The sample period covering July 2007 and ending in June 2011 is of interest
because it corresponds with the burst in the American housing bubble and subsequent
recession. During this period, single family residential service connections for water in Tucson
fell from a consistent two decade growth rate of over two percent to nearly zero.

This article introduces a new way of segmenting users into different groups based on
behavior and the institutional rules imposed by increasing block rate pricing structures.
Segmenting households based on consumption behavior using probability principles provides a
useful way to explore the validity of imposing an increasing block rate structure by testing for
differences in price and income response between groups. The price elasticity results obtained
for each user segment can be used to set prices for each block strategically to encourage
conservation while helping the water utility reach its revenue goals (Klawitter, Colby, &
Thompson, 2014).

This article also introduces an alternative measure of household income, intended to
provide a more precise income value for each household in the sample of users. Using this new
income measure, we find that changes in income have larger magnitudes of impact on water
use for consumers in the highest water use segment. Users with higher incomes were also
expected to be placed in higher water use blocks.

In addition to the model-specific contributions of this article, Tucson, Arizona is an ideal
area for analyzing water demand and the uncertainties facing water utilities. The arid climate,

intense regional competition for water, and strong recession effects highlight challenges facing



utilities in many areas of the world. In addition to Tucson, several large metropolitan areas in
the arid Southwest—Phoenix, Las Vegas, Los Angeles, and San Diego—rely at least in part on
Colorado River water to meet residential water demands. Declining levels in Lake Mead, the
primary Colorado River reservoir serving these lower basin cities, shows the impending threat
of water shortage and the importance for water providers to be proactive in addressing issues
of water management.

In addition to the strong regional competition for water, Tucson has a large population
of water users who depend solely on groundwater and Colorado River water delivered via the
336 mile Central Arizona Project Canal (CAP). Tucson Water provides water to a population of
709,000 people, through approximately 226,000 service connections within its service area.
These customers consumed approximately 136,000 acre-feet (AF) of water in 2008.

Since 2008, both total single family residential (SFR) water use and per-service SFR
water use has been declining rapidly. The decline in total and per service use is shown in Figure
1 (a) and (b), respectively. Determining the contributing factors to the decrease in use is
important in order to achieve more accurate projections of future demand. The long-term
decrease in per-service use, shown in Figure 1(b), is likely a result of more efficient water using
appliances and fixtures becoming available over time. The decreasing trend in variability
between summer peak and winter trough also indicates that water use is becoming more
efficient over time. The sharp decline in total use, shown in Figure 1(a), starting around 2007 is
likely due to changes to the housing market and economic environment that occurred during

the recession. Understanding the contributing factors to these changes in water use, as well as



the effects that each of the contributing factors has on water use trends is important for the

long-term planning of the water utility.

[Figure 1]

A recent summary published in the Bulletin of the American Meteorological Society cites
that Colorado River Stream Flows are expected to decline by between 6% and 45% mid-century
(Vano, et al., 2014). The two main reservoirs on the Colorado River, Lake Mead and Lake
Powell, are expected to store reduced volumes over the coming decades (Gammage, Stigler,
Clark-Johnson, Daugherty, Hart, & ., 2011). Tucson Water’s access to Colorado River water is
made even more uncertain due to Arizona’s Central Arizona Project (CAP) entitlement being a
junior rights holder for receipt of Colorado River water. While the CAP has a plan for dealing
with shortages that gives priority to municipal recipients of CAP water during shortages, in
extreme shortage cases, even high delivery priority recipients such as Tucson Water could feel
reductions (CAP, 2011). As supplies become increasingly stressed and the overall variability in
demand decreases, more precise demand estimation techniques will become more important

for informing water resource operations.

III. Literature Review
The residential water demand literature generally focuses on single-family residential

customers because they account for the largest proportion of consumption in most
metropolitan areas. The disaggregation of water user data for demand estimation allows for
household-specific variation to be accounted for in demand modeling. This reduces omitted

variable bias in estimation by allowing econometricians to include variables that account for



user heterogeneity. Though the benefits of disaggregated user data are great, more often than
not, data sets available for residential water demand analysis are aggregated at some level
higher than the individual household and produce results that do not capture user

heterogeneity.

Explanatory Variable Choice
Explanatory variables in water demand models can be broken into two main groups: 1)

factors under the utility’s control and 2) factors outside of the utility’s control (Kenney,
Goemans, Klein, Lowrey, Reidy, & ., 2008). Factors under the utility’s control include pricing
structures and demand management strategies such as conservation incentive programs, while
those outside the utility’s control are variables such as weather, economic, household and
demographic characteristics.

One factor within a utility’s control is pricing. Researchers take various approaches to
estimate price elasticity of demand, which is inherently complicated for two reasons; first,
most utilities in the western United States use increasing block rate (IBR) structures for water
pricing. An IBR is a pricing schedule that allows the water utility to charge users a per-unit price
for water that increases as consumption increases (Waters, Klawitter, Paul & Hamilton 2014).
The second complication with estimating water demand comes from the lack of information the
average customer has regarding their marginal price at any given moment (Nataraj &
Hanemann, 2011). This lack of information comes from both the non-constant marginal price of
an increasing block rate structure as well as the way water utilities typically track water use in

the western US. Water consumption is typically monitored by a single meter located on the



exterior of a home, hidden under a heavy steel plate, making it difficult for users to track water
use until they receive their water bill.

In addition to the lack of knowledge of water use until the billing period is over, many
water utilities have bill start and end dates that vary each month—the bill length often
depending on a manual meter reader’s schedule. Having a billing cycle that varies in length
when the commodity charge is based on volume consumed within that period can make the
marginal price of water vary to consumers without any change in consumption behavior, in-
turn sending conflicting price signals to the user.

In addition to the mixed price signals, the varying length of billing periods makes it so
billing cycles may start on a different day each month. Having billing cycles start on different
days each month makes it difficult for even the most interested consumers to calculate their
marginal price at any given point during the cycle (Foster & Beattie, 1979; Nataraj & Hanemann,
2011).

