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Abstract

Assessing the harmful effects of multicollinearity in a regression model with multiple
predictors has always been one of the great problems in applied econometrics.  As
correlations amongst predictors are almost always present to some extent (especially
in time-series data generated by natural experiments), the question is at what point
does inter-correlation become harmful.  Despite receiving quite a bit of attention in
the 1960s and 1970s (but only limited since), a fully satisfactory answer to this
question has yet to be developed.  My own thoughts on the issue have always been
that multicollinearity becomes “harmful” when there is an R2 in the predictor matrix
that is of the same order of magnitude as the R2 of the model overall.  An empirical
examination of this “rule-of-thumb”, in a stylized Monte Carlo study, is the purpose
of this communication.
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A Note on The Harmful Effects of Multicollinearity

Lester D. Taylor
University of Arizona

I.  INTRODUCTION

Assessing the harmful effects of multicollinearity in a regression model with multiple
predictors has always been one of the great problems in applied econometrics.  As correlations
amongst predictors are almost always present to some extent (especially in time-series data
generated by natural experiments), the question is at what point does inter-correlation become
harmful.  Despite receiving quite a bit of attention in the 1960s and 1970s (but only limited since),
a fully satisfactory answer to this question has yet to be developed.  My own thoughts on the issue
have always been that multicollinearity becomes “harmful” when there is an R2 in the predictor
matrix that is of the same order of magnitude as the R2 of the model overall.  An empirical
examination of this “rule-of-thumb”, in a stylized Monte Carlo study, is the purpose of this
communication.

II.  BACKGROUND AND DESIGN

Once, many years ago, when at the University of Michigan I attended a lunch-time seminar
run by one of my colleagues, whereby a professor in the political science department presented a
multiple regression model in which two variables and their difference were specified as predictors.
As politely as I could, I mentioned that this involved a problem, as the X’X matrix would be singular
and none of the coefficients in the model could be estimated.  The visitor responded that this was
indeed correct, but that the computer regression program being used was able to get around the
problem.  At this point, I decided just to sit and listen.

A perfectly singular X’X matrix is, of course, the extreme of harmful multicollinearity, but
is such that, in practice, is only encountered when the same variable is inadvertently (or otherwise)
included twice, whether directly or as an exact linear combination of other independent variables.
The best that can be done in this situation is to estimate a set of linear combinations of the original
coefficients that are equal in number to the rank of the X’X matrix.  Since this results in fewer
equations than unknowns, at least some (if not all) of the original coefficients of the model cannot
be identified.

The multicollinearity problem in practice is not a perfectly singular X’X matrix, but one that
is nearly so -- or so it was thought to be the case in the days when “harmful” multicollinearity first
became a topic of serious research.  As a consequence, early investigations focused strictly on the
structure of the X’X matrix as source of the problem.  Farrar and Glauber (1964), for example,
approached the problem in terms of departures from orthogonality of the columns of the X matrix,
while Belsley, Kuh, and Welsch (1980) sought to pinpoint it via singular-value decomposition of
the X’X matrix.  Increasingly, however, it became clear that focus on just the X’X matrix is only
part of the story, and that the strength of the relationship in the overall regression is a factor as well.
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1  R2s between the vectors e and x and e and w employed in the realizations are 0.0136
and 0.0025, respectively, and 0.0002 and 0.0096 for ε and x and  ε and w. 

2  The data set used consists of expenditures for 14 exhaustive categories of consumption
for 100 households from the fourth-quarter BLS survey of 1999.   All calculations are done in
SAS.

My own experience certainly attests to this, for I have estimated many models in which inter-
correlations amongst the independent variables are extremely high, but because the R2s for the
estimated equations are even higher, “harmful” multicollinearity does not appear to be present.  The
communication that follows is essentially an exercise in examples that this is the case.

The model used in the investigation involves three independent variables x, w, and z and an
error term η,

(1)                                            .y   =   α  +  βx  +  γw  +  κz  +  η .

