Cardon Research Papers

Research
Paper
2012-02
June 2012

A Note on the Harmful Effects of Multicollinearity

Lester D. Taylor
University of Arizona

The University of Arizona is an equal opportunity, affirmative action institution. The University does not discriminate on the basis of race, color, religion, sex, national origin, age, disability, veteran status, or sexual orientation in its programs and activities.

Department of Agricultural and Resource Economics
College of Agriculture and Life Sciences
The University of Arizona
This paper is available online at http://ag.arizona.edu/arec/pubs/researchpapers.html

Copyright ©2012 by the author(s). All rights reserved. Readers may make verbatim copies of this document for noncommercial purposes by any means, provided that this copyright notice appears on all such copies.

A Note on The Harmful Effects of Multicollinearity

Lester D. Taylor ${ }^{*}$
Department of Economics
Department of Agricultural \& Resource Economics
University of Arizona

Itaylor@email.arizona.edu

Abstract
Assessing the harmful effects of multicollinearity in a regression model with multiple predictors has always been one of the great problems in applied econometrics. As correlations amongst predictors are almost always present to some extent (especially in time-series data generated by natural experiments), the question is at what point does inter-correlation become harmful. Despite receiving quite a bit of attention in the 1960s and 1970s (but only limited since), a fully satisfactory answer to this question has yet to be developed. My own thoughts on the issue have always been that multicollinearity becomes "harmful" when there is an R^{2} in the predictor matrix that is of the same order of magnitude as the R^{2} of the model overall. An empirical examination of this "rule-of-thumb", in a stylized Monte Carlo study, is the purpose of this communication.

[^0]A Note on The Harmful Effects of Multicollinearity

Lester D. Taylor
University of Arizona

I. INTRODUCTION

Assessing the harmful effects of multicollinearity in a regression model with multiple predictors has always been one of the great problems in applied econometrics. As correlations amongst predictors are almost always present to some extent (especially in time-series data generated by natural experiments), the question is at what point does inter-correlation become harmful. Despite receiving quite a bit of attention in the 1960s and 1970s (but only limited since), a fully satisfactory answer to this question has yet to be developed. My own thoughts on the issue have always been that multicollinearity becomes "harmful" when there is an R^{2} in the predictor matrix that is of the same order of magnitude as the R^{2} of the model overall. An empirical examination of this "rule-of-thumb", in a stylized Monte Carlo study, is the purpose of this communication.

II. BACKGROUND AND DESIGN

Once, many years ago, when at the University of Michigan I attended a lunch-time seminar run by one of my colleagues, whereby a professor in the political science department presented a multiple regression model in which two variables and their difference were specified as predictors. As politely as I could, I mentioned that this involved a problem, as the $X^{\prime} \mathrm{X}$ matrix would be singular and none of the coefficients in the model could be estimated. The visitor responded that this was indeed correct, but that the computer regression program being used was able to get around the problem. At this point, I decided just to sit and listen.

A perfectly singular X'X matrix is, of course, the extreme of harmful multicollinearity, but is such that, in practice, is only encountered when the same variable is inadvertently (or otherwise) included twice, whether directly or as an exact linear combination of other independent variables. The best that can be done in this situation is to estimate a set of linear combinations of the original coefficients that are equal in number to the rank of the $X^{\prime} X$ matrix. Since this results in fewer equations than unknowns, at least some (if not all) of the original coefficients of the model cannot be identified.

The multicollinearity problem in practice is not a perfectly singular $X^{\prime} X$ matrix, but one that is nearly so -- or so it was thought to be the case in the days when "harmful" multicollinearity first became a topic of serious research. As a consequence, early investigations focused strictly on the structure of the X'X matrix as source of the problem. Farrar and Glauber (1964), for example, approached the problem in terms of departures from orthogonality of the columns of the X matrix, while Belsley, Kuh, and Welsch (1980) sought to pinpoint it via singular-value decomposition of the X'X matrix. Increasingly, however, it became clear that focus on just the X'X matrix is only part of the story, and that the strength of the relationship in the overall regression is a factor as well.

My own experience certainly attests to this, for I have estimated many models in which intercorrelations amongst the independent variables are extremely high, but because the $\mathrm{R}^{2} \mathrm{~s}$ for the estimated