The lack of information the consumer has on the marginal price of water at the time of
consumption has led some water demand researchers to argue that consumers respond to the
average price of water found on their water bill (Foster & Beattie, 1979; Dalhuisen, Florax, de
Groot, Nikkamp, ., & ., 2003). Other researchers offer results that suggest that water consumers
respond to the marginal price that they expect to face, based on where they think they are in
the block rate structure (Nataraj & Hanemann, 2011). Several studies have found evidence that
water users do respond to marginal price (Nataraj & Hanemann, 2011; Olmstead, Hanemann, &
Stavins, 2007; Hewitt & Hanneman, 1998; Klaiber, Smith, Kaminsky, & Strong, 2010). The

complex pricing structure has also has given rise to the argument that an income adjustment



should be made for users consuming in blocks other than the lowest (Nataraj & Hanemann,
2011; Hewitt & Hanneman, 1998). One study from Tucson in the late 1980’s found that models
using average price have strong explanatory power when incomes are higher relative to price.
However, as water prices increase relative to income, marginal price is the preferred price value
for estimation (Billings & Day, 1989). Regardless of the form that the price variable takes in an
econometric study, the literature consistently finds that urban water demand is price inelastic
(Dalhuisen, Florax, de Groot, Nikkamp, ., & ., 2003).

One meta-analysis of price elasticities for residential water demand found that
elasticities range from -.02 to some outliers as high as -3.33 with an average estimated value of
-.5. This analysis also found that elasticities are larger in absolute value when increasing block
rates are implemented in lieu of a constant marginal price (Espey, Espey, & Shaw, 1997). The
relatively low elasticities generally found are attributed to both the lack of knowledge of price
at the time of consumption as well as the small size of the monthly water bill relative to
income.

In addition to understanding how consumers respond to prices, it is important for
utilities to understand how users in different demographic categories use water. Adding
information about user demographics to a demand study accounts for customer heterogeneity
and reduces the influence of omitted variable bias of the study while improving the
understanding of how water use responds to demographic changes.

Studies have linked demographic information to households to compare use in different
demographic categories (Kenney, Goemans, Klein, Lowrey, Reidy, & ., 2008; Ray, 2012).

Another study focuses on water users in Santa Cruz, California finding that elasticities for water



users in the highest tier of the increasing block rate structure were lower (in absolute value)
than those of users in the low and middle tiers (Nataraj & Hanemann, 2011). The authors
attributed this to an income effect that outweighed the price effect for the highest tiered water
users. Nearly every water demand study discusses the importance of including an income
variable in water demand models (Agthe & Billings, 1980; Brookshire, Burness, Chermak, &
Krause, 2002).

Beyond the demographic variability of households, it is also important to account for
differences in physical characteristics of housing. Square footage of the home is often found to
have a significant positive relationship with water consumption (House-Peters & Chang, 2011;
Chang, Parandvash, & Shandas, 2010; Balling, Gober, & Jones, 2008; Harlan, Yabiku, & Brazel,
2009). In arid regions, a large portion of residential water use is dedicated to maintaining
landscapes on the exterior of the homes, variables measuring outdoor area, normalized
difference of vegetation index (NDVI) and pool size are often included (Wentz & Gober, 2007;
Balling, Gober, & Jones, 2008; House-Peters & Chang, 2011; Tinker, Bame, Burt, & Speed, 2005).

Because outdoor attributes of a home influence water demand, it also follows logically
that weather variables influence water demand. Weather factors are especially important in
determining the amount of water used for irrigation (Tinker, Bame, Burt, & Speed, 2005;
House-Peters, Pratt, & Chang, 2010; Balling, Gober, & Jones, 2008). The literature consistently
finds that when weather is hotter and drier, water demand increases.

Though the literature is consistent on the importance of weather factors in demand, no
consensus exists on which measures of temperature and precipitation are optimal. One meta-

analysis of more than 20 water demand studies finds that temperature, precipitation and wind
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speed were the most common weather variables in the demand models examined (House-
Peters, Pratt, & Chang, 2010). Beyond using a simple precipitation measure variable, several
studies in the southwestern U.S. have found that breaking precipitation variables into summer
and winter precipitation accounts for the seasonal nature of outdoor water uses.

Defining the precipitation variable in a seasonal manner is especially useful in Arizona
and other southwestern states due to the difference between summer “monsoon” rains and
winter rains. Monsoonal rainfall often occurs in intense bursts and is spatially heterogeneous,
creating more flooding and run-off than winter rains (Woodard & Horn, 1988; Young, 1973;

Billings & Day, 1989).

Econometric Specification
Though most of the literature uses similar explanatory variables to estimate water

demand, there is a large variation in the types of statistical models used. The model choice is
generally dependent on the fundamental questions the researcher addresses and the type of
data that is available to the researcher. Figure 2 shows an overview of the different types of

models discussed in the remainder of this section.

[Figure 2]

Analysis of residential water demand is done for both the aggregate and user levels. As
statistical software has become more advanced, disaggregated data has become preferred to
aggregated user data so that models can capture user heterogeneity. Data are generally
organized either as a time series or a cross-section, or a combination of the two.

Time series models are useful for forecasting water use, but cannot capture the effect of

user attributes on consumption. Cross-sectional estimation allows researchers to observe the
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effects of user heterogeneity, but have limited forecasting ability. Panel datasets tend to be
preferred for long-term planning because they allow researchers to account for both the
temporal and cross-sectional variations that influence water use.

The econometric models used for estimation with time series data varies widely
between studies. Ordinary least squares (OLS) and feasible generalized least squares (FGLS)
regression techniques have been used in studies focusing on simple short-term forecasting
(Agthe & Billings, 1980; Gutzler & Nims, 2005). OLS and FGLS are also used often in time series
studies to estimate the effects of changes in climate and demographics (Woodard & Horn,
1988; Wong & Chen, 2010).

When autocorrelation is significant in time series data, many researchers choose
autoregressive integrated moving average (ARIMA) models to estimate demand (Praskievicz &
Chang, 2009; Adamowski, 2008). ARIMA models account for autocorrelation and assume
current use is dependent on past use, making ARIMA models also preferable when the
availability of data for explanatory variables is limited.

The studies using strictly cross-sectional data focus heavily on spatial differences, so
models that integrate geographic techniques are often chosen. Demand models that use geo-
coded data sets used spatially explicit OLS regressions and geographically weighted
regressions (GWR) (House-Peters, Pratt, & Chang, 2010; Shandas & Parandvash, 2010; Wentz &
Gober, 2007; Balling, Gober, & Jones, 2008).