The variables x and w are orthogonal to one another by construction, while z is created as

(2)                                                      z   =   x  + w  +  δe

in one design and as

(3)                                                         z   =   x  +  δe

in a second design.  The first design investigates the effects of the “closeness” of z to the plane
spanned by x and w, while the second design focuses on the effects of near co-linearity of z with x
alone.  The vector e represents realizations of  a pseudo random variable generated from a 0-1
uniform distribution, with δ a parameter that can be varied to give desired correlations between z,
x, and w.1  The orthogonal variables x and w  are constructed as principal components of household
consumption data from a BLS Consumer Expenditure Survey.2  The results are all based upon the
model with assumed coefficients:

(4)                                           y   =   10 + x + 2w + 2z + ∆ε ,

where ε  is a vector of realizations of a pseudo unit-normal random variable and ∆ is a parameter
for adjusting the model’s overall R2.  The sample size is 100, with the same values for x, w, e, and
ε in all of the estimations.

The results for a variety of values of δ and for “high”, “moderate”, and “low” R2s for the
overall fit of the model are tabulated in Tables 1 and 2.  The first two columns in these tables
describe the degree of co-linearity in the independent variables, while the columns on the right show
the effects of this co-linearity on the coefficient estimates.   The information given includes the R2
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Table 1

Monte Carlo Multicollinearity Results

y   =   10  +  x  +  2w  +  2z  +  )ε
z = x + w + *e

   Co-linearity                              High R2 () = 100)
   z = x + w + *e                      y =  " + $x + (w + 6z + ),                     
    *        R2           "   t-ratio   $   t-ratio   (   t-ratio   6   t-ratio    R2     
    10    0.9995      19.72   1.13   2.73   0.88   3.86   1.24   0.27   0.09  0.9616
    20    0.9981      19.72   1.13   1.86   1.19   2.99   1.92   1.13   0.73  0.9617
    30    0.9957      19.72   1.13   1.57   1.51   2.70   2.59   1.42   1.38  0.9619   
    40    0.9924      19.72   1.13   1.43   1.81   2.56   3.24   1.56   2.02  0.9620   
    50    0.9882      19.72   1.13   1.34   2.12   2.47   3.87   1.65   2.67  0.9622
    60    0.9832      19.72   1.13   1.28   2.41   2.42   4.49   1.71   3.32  0.9624   
    70    0.9774      19.72   1.13   1.24   2.71   2.37   5.09   1.75   3.96  0.9625
    80    0.9708      19.72   1.13   1.21   2.99   2.34   5.67   1.78   4.61  0.9627
    90    0.9636      19.72   1.13   1.28   3.27   2.31   6.22   1.81   5.25  0.9629
   100    0.9556      19.72   1.13   1.17   3.55   2.30   6.75   1.83   5.90  0.9632
   200    0.8503      19.72   1.13   1.08   5.89   2.21  10.77   1.91  12.36  0.9657
   400    0.6117      19.72   1.13   1.03   8.71   2.17  14.21   1.96  25.28  0.9722
   800    0.3230      19.72   1.13   1.02  10.74   2.15  15.87   1.98  51.13  0.9833
  1600    0.1432      19.72   1.13   1.01  11.63   2.14  16.41   1.99 102.81  0.9932
 
   Co-linearity                            Moderate R2 () = 400)
   z = x + w + *e                     y =  " + $x + (w + 6z + ),                       
    *        R2           "   t-ratio   $   t-ratio   (   t-ratio   6   t-ratio    R2     
    10    0.9995      48.89   0.70   7.91   0.64   9.44   0.76  -4.93  -0.40  0.6263
   200    0.8503      48.89   0.70   1.32   1.81   2.85   3.47   1.65   2.67  0.6488
   300    0.7268      48.89   0.70   1.21   2.17   2.74   4.07   1.77   4.29  0.6686
   400    0.6117      48.89   0.70   1.15   2.42   2.68   4.39   1.82   5.90  0.6916
   800    0.3230      48.89   0.70   1.06   2.81   2.59   4.79   1.91  12.36  0.7871
  1600    0.1432      48.89   0.70   1.02   2.95   2.55   4.90   1.96  25.28  0.9025

   Co-linearity                              Low R2 () = 1000)
   z = x + w + *e                     y =  " + $x + (w + 6z + ),                       
    *        R2           "   t-ratio   $   t-ratio   (   t-ratio   6   t-ratio    R2     
    10    0.9995     107.22   0.61  18.28   0.59  20.60   0.66 -15.33  -0.50  0.2370
   400    0.6117     107.22   0.61   1.38   1.16   3.71   2.42   1.57   2.02  0.2778   
   800    0.3230     107.22   0.61   1.16   1.23   3.48   2.57   1.78   4.61  0.3751
  1200    0.2017     107.22   0.61   1.09   1.23   3.41   2.59   1.86   7.19  0.4890
  1600    0.1432     107.22   0.61   1.05   1.22   3.37   2.59   1.89   9.78  0.5927
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Table 2

Monte Carlo Multicollinearity Results

y   =   10  +  x  +  2w  +  2z  +  )ε
z = x + *e

    Co-linearity                            High R2 () = 100)
     z = x + *e                      y =  " + $x + (w + 6z + ),                        
    *        R2           "   t-ratio   $   t-ratio   (   t-ratio   6   t-ratio    R2     
    10    0.9993      19.72   1.13   2.73   0.88   2.13  16.64   0.27   0.09  0.9445
    20    0.9973      19.72   1.13   1.86   1.19   2.13  16.64   1.13   0.73  0.9448
    30    0.9939      19.72   1.13   1.57   1.51   2.13  16.64   1.42   1.38  0.9450   
    40    0.9893      19.72   1.13   1.43   1.81   2.13  16.64   1.56   2.02  0.9453   
    50    0.9835      19.72   1.13   1.34   2.12   2.13  16.64   1.65   2.67  0.9456
    60    0.9766      19.72   1.13   1.28   2.41   2.13  16.64   1.71   3.32  0.9459   
    70    0.9685      19.72   1.13   1.24   2.71   2.13  16.64   1.75   3.96  0.9463
    80    0.9595      19.72   1.13   1.21   2.99   2.13  16.64   1.78   4.61  0.9466
    90    0.9496      19.72   1.13   1.28   3.27   2.13  16.64   1.81   5.25  0.9470
   100    0.9389      19.72   1.13   1.17   3.55   2.13  16.64   1.83   5.90  0.9474
   200    0.8030      19.72   1.13   1.08   5.89   2.13  16.64   1.91  12.36  0.9523
   400    0.5334      19.72   1.13   1.03   8.71   2.13  16.64   1.96  25.28  0.9636
   800    0.2614      19.72   1.13   1.02  10.74   2.13  16.64   1.98  51.13  0.9805
  1600    0.1140      19.72   1.13   1.01  11.63   2.13  16.64   1.99 102.81  0.9929

   Co-linearity                           Moderate R2 () = 400)
    z = x + *e                      y =  " + $x + (w + 6z + ),                         
    *        R2           "   t-ratio   $   t-ratio   (   t-ratio   6   t-ratio    R2     
    10    0.9993      48.89   0.70   7.91   0.64   2.51   4.90  -4.93  -0.40  0.5272
   200    0.8030      48.89   0.70   1.32   1.81   2.51   4.90   1.65   2.67  0.5602
   300    0.6576      48.89   0.70   1.21   2.17   2.51   4.90   1.77   4.29  0.5897
   400    0.5334      48.89   0.70   1.15   2.42   2.51   4.90   1.82   5.90  0.6234
   800    0.2614      48.89   0.70   1.06   2.81   2.51   4.90   1.91  12.36  0.7551
  1600    0.1140      48.89   0.70   1.02   2.95   2.51   4.90   1.96  25.28  0.8924