Other researchers have estimated price elasticities under the non-constant marginal
pricing of an increasing block rate structure. The three most common models that account for

the piecewise linear budget constraint resulting from the IBR are instrumental variables,
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multiple stage least squares, and discrete-continuous choice (DCC) maximum likelihood models
(Hewitt & Hanneman, 1998; Jones & Morris, 1984). The DCC model accounts for the piecewise
linear budget constraints resulting from non-constant marginal pricing (Hewitt & Hanneman,
1998; Olmstead, Hanemann, & Stavins, 2007). A recent study using a DCC model to estimate
water demand found that though a DCC model estimates demand in the most theoretically
sound manner of modeling the consumption decision of residential water users billed using an
IBR, the resulting elasticity estimates are not significantly different from those of prior studies
which estimate elasticity using simpler estimation techniques (Olmstead, Hanemann, & Stavins,
2007; Olmstead S. M., 2009). Additionally, the assumption of perfect information at the time of
consumption for residential water users can be far from accurate depending on the billing
techniques implemented by a water utility (Billings & Day, 1989). The DCC models estimated for
water use give cross-sectional estimates and do not account for changes in use over time.

In addition to the time series and cross-sectional studies, other studies use panel
regression techniques. One popular panel estimation technique is the fixed effect panel model,
which averages out the time-invariant unobserved effects from the model (Kenney, Goemans,
Klein, Lowrey, Reidy, & ., 2008). Using a panel model allows for the inclusion of variables that
capture both the time and cross-sectional variations present in a sample. The averaging-out in
the FE model produces unbiased and efficient parameter estimates for each of the independent
variables (Kenney, Goemans, Klein, Lowrey, Reidy, & ., 2008; Polebitski & Palmer, 2010).

Following a similar logic to a fixed effects demand model, a random effects instrumental
variable (RE-1V) panel model can be used to estimate demand, and may be preferable to a fixed

effects approach for several reasons. Random effects models allow for the inclusion and
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estimation of parameters of time invariant explanatory variables. Random effects models also
have smaller expected standard errors than fixed effects models as well as unbiased parameter
estimates as long as the omitted variables are uncorrelated with the explanatory variables
(Wooldridge, 2010). Random effects models also allow for out-of-sample prediction, which can
be useful for inference both cross-sectionally and over-time. Using instrumental variables to
estimate price for water addresses the simultaneity issue introduced to the demand models by
the non-constant marginal price of an IBR (Jones & Morris, 1984).

This literature review of water demand studies facilitated choice of variables and most
suitable model specification for demand estimation under this project. The model used in this
project is a random effects instrumental variable model, which is preferable to other models
discussed because it accounts for time and cross-sectional variation in the data, accounts for
the simultaneity introduced to demand estimation by the non-constant marginal price for

water and allows for out of sample inferences.

IV. Description of Data

Single Family Residential Water Usage Data

The water use data for this analysis are comprised of single family residential (SFR)
billing records from Tucson Water. Household level records for all SFR water users within the
Tucson Water service area were obtained for the years 1997 through 2012. This dataset only
contains residential customers who are individually metered for water consumption; this does
not include apartment complexes and multiple households receiving water from the same
meter. The data does not account for varying numbers of individuals within a single household

due to availability.
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Tucson Water bills its customers on an asynchronous billing date and cycle length,
meaning that the day the customer receives their bill and the length of time that a bill covers
varies, because meters are read manually. The data received from Tucson Water shows that
over the period 98% of bills ranged in length from 27 to 35 days. Longer billing periods naturally
imply higher water use and Tucson water does not standardize user bills before determining
marginal prices according to the increasing block rate schedule. Because the billing cycle length
varies, the marginal price for water is dependent on both the use pattern of a household as well
as the length of billing cycle. To separate the effects of water use variation due to billing cycle
length from the actual household behaviors influencing water use, the household observations

were standardized as follows.

total usageij;

Standardized Use;; = %30 days (1)

billing days;,

This standardization allows a comparison of consumption behavior across billing
periods and households. Removing the billing cycle length effect from the usage data allows the
true relationship between the explanatory variables and the dependent variable to be shown in
our model (Nieswiadomy & Molina, 1988).

Though the water use data covers a 16 year time span, we focus on a shorter time
period for this analysis: July 2007 through June 2011. The shorter sample period was selected
for two reasons. First, we have a very detailed cross-section of user data with a large rate of
new homes being built over the period. In order to perform a panel analysis with a balanced
sample, each year that we chose to add to the sample, would require us to systematically leave
out information on users who live in homes that were built after the first period included in the

sample’. Thus a limited number of recent years is desirable.
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The second reason this sample period was chosen is because Tucson Water
implements changes in their rate structure at the start of each fiscal year, beginning July 1%.
Having a 48 month sample allowed us to observe four different price schedules to see how
users respond to changes in price. The resulting balanced sample of single family residential
water users in the 48-month period consists of 118,950 households in the Tucson Water service
area. Due to the economic downturn that occurred during this period, the water service
connection growth rate was very low. As a result of the low growth rate, the number of new
households omitted from the sample is very low.

We segmented the households into four groups based on usage patterns that coincide
with the thresholds for each of the four blocks in Tucson Water’s increasing block rate structure
(Figure 5a). The segmentation was conducted under the hypothesis that users who consistently
find themselves consuming in the highest block likely respond differently to price and
exogenous changes than people in the lower blocks. The probability distribution of usage over
the sample period was estimated; using a two-step process users are placed into their
respective segments. These segments form a partition of the sample space.

The decision rule for segmenting the consumers utilizes a two-step approach to
calculate the probability that a user is truly representative of a given block segment. The first
step was to estimate the probability distribution of total monthly usage during the period,
which we did using a parametric gamma distribution with @=1.03 and ,[?=11.1 (Figure 3). The
parameters for the gamma distribution were estimated using the population distribution of
household use during the sample period with all cross-sectional and time series observations

included in the estimated distribution. Using the estimated Gamma distribution, the probability
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of a user consuming in each of the four blocks at any given time during the sample period was
estimated (i.e. let U equal the probability of consuming in a given block during the 48 month

period), the results are shown in Table 1.

[Figure 3]
[TABLE 1]

Since we are ultimately interested in the number of times a household must consume
in a given block to be considered a ‘representative user’ of a block, the second step in the
segmentation process can be thought of as a Bernoulli trial (a user either consumes in the K™
block or they do not). Because we are interested in calculating the probability of multiple
Bernoulli trials, it is appropriate to use the binomial distribution for calculating the number of
times a user must consume in a given price block during the sample period to be considered a
non-random event.

The probability of consuming in block K, calculated using the gamma distribution
above, is used as the probability of the event occurring (i.e. a household consumes in block k)
for the Binomial distribution, with n=48. Let X=the number of times a household consumes in
block K.

The decision rule using the binomial distribution is that a consumer needs to consume
in a block enough times that the probability of that event occurring is as close to 1 in 100 as the
discrete distribution allows. The results of the Binomial calculations are shown for each of the

four blocks in table 2.
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[TABLE 2]

Because we assign households to segments based on total monthly use, and the
probability of consuming in a block decreases as the usage requirement for segmentation into
that block increases; the segments contain fewer households as the block increases®. Random
samples of 5,000 cross-sectional observations are pulled with replacement from the segmented
population. After sampling duplicate household observations are removed. Table 3 shows the
number of households placed in each mutually exclusive segment and the samples

corresponding to each.

[TABLE 3]

Segmenting users based on consumption behavior and institutional constructs created
by non-constant marginal pricing allows for strategic analysis of user response to price and
other exogenous variables that may vary with quantity consumed. Using univariate probability
principles to segment users based on restrictions imposed by the water utility, rather than
other separation techniques like quantiles or other order statistics, allows for results that are
more relevant to the market in which demand is being estimated. Further, inferences from the
demand models estimated for each user segment allows utilities to make decisions, such as
where to set the marginal price and threshold of a given price block (Klawitter, Colby, &

Thompson, 2014).

Figure 4 below shows the average use for each of the four segments over the sample
period. Two patterns emerge in Figure 4 supporting the hypothesis that households in each of

the segments use water differently and may respond differently to exogenous shocks. The first
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pattern is that the seasonal variation differs in trend and magnitude for each segment. The
second is that the average total use for each segment increases significantly as the block
coinciding with that segment increases. Both of these results further support the decision to

segment the households prior to demand model estimation.

[Figure 4]

Estimating Average Price Using Instrumental Variables

Given the asynchronous billing cycles employed by Tucson Water, users do not have
clear information on marginal price when making water consumption decisions. Rather than
assuming that consumers can gauge, at the time of consumption, where they lie on the
marginal price schedule, we assume that consumers perform a more basic utility maximization
process using an average price per unit that can be easily calculated by looking at a water bill.
Figure 5(a) shows the marginal price for water as defined by the increasing block rate schedule
for water in Tucson during the sample period. Figure 5(b) shows the average price for water
determined by all water related fees included on a Tucson Water bill. The initial steep decline in
average price illustrated in Figure 5(b) shows the effect of including surcharges in the price for
water; users who use very little water see a very high per unit average price for water that
decreases as consumption increases up to the first block threshold between blocks one and

two.

{Figure 5}
Because of the increasing block rate structure, water prices are dependent on quantity

consumed which causes a simultaneity issue for demand estimation. A Durbin-Wu-Hausman
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test was performed to test for the presence of simultaneity introduced by the non-constant
marginal price of the IBR®. The test indicates that the simultaneous nature of price level has a
significant impact of the parameter estimates for average price and, therefore, it is appropriate

to use a two-step instrumental variable approach to correct for the specification error.

To address the effects of simultaneity, a two-step instrumental variable (IV) approach
was used to estimate the average price per unit. Using an instrumented average price rather
than the observed average price removes the correlation between average price and the

idiosyncratic error of the demand model (Jones & Morris, 1984).

In order to estimate instrumental average price per unit, the following random effects

panel model was estimated.

APy = Bo + BrlVyyy, + BolVa, + BalVs, + BulVy, + BsIVs, + BsIVe,, + B, Sewer Fees;, +u; + & (2)

Where:
1V1iy= The total cost of water for each household i=1,..n, in year y=2007,...2011

IV2y=The difference in real price between block 2 and block 1 in year y=2007,...2011
IV3y=The difference in real price between block 3 and block 1 in year y=2007,...2011
IV4y=The difference in real price between block 4 and block 1 in year y=2007,...2011
IV5y=The difference in real price between block 3 and block 2 in year y=2007,...2011
IV6y=The difference in real price between block 4 and block 2 in year y=2007,...2011

Sewer Feesiy=The sewer fees for each household i=1,..n, in year y=2007,...2011
u;=the individual-specific error associated with the panel regression
&;+=the error in the model associated with measurement error

The pricing structure variables included in this estimation follow the same logic as the
models estimated by Jones and Morris (1984), Nieswiadomy and Molina (1988) and Kenney et
al (2008). All instrumental variables chosen, with the exception of IV; are set by the utility and

thus should not be correlated with the error term of the demand equation for household water
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use. Though IV; is correlated with total annual use, it should not be correlated with the

variation in household water use in each period of a given year.

Using equation (2), the random effects panel models were estimated for each of the
four block user segments. Table 4 shows the results from model estimation. All four of the
block segment models are considered significant overall by the large Wald test statistic. In
addition to the models’ overall significance, each of the seven instruments included in the
model are considered significant at the most stringent levels of significance. The overall
significance of both the model and each variable indicates the IV estimates for average price

are appropriate for estimating water demand.

[Table 4]

Income Data and Construction of Income Variable

Income is expected to be relevant as consumers choose water consumption levels
(Nordin, 1976; Taylor L. D., 1976). Some past studies have used individual assessed home values
as a proxy for income, while an equal number of studies have used census estimates at the
census block or tract level. Though either income estimate seems reasonable given the data
that is typically available for empirical analysis, neither is an ideal estimate for actual income.
The assessed value of a home can change with market conditions and is probably a better
estimate of household wealth than monthly income. One positive attribute of assessed value is
that it varies on a yearly basis and it is available at the household level. Census estimates are

probably a better approximation of income than a home’s assessed value, but are only
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estimated periodically and do not take into account the income heterogeneity within a census

block or tract.