   Co-linearity                             Low R2 () = 1000)
    z = x + *e                      y =  " + $x + (w + 6z + ),                         
    *        R2           "   t-ratio   $   t-ratio   (   t-ratio   6   t-ratio    R2     
    10    0.9993     107.22   0.61  18.28   0.59   3.26   2.56 -15.33  -0.50  0.1680
   400    0.5334     107.22   0.61   1.38   1.16   3.26   2.56   1.57   2.02  0.2137   
   800    0.2614     107.22   0.61   1.16   1.23   3.26   2.56   1.78   4.61  0.3257
  1200    0.1607     107.22   0.61   1.09   1.23   3.26   2.56   1.86   7.19  0.4553
  1600    0.1140     107.22   0.61   1.05   1.22   3.26   2.56   1.89   9.78  0.5708
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3  The invariance of the intercept and its t-ratio across different values of δ reflects the
fact that the means of z and the dependent variable always change by the same amount.  

for the regression of z on x and w (0.9995 for δ = 10 in Table 1) and estimated coefficients, t-ratios,
and R2 for the model in expression (4).  Table 1 shows results for z constructed according to
expression (2) and Table 2 for z constructed according to expression (3).

The key features in Table 1 are as follows:

(1). When z lies very close to plane spanned by x and w (see the δ = 10 lines in Table 1),
regression coefficients are estimated with little precision.   Note, however, that
degradation is much greater in the moderate and low R2 cases than when the R2 is
high.   While both results are to be expected, it will be seen below that, even with z
nearly lying in the x-w plane (per the R2 of 0.9995), degradation can be “trumped”
by the dependent variable lying even closer to its regression plane (i.e., by a model
R2 that is of the same order.

 
(2). Again, as is to be expected, precision of the estimates increases as z moves away

from the x-w plane.  Taking a t-ratio of 2 as a benchmark, this is reached for all three
coefficients at δ = 50 and δ = 300 in the high and moderate R2 cases and at δ = 400
for the coefficients of w and z in the low R2 case.  However, the surprising thing is
that, in all three cases, the R2s of z on the x-w plane are greater than for the models
overall: 0.9924 vs. 0.9620, 0.7268 vs. 0.6686, and 0.6117 vs. 0.2788, respectively.3

The only difference between the design underlying the results in Table 2 and the design
underlying Table 1 is that the co-linearity of z is now in relation to x alone rather than with respect
to the x-w plane.  The data are otherwise all identical.   As seen in the table, the effect of this change
is to confine the ill-effects of multicollinearity to estimates of the coefficients for x and z.  Since w
is orthogonal to both x and e, and therefore to z, the estimates of the coefficient for w have large t-
ratios and are invariant (for an R2 regime) across realizations.  This is simply a consequence of OLS
estimation and orthogonality.  That the estimated coefficients for x are identical for the two designs
may seem strange, but this, too, is a straightforward consequence of OLS estimation in light of the
orthogonality of x with both e and w.  The final thing to note in Table 2 is that the apparent
“harmful” effects co-linearity of z with x dissipate (using a t-ratio of 2 as a benchmark) at the same
values of δ as in Table 1, which is to say, that the ill-effects of multicollinearity are independent of
the form the co-linearity takes.  What matters is the degree, not the form.

Next on the agenda is to investigate the effect of co-linearity when the R2s of z and y with
their respective regression planes (i.e., z on x and w, and y on x, w, and z) are both extremely close
to 1.  The design for this case has been to hold δ constant at 10 in the construction of z = x + w +
δe and then to vary ∆ in the generation of y = 10 + x + 2w + 2z + ∆ε.  The results are presented in
Table 
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4  Since the intercept is of little interest at this point, it is not included in this table.

5  The R2s between e and x and w are 0.0012 and 0.0021, respectively.  The R2s between
ε and x and ε and w are 0.0030 and 0.0018, respectively.

Table 3

Monte Carlo Multicollinearity Results

y   =   10  +  x  +  2w  +  2z  +  ),

z = x + w + 10e
R2 = 0.9995

y =  " + $x + (w + 6z + ),
            )        $    t-ratio     (     t-ratio     6     t-ratio     R2  

             5      1.09    6.99     2.09    13.48     1.91    12.36   0.9999
            10      1.17    3.78     2.19     7.04     1.83     5.90   0.9996
            20      1.36    2.17     2.37     3.82     1.65     2.67   0.9984
            30      1.52    1.63     2.56     2.75     1.48     1.59   0.9964
            40      1.69    1.36     2.74     2.21     1.31     1.06   0.9936
            50      1.86    1.20     2.93     1.89     1.13     0.73   0.9900
           100      2.73    0.88     3.86     1.24     0.27     0.09   0.9616

3.4  The results are interesting in that they show, in line with the thesis of this communication, that
multicollinearity, and whether it is harmful, is not an absolute concept, but depends upon the
relationship between the largest R2 amongst the regressors (where each predictor is regressed on all
of the others) and the R2 of the model.  Table 3 shows this very clearly, where, despite an R2 of
0.9995 in the regression of z on x and w, an R2 for the model of the same (or even slightly lower)
magnitude, estimated coefficients are seen to remain stable with t-ratios comfortably greater than
2.

As a check on the results presented in Tables 1 - 3, results from a from a second set of
realizations for the vectors e and ε (keeping x and w the same) are presented in Tables 4 - 6.5  While
the results are obviously not the same, they clearly support the thesis that ill-effects of
multicollinearity depend  upon the highest R2 amongst the independent variable in relation to the R2

of the overall model.

III.  CONCLUSION

Most earlier analyses of “harmful” multicollinearity in linear regression involving multiple
predictors have focused on the structure of the X’X matrix without regard to the strength of the
relationship between the dependent variable and the independent variables.  The thesis in this
communication has been that the ill-effcts of co-linearity (as reflected in unstable and imprecise
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Table 4

Monte Carlo Multicollinearity Results
Second Set of Error Vectors e and ,

y   =   10  +  x  +  2w  +  2z  +  ),
z = x + w + *e

   Co-linearity                              High R2 () = 100)
   z = x + w + *e                      y =  " + $x + (w + 6z + ),                     
    *        R2           "   t-ratio   $   t-ratio   (   t-ratio   6   t-ratio    R2     
    10    0.9995      27.20   1.34   5.09   1.49   6.33   1.85  -2.14  -0.63  0.9547
    20    0.9981      27.20   1.34   1.86   1.19   3.02   1.76  -0.07  -0.04  0.9546
    30    0.9957      27.20   1.34   2.33   2.04   3.57   3.11   0.62   0.54  0.9545   
    40    0.9924      27.20   1.34   1.98   2.31   3.22   3.73   0.96   1.13  0.9545   
    50    0.9881      27.20   1.34   1.76   2.58   3.01   4.34   1.17   1.71  0.9545
    60    0.9830      27.20   1.34   1.64   2.85   2.88   4.93   1.31   2.29  0.9544   
    70    0.9769      27.20   1.34   1.54   3.12   2.78   5.51   1.41   2.88  0.9544
    80    0.9700      27.20   1.34   1.46   3.38   2.70   6.06   1.48   3.46  0.9545
    90    0.9622      27.20   1.34   1.41   3.64   2.64   6.60   1.54   4.04  0.9545
   100    0.9536      27.20   1.34   1.36   3.89   2.60   7.12   1.59   4.63  0.9545
   200    0.8336      27.20   1.34   1.15   6.09   2.39  11.03   1.79  10.47  0.9558
   400    0.5431      27.20   1.34   1.05   8.72   2.29  14.23   1.90  22.14  0.9615
   800    0.2106      27.20   1.34   1.00  10.32   2.24  15.52   1.95  45.49  0.9757
  1600    0.0501      27.20   1.34   0.97  10.77   2.21  15.797  1.99  92.19  0.9906
 