To get the best possible income estimates, we develop an alternative income measure
calculated using both the census income and the assessed value of a home. To estimate income
for each household we first obtained the estimated median income for each census tract in
Tucson, AZ based on the 2011 5-year American Community Survey produced by the US Census
Bureau. To interpolate median income values for each year prior to 2011, we obtained the
median income growth rate for the state of Arizona over the sample period from the US Census
Bureau. The real growth rate was applied to the 2011 real median income value for each census
tract to estimate a unique value for each census tract, each year. The growth rate for the entire
state of Arizona was used because yearly data was not available on a smaller, relevant spatial

scale.

In addition to using the estimated yearly income value for each census tract, we used
the annual assessed value of the each home to estimate income variation within each tract. To
do this, the average assessed value for each tract was calculated for comparison to each home
within each tract. Each home within each tract was assigned a home value index that was

calculated as

Actual Assessed Value;,,

(3)

Value Index;, =
v Average Assessed Valuec,,

where:

C = census tract (there were 188 census tracts in the sample as designated by 2010 Census)
i=1,2,...n
y=2007,2008,2009,2010,2011



22

The calculated value index, which varies by year and by household, was then used as an
index for scaling the calculated income value for each home within the census tract. The
calculation of the final income variable was done using the formula in Equation 4 below.

Real House/iold Income;, = Real Median Income ., xValue Index;, (4)
where:

C = census tract (there were 188 census tracts in the sample as designated by 2010 Census)

i=1,2,..n

y=2007,2008,2009,2010,2011

The resulting income estimates account for the heterogeneity of household income within
each census tract. The calculation in (4) assigns a unique real income value to each household in
the sample for each year in the sample period. Figure 6 shows the average income for each

block segment by year. The annual income variable was divided by the number of months in a

given year in the sample period to obtain a monthly income value.

[Figure 6]

Home Characteristics
In addition to accounting for the heterogeneity in household income, it is also important

to account for the variation in the characteristics of each home that may influence water
consumption. Individual home characteristics were obtained from the Pima County Assessor’s
Database on housing characteristics. The Assessor’s database is updated yearly and contains
detailed information on different attributes of a home. Table 5 below shows the list of housing

attributes that were included in this empirical analysis.
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[TABLE 5]

In addition to the different housing attributes listed in Table 5 above, several attributes
were taken from the Assessor’s database to estimate a value for potential landscapable area at
each home. Landscapable area of a home is an important factor for water use in arid regions
like the desert southwest, because most vegetation planted will require irrigation to survive.

Equation 5 shows the calculation made to estimate potential landscapable area:

Landscapable Area;, = Ly, — % — (GinZOO) — Py, sq.ft. (5)
iy

where:

i=1,..n

y = 2007, ...2011
L;,=The area of the lot a home is built on in square feet
Ajy=The livable square footage of the home
Siy=The number of stories of the home
(Gl-yXZOO):The number of parking spaces in the garage or car port of a home multiplied by
the 200, which is an estimate of the minimum square footage required to park an average
car
P;,,=Approximate pool surface area

Weather Characteristics
Weather data was collected from two primary sources: The Arizona Meteorological

Network’s daily weather database and Pima County Flood Control’s (PCFC) precipitation gauge
database. Values for daily maximum temperature and maximum wind speed were collected
from the AZMET database, while daily precipitation measures were obtained from the Pima
County Flood Control rain gauge network. The PCFC network of 21 gauges was chosen over the
single AZMET precipitation measuring station because rainfall events tend to be spatially

heterogeneous throughout the city; this is especially true for summer monsoon rains.
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The data for daily precipitation measures from 21 of PCFC’s rain gauges located
throughout the city were collected from PCFC’s website. In addition to the precipitation
measures, the latitude and longitude for the location of each of the 21 rain gauges was
recorded. In order ensure that the precipitation measure used to explain variations in individual
household water consumption was the most accurate, each household in the sample is

assigned to the precipitation gauge that is nearest to the home.

In addition to assigning specific precipitation gauges to each household, we account for
the variation in the billing cycle length and start date for each individual observation in the
sample. Once completed, the maximum daily wind speed, maximum daily temperature and
total daily precipitation measures were all averaged and assigned to the exact dates of each

observation’s billing period.

After accounting for billing cycle length, the precipitation and temperature variables
were each separated into three seasonal weather variables. The seasonal separation was
completed to account for the seasonality in the usage data, in addition to examining how
weather events impact water use differently throughout the year. The seasonal separation is

shown in Table 6.

[Table 6]

In this region, the seasonal separation for summer and winter is important because
summer weather has a bigger impact on daily water use due to outdoor water use and
evaporative cooling. Summer precipitation in Tucson also tends to be very different from the

precipitation seen during the winter months. Tucson experiences summer monsoon rains,
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which can come and go quickly at a specific location. Winter precipitation tends to be longer,
and more spatially homogeneous. The “other seasons” variable was created because spring and

fall months are fairly moderate weather months, which have very similar weather events.

Table 7 shows the mean value for each of the variables included in the demand models,
separated by segment. The observed sample means for each of the household specific
variables, such as income, pool area and landscapable area indicate that the segments
constructed using univariate probability principles are different from one another in terms of

observables.

[Table 7]

V. Residential Water Demand Estimation

After instrumenting average price per CCF for all households in each period, the
demand for each of the four block segments was estimated using a random effects panel
model. A random effects model was used for demand estimation because it allows for out-of-
sample prediction. If a fixed effects model were used to estimate demand, it would not be
appropriate to produce predicted values for future consumption behavior or for price
responses outside the range of observed prices. Random effects models are also expected to
have smaller standard error estimates than fixed effects models, as well as unbiased parameter
estimates as long as there are no omitted variables that are heavily correlated with the

explanatory variables (Wooldridge, 2010).

Equation 6 shows the demand model for SFR water users in Tucson Water’s service

area. The model was estimated four times, one for each of the four user segments.
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LN(Usage;;) =

Bo — B1(Average Price IV);, + B,In(Mont/ily Income);,, + B3(# of Rooms);, +
Bs(Evap.Cooler);, + Bs(Pool Area);, — P¢(Condition);, + f,In(Landscape Sq Ft.); +
Bs(wind)i; — Boln(Summer Precip);; — f1o(Winter Precip);: —

P11 (Fall&Spring Precip);; + B, (Summer Temp);; + f13(Winter Temp);: +
B1aln(Fall&Spring Temp);; — B1s(Summer Precip XEvap Cooler) —

B16(Summer Precip XPool Area) +

B17(Summer Temp XEvap Cooler) Big(Summer Temp XEvap Cooler) + u; + &;;  (6)

Where:
i=1,2,...n
t=1,2,..46
y=2007, ...2011

Using the explanatory variables outlined in (6), the random effects panel model for each

user segment is estimated using a Feasible Generalized Least Squares (FGLS) procedure.