   Co-linearity                            Moderate R2 () = 400)
   z = x + w + *e                     y =  " + $x + (w + 6z + ),                       
    *        R2           "   t-ratio   $   t-ratio   (   t-ratio   6   t-ratio    R2     
    10    0.9995      78.80   0.97  17.36   1.27  19.31   1.41 -14.58  -1.06  0.5885
   200    0.8336      78.80   0.97   1.61   2.13   3.57   4.11   1.17   1.71  0.5852
   300    0.6845      78.80   0.97   1.34   2.37   3.29   4.65   1.45   3.17  0.5944
   400    0.5431      78.80   0.97   1.20   2.49   3.15   4.90   1.59   4.63  0.6100
   800    0.2106      78.80   0.97   0.99   2.56   2.95   5.11   1.79  10.47  0.7063
  1600    0.0501      78.80   0.97   0.89   2.46   2.84   5.08   1.90  22.14  0.8616

   Co-linearity                              Low R2 () = 1000)
   z = x + w + *e                     y =  " + $x + (w + 6z + ),                       
    *        R2           "   t-ratio   $   t-ratio   (   t-ratio   6   t-ratio    R2     
    10    0.9995     182.01   0.90  41.90   1.22  45.28   1.32 -39.44  -1.15  0.2223
   400    0.5491     182.01   0.90   1.50   1.24   4.88   3.04   0.96   1.13  0.2140   
   800    0.2106     182.01   0.90   0.98   1.01   4.36   3.03   1.48   3.06  0.2705
  1200    0.0956     182.01   0.90   0.81   0.88   4.19   2.97   1.65   5.80  0.3684
  1600    0.0501     182.01   0.90   0.72   0.80   4.10   2.93   1.74   8.13  0.4764
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Table 5

Monte Carlo Multicollinearity Results
Second Set of Error Vectors e and ,

y   =   10  +  x  +  2w  +  2z  +  ),
z = x + *e

    Co-linearity                            High R2 () = 100)
     z = x + *e                      y =  " + $x + (w + 6z + ),                        
    *        R2           "   t-ratio   $   t-ratio   (   t-ratio   6   t-ratio    R2     
    10    0.9993      27.20   1.34   5.09   1.49   2.18  15.71  -2.14  -0.63  0.9340   
    20    0.9973      27.20   1.34   1.86   1.19   2.18  15.71  -0.07  -0.04  0.9339
    30    0.9940      27.20   1.34   2.33   2.04   2.18  15.71   0.62   0.54  0.9338   
    40    0.9893      27.20   1.34   1.98   2.31   2.18  15.71   0.96   1.13  0.9337   
    50    0.9834      27.20   1.34   1.76   2.58   2.18  15.71   1.17   1.71  0.9337
    60    0.9761      27.20   1.34   1.64   2.85   2.18  15.71   1.31   2.29  0.9337   
    70    0.9677      27.20   1.34   1.54   3.12   2.18  15.71   1.41   2.88  0.9337
    80    0.9582      27.20   1.34   1.46   3.38   2.18  15.71   1.48   3.46  0.9337
    90    0.9475      27.20   1.34   1.41   3.64   2.18  15.71   1.54   4.04  0.9338
   100    0.9359      27.20   1.34   1.36   3.89   2.18  15.71   1.59   4.63  0.9340
   200    0.7308      27.20   1.34   1.15   6.09   2.18  15.71   1.79  10.47  0.9367
   400    0.4590      27.20   1.34   1.05   8.72   2.18  15.71   1.90  22.14  0.9481
   800    0.1613      27.20   1.34   1.00  10.32   2.18  15.71   1.95  45.49  0.9712
  1600    0.0380      27.20   1.34   0.97  10.77   2.18  15.71   1.99  92.19  0.9900