The expected sign of the explanatory relationship between each of the independent
variables and household water consumption is shown in Table 8 in the column titled “Exp.
Sign”. The level of significance, as calculated using robust standard error estimates, of each
explanatory variable is indicated by the number asterisks indicating ***=1%, **=5% and *=10%.
The overall level of significance of each segment’s demand model estimate is indicated by the
value of the Wald test statistic. The Wald statistic for overall significance indicates that there is
enough statistical evidence to show that all four of the models are significant in explaining the

variation in SFR water use.

[Table 8]

Figure 7 shows the four demand curves for the respective user segments, estimated for
the average summer use during the sample period July 2007-June2011. The curves were
estimated using the parameter estimates from Table 8 and the average value of each of the

variables during the summer months of the sample period. Summer values were input since
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summer months are the peak of water use in Tucson. As expected, the estimated demand
curves for each of the four block segments shift outward from the origin as the usage
requirement for placement within the segment increases—Segment 4 has the highest demand
followed by Segment 3, Segment 2 and the segment for Block 1 having the lowest level of

demand.

[Figure 7]
Price and Income effects

The estimated demand curves in Figure 7 shows the relationship between average price
per unit consumed and quantity of water demanded. As expected, the average price of water
has a significant estimated impact on water consumption, which is negative. Using the price
coefficient estimates for each user segment, the price elasticity of demand, €, can be

estimated for each segment. Equation 7 shows the formula for price elasticity estimation.

~ 99 _ pit 5 Pit
& =—X—= Py X ———— 7
P ap " qir ﬁaverage price”™ |, (Use)it ( )

Table 9 shows the average price elasticity for each block segment for summer 2010 and
the corresponding 95% confidence interval estimate. The confidence interval about the
elasticity estimates are calculated using the sample distribution of the price variable. Though
the elasticity estimate is close to zero, the confidence intervals for each segment does not
include zero, so we can conclude with 95% confidence that the price response of users within

each block is not equal to zero.

[Table 9]
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Figure 8 shows the average price elasticity of demand for summer 2010 as a function of
average price, with corresponding 95% confidence intervals. The elasticity estimates for blocks
3 and 4 show that users in segments 3 and 4 have price responses smaller (in absolute value)
than blocks 1 and 2. Additionally, segments 3 and 4 are both statistically different from each
other and from segments 1 and 2. The confidence interval for segment 1 has the largest range
and becomes especially wide as average price increases. Though users consuming in block 1 see
the lowest marginal price of all four blocks, due to the impact of surcharges, the average price
seen by users who consume less than 15 CCF per month would appear to decrease as
consumption increases, sending a price signal more similar to a decreasing block rate pricing
scheme (see Figure 5b). The wide confidence bands about the segment one elasticity curve is
probably due to the combined effects of decreasing per unit average price with the small

variation in consumption observed in users in segment 1.

The small absolute value of €, shows that SFR water users in the Tucson Water service
area are relatively unresponsive to price when making consumption decisions, though the
significance of the statistic shows that that users do take price into consideration when making

consumption decisions.

[Figure 8]

The calculated income variable is highly statistically significant in explaining household
water demand. The positive effect of income on consumption is consistent with expectations
and the estimated coefficient on the income variable is significant in explaining variations in

water demand. To explore the income effect on water consumption for each user group, the
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income elasticity of demand, ¢;, can be calculated using the income coefficient estimate from
demand estimation and the formula shown in equation 8. The income elasticity estimates with

95% confidence interval are shown in Table 10.

~_9q Lt _ 5 In (mont/ly income)
& = PY; X it - ﬁln(mont/zly income)>< In (Use) (8)
[Table 10]

Figure 9 (a) shows the segment-average income elasticity estimates over-time.
Segments 1, 2, and 3 have 95% confidence intervals that overlap and thus we cannot conclude
that income elasticities between the three segments are statistically different from each other.
Segment 4, however, has a significantly larger income elasticity estimate than the three lower
user segments. Panels (b), (c), and (d) of Figure 9 show that segment four’s income elasticity
estimates over the sample period are statistically different from each of the three lower user
segments. This is likely due to the higher portion of income spent on water each month by
segment 4 users as shown by the Bill to Income Ratio in Table 10. Though all four segments
display relatively income-inelastic demand for water, there is a significant income effect on

water consumption decisions.

[Figure 9]

The foregoing price elasticity results are consistent with those found in several recent
studies of water demand in Phoenix, Arizona. Using cross-sectional quantile regressions at the
census tract level for differences in consumption between 2000 and 2008, Yoo et al. find a price
response that is higher and statistically significant at lower use quantiles as compared to high

use quantiles. The magnitudes of the estimated price elasticities are much larger than those
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here likely owing to the census tract-level data used and the longer period of comparison from
2000 to 2008. Klaiber et al., using census block group data and order statistics find a similar

pattern of decreasing price response as the quantile of water use increases whether comparing
a normal rainfall years (2000 to 2003) or normal to dry years (2000 to 2002). The same pattern

of high users being less responsive to price is borne out whether in the summer or the winter.

VI. Conclusions

This article develops a detailed econometric model with a non-constant marginal price
that shows how volumetric pricing affects water use at different levels and controls for the
effects of different exogenous variables. The segmentation of water users by total consumption
thresholds creates demand estimates for representative users corresponding to the price
blocks of a given increasing block rate structure. Segmenting users for analysis using the
barriers imposed by institutional constructs rather than order statistics allows for a more
precise evaluation of the type of users choosing to consume within each block as well as the
variation in response to exogenous shocks between user segments. The segmentation process
outlined in this paper can be modified to incorporate different block thresholds imposed by
different utilities. Additionally, due to the seasonal nature of water use in arid regions, an
interested researcher can modify probability distributions to include only sample consumption

during different seasons or time periods of interest.

The detailed panel of single-family residential water customers used for this analysis
represents one of the most information rich datasets available in the literature. The detailed

nature of the dataset allowed for the segmentation of users and the inclusion of variables
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which work to capture the heterogeneity between users as well as changes in user behavior
over time. The income specification in this project reflects an advance in incorporating a more
precise household income in the water demand literature. The income effect is significant and
positive and the median income of each segment increases as the block corresponding to each
segment increases. Additionally, the largest users of water are most responsive to changes in
income; this is mostly likely due to the aggressive four-tiered pricing structure used by Tucson

Water.

The results from demand estimation suggest that the segmentation process is both
necessary and effective at examining user responses. The range of variation in average monthly
use between segments, shown in Figure 3, indicates that users in the four segments utilize
water in different ways. The stacking of the segment demand shown in Figure 6 shows that user
in different segments respond to price changes in different ways. Information gained from the
different price responses for each user segment can be used to set block prices for water in a
precise way with respect to a utility’s conservation and revenue goals (Klawitter, Colby, &

Thompson, 2014).

The low price elasticity estimates for the four user segments, shown in Table 3, are on
the low end (in absolute value) of the estimates found in the water demand literature. The
relatively low price responsiveness from users is most likely attributed to: 1) the low cost of
water relative to income of users; 2) the complexity of the increasing block rate structure that

makes it difficult for users to understand their marginal price when making consumption
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decisions; and 3) the variable length of the billing cycle that makes it difficult for consumers to

know how close they are to moving into a higher water use block within a billing structure.

As water resources become more stressed due to increased population and climate
change, it will only become more important for water utility managers to have a more precise
understanding of impacts that prices and exogenous variables have on their customers.
Segmenting users into groups corresponding to institutional structures such as increasing block
rate structures allows for managers to evaluate how pricing structure effect users within their
service areas. Precise demand estimation allows for the best understanding of exogenous

factors influencing water consumption.
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TABLE 1: Probability of Consuming in the K™ Block
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Probabilities of consuming in each of Tucson Water’s 4 Blocks

Let: U= Probability of Consuming in a given block
during the 48 month sample period

U~GAMMA(6=0, 0=1.03,8=11.1)

Block 4 P(U>45 CCF) =0.019
Block 3 P(30 CCF<U<45 CCF) =0.04
Block 2 P(15 CCF<U<30 CCF) =0.21
Block 1 P(0 CCF<U<15 CCF) =0.73

TABLE 2: Segmentation Probability

Let: X=# of times a household consumes in X~Binomial(48, P=p(u.sU<uy))

block k, where k=1,2,3,4 Where: u,=lower bound of block k and uy=upper bound of
block k

Block 4 P(x>4 billing periods) =.013

Block 3 P(x=6 billing periods) =.012

Block 2 P(x>17 billing periods) =.015

Block 1 P(x>45 billing periods) =.013

TABLE 3: Number of Households by Segment

Number of households by usage segment

Block Segment

Number of households in Population

Number of Household in Sample

Segment 1 85,620 4,144
Segment 2 21,136 3,817
Segment 3 7,116 2,988
Segment 4 5,078 2,358




Table 4: Results for random effects model to estimate instrumental average price
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Instrumental Variables by Block Segment

Block 1 Block 2 Block 3 Block 4

# #

households=4,144 # households=3,817 | # households=2,988 | households=2,358
Wald =43,899.09 Wald =36,510.61 Wald =35,546.77 Wald =65,968.42

Variables B B B B
Intercept -7.6%** -75.9%** -232.4%** -652.9%**
iv_1 0.1%%* 0.1%%* 0.1%%* 0.1%**
iv_2 -1467.7*** -2957.8*** -5422.9*** -12872.4***
iv_3 3205.8%** 5423.0%** 8707.7%** 23064.0%**
iv_4 -1547.9*** -2423.9*** -3622.0*** -10260.7***
iv_5 -3256.8*** -4837.6*** -6797.0%** -19845.0***
iv_6 1430.4*** 2162.2%** 3111.6*** 9079.4%**
Sewer_serv -2.9%** -6.9*** -13.4%** -33.4%**
Level of Significance with Heteroskedastic Robust Standard Errors: *=10% **=5% ***=1%

TABLE 5: Assessor Housing Attributes

Housing Attribute

Description

Number of rooms

The total number of rooms in a home including all living spaces, not
just bedrooms

Condition

A measure 1 through 4 that is assigned to each home based on the
condition of the housing structure. A value of 4 is the best condition.

Evaporative Cooler

An indicator equal to 1 for a home with an evaporative cooling unit as
the primary means of cooling; 0 otherwise.

Pool Area

The approximate square footage of the surface area of the pool at each
home; = 0 if no pool

Table 6: Seasonal Separation for weather variables

Seasonal Separation

Months

Summer Weather Variable

June, July, August, September

Winter Weather Variable

December, January, February, March

Other Seasons Variable

April, May, October, November




Table 7: Variable Means by Segment

Variable Means by Segment

Variable Segment 1 Segment 2 Segment 3 | Segment 4

Normalized Usage (CCF) 3.71 5.58 8.33 21.54
Average Price IV per CCF $2.86 $2.87 $4.00 $5.85
Monthly Income 4,378.68 4845.53 5453.4 6208.3
Condition 2.37 2.45 2.55 2.75

# of Rooms 10.55 8.72 8.51 8.87

Evap. Cooler 0.46 0.44 0.34 0.19

Pool Area (ft?) 93.73 174.91 253 350.24
Landscapable Area 10,883.47 18,150.08 29,702.15 49,204.51

Wind 8.05 8.05 8.05 8.05

Summer Precip. 0.34 0.34 0.35 0.36

Winter Precip. 0.29 0.29 0.3 0.31
Fall/Spring Precip. 0.05 0.06 0.06 0.07
Summer Temp. 11.15 11.11 11.09 11.06

Winter Temp. 7.04 7.04 7.04 7.05
Fall/Spring Temp. 10.08 10.11 10.12 10.16
Summer Precip. X Evap. Cooler= 0.16 0.15 0.12 0.07
Summer Precip. X Pool Area= 0.34 0.62 0.9 1.27
Summer Temp. X Evap. Cooler= 5.17 4.89 3.77 2.1
Summer Temp. X Pool Area= 10.57 19.42 27.97 38.65
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Table 8: Random Effects Estimation of Demand

41

Demand Estimation by Block Segment

Block 1 Block 2 Block 3 Block 4
# households | # households # households # households

Dependent Variable = =4,144 =3,817 =2,988 =2,358
In(normalized monthly usage); Wald =6,813 | Wald =27,406 | Wald =29,093 | Wald =15,933

Exp. Coefficient Coefficient Coefficient Coefficient

Independent Variables Sign Est. Est. Est.