   Co-linearity                           Moderate R2 () = 400)
    z = x + *e                      y =  " + $x + (w + 6z + ),                         
    *        R2           "   t-ratio   $   t-ratio   (   t-ratio   6   t-ratio    R2     
    10    0.9993      78.80   0.97  17.36   1.27   2.74   4.92 -14.58  -1.06  0.4796
   200    0.7808      78.80   0.97   1.61   2.13   2.74   4.92   1.17   1.71  0.4763
   300    0.6071      78.80   0.97   1.34   2.37   2.74   4.92   1.45   3.17  0.4918
   400    0.4190      78.80   0.97   1.20   2.49   2.74   4.92   1.59   4.63  0.5170
   800    0.2106      78.80   0.97   0.99   2.56   2.74   4.92   1.79  10.47  0.6583
  1600    0.0380      78.80   0.97   0.89   2.46   2.74   4.92   1.90  22.14  0.8534

   Co-linearity                             Low R2 () = 1000)
    z = x + *e                      y =  " + $x + (w + 6z + ),                         
    *        R2           "   t-ratio   $   t-ratio   (   t-ratio   6   t-ratio    R2     
    10    0.9993     182.01   0.90  41.90   1.22   3.85   2.77 -39.44  -1.15  0.1525
   400    0.4190     182.01   0.90   1.50   1.24   3.85   2.77   0.96   1.13  0.1443   
   800    0.2106     182.01   0.90   0.98   1.01   3.85   2.77   1.48   3.46  0.2124
  1200    0.0719     182.01   0.90   0.81   0.88   3.85   2.77   1.65   5.80  0.3264
  1600    0.0380     182.01   0.90   0.72   0.80   3.85   2.77   1.74   8.13  0.4486
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Table 6

Monte Carlo Multicollinearity Results

y   =   10  +  x  +  2w  +  2z  +  ),

z = x + w + 10e
R2 = 0.9995

y =  " + $x + (w + 6z + ),
            )        $    t-ratio     (     t-ratio     6     t-ratio     R2  

             5      1.20    7.04     2.22    12.95     1.79    10.47   0.9999
            10      1.41    4.12     2.43     7.10     1.59     4.63   0.9995
            20      1.81    2.66     2.87     4.18     1.17     1.71   0.9981
            30      2.23    2.17     3.30     3.21     0.76     0.74   0.9957
            40      2.64    1.93     3.73     2.72     0.34     0.25   0.9924
            50      3.05    1.78     4.16     2.43    -0.07    -0.04   0.9881
           100      5.09    1.49     6.33     1.85    -2.14    -0.63   0.9547

regression coefficient estimates) become apparent only when one of the regressor vectors lies closer
to  its fellows than does the dependent vector in relation to the full set of regressors.  This thesis has
been investigated in a Monte Carlo study involving an OLS regression model with three independent
variables, in which two of the predictors are orthogonal to one another while the third is constructed
as the sum of these plus an uncorrelated component.  Taking t-ratios of 2 as a benchmark, the Monte
Carlo results are clear in showing that, no matter how close the third variable may lie to the plane
defined by the two orthogonal variables, multicollinearity is “harmful” only when the R2 for that 
relationship is stronger than the R2 for the model overall.  Thus, a useful procedure for testing for
possible ill-effects of multicollinearity in a linear regression model is to regress each of the
independent variables on its fellows and then compare the resulting R2s with the R2 for the model
overall.  If the model R2 is higher than any of these auxiliary R2s, then, whatever problems the model
might have, it can be concluded that “harmful” multicollinearity is not one of them.

It is important to note that this conclusion is empirically based, and does not, at least at this
point, have a rigorous mathematical basis.  While one can almost certainly say that the rule provides
a sufficient condition (using a benchmark of a t-ratio of 2) for multicollinearity not to be harmful,
it does not appear to be necessary.  However, since the Monte Carlo results presented are pretty
unequivocal, it seems likely (at least to me) that somewhere in the mathematics connecting the
matrix (y, X)’(y, X) to its “sub-matrix” X’X lurks a theorem that can lead to a fully rigorous
definition of harmful multicollinearity.
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