Intercept 0.3767 1.3217 1.2078 -0.1664
Average Price (-) -0.0804** -0.1111%** -0.0693*** -0.0317***
In(Monthly Income) (+) 0.1126* 0.1359%** 0.1697*** 0.2787***
# of Rooms in household (+) -0.0015* -0.0002 0.0006 -0.0001
Evaporative Cooler (+) -0.0453* -0.0030 -0.0075 0.0298
Condition (-) -0.0363* -0.0307* -0.0182* 0.0560*
Pool Area (+) 0.0065* -0.0005 0.0008 0.0023
In(Landscape Sq Ft.) (+) 0.0521* 0.0087 -0.0073 0.0324*
Average Daily Max Wind Speed | (+) 0.0327%** 0.0382%** 0.0329%** 0.0097*
Summer Precipitation (-) -0.0378%** -0.0368%** -0.0550%** -0.0478%**
Winter Precipitation (-) -0.0076 0.0113* 0.0092* -0.0203*
Spring/Fall Precipitation (-) -0.0790** -0.0415%* -0.0663** -0.1144%**
Average Summer Max. Temp. (+) 0.0066** 0.0096*** 0.0181*** 0.0255%**
Average Winter Max. Temp. (+) 0.0055** 0.0069%*** 0.0143%%* 0.0235%**
Average Spring/Fall Max Temp. | (#) 0.0075** 0.0099%*** 0.0181%** 0.0267***
Summer Precip. X Evap. Cooler (-) -0.0124* -0.0159** -0.0174* -0.0155%
Summer Precip. X Pool Area (-) -0.0002 -0.0009* 0.0001 -0.0001
Summer Temp. X Evap. Cooler (+) 0.003** 0.002** 0.002** 0.002**
Summer Temp. X Pool Area (+) 0.0001 0.0001 -0.0001 0.0001
Level of Significance with Heteroskedastic Robust Standard Errors: *=10% **=5% ***=1%

Table 9: Average Summer Price Elasticity of Demand by User Segment

95% Confidence Interval

Block

Segment £ap £ap LB £ap UB
Segment 1 -0.09 -0.03 -0.46
Segment 2 -0.12 -0.04 -0.31
Segment 3 -0.08 -0.03 -0.28
Segment 4 -0.04 -0.01 -0.18




Table 10: Average Income Elasticity of Demand by User Segment and Water Bill to Income Ratio

95% Confidence Interval
Block Bill to Income & 1B & UB
Segment Ratio
Segment 1 4% 41 0.35 0.55
Segment 2 1% .39 0.36 0.45
Segment 3 1.6% 43 0.41 0.52
Segment 4 3% .64 0.59 0.78

List of Figures
Figure 1: Single Family Residential Water Use, Tucson Water Service Area 1985-2012
A) Total SFR consumption with 12 month running average trend line
B) Per-household SFR consumption with 12 month running average trend line
Figure 2: Typical Econometric Models for Water Demand Estimation
Figure 3: Gamma Family Distribution for Monthly Water Consumption
Figure 4: Average Monthly Use by Segment
Figure 5: Increasing Block Rate Schedule and Average Price of Water
A) Increasing Block Rate Schedule by Year (2011 Dollars)
B) Average Price Per Unit of Water by Year (2011 Dollars)
Figure 6: Average of Annual Household Income by Segment (2011 Dollars)
Figure 7: Estimated Household Demand by User Segment
Figure 8: Price Elasticity of Demand by User Segment

Figure 9: Income Elasticity of Demand by User Segment
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Footnotes

1)

2)

3)

Although an unbalanced panel could have been used, we would need to model explicitly the
non-random mechanism in the data generating process leading to the construction of new
houses and their addition over time to the panel. Developing such a model is beyond the focus
of the current analysis.

Using the results from the Binomial calculations in table 2, placing the users into their segments
was performed using a hierarchal structure. The process was performed as follows: if a user
consumed in block 4 at least four times during the 48 month sample period, they were placed in
the segment for block 4 (Segment 4). If the consumer did not meet the criteria to be placed in
block 4, the consumer would then be considered for block 3’s segment (Segment 3).If the user
consumed in block 3 at least six times during the 48 month period, they would be placed in
block 3. If the consumer did not meet the criteria to be placed in Segment 3, the consumer
would then be considered for block 2’'s segment (Segment 2). If the customer consumed in block
2 at least 17 times during the 48 month period, they would be placed in Segment 2. Since we
were interested in all of the variation in usage, all users who did not meet the criteria for any of
the upper three usage segments were defaulted to be designated as block 1 user’s (Segment 1).
A Durbin-Wu-Hausman test Davidson, R., & McKinnon, J. G. (1993). estimation and inference in
econometrics. New York: Oxford University Press. was performed in which the residuals from
the instrumental variables equations (2), vhat;;, were inserted into the random-effects model as
follows

yie = X't + yvhaty + u; + &

for each of the four segments. The observed xz statistic values for segments 1 through 4 were
354.5,187.6, 52.9, and 44.8, respectively, all with asymptotic probability <.0001. The null of no
correlation between the residuals and the error terms is rejected in all cases, indicating an
instrumented average price should be included to address simultaneity bias.
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Residential Water
Demand Models

Structural
Models

Nordin Income Specification
e Nordin
e Taylor
e Nieswiadomy & Molina

A 4

Discrete-Continuous Choice
e Hausman
e Hewitt & Hanneman
e QOlmstead, Hanneman & Stavins

Regression Discontinuity

® Nataraj & Hanneman

Time Series
e Mostly Aggregated Use

Cross-Sectional
e Household Level Data

Random Effects

Accounts for cross-sectional
heterogeneity

Reduced
Form Models

A

Panel Models
e Time Series & Cross-Sectional

Fixed Effects

No coefficient estimates for time
invariant explanatory variables
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Price Elasticity of Demand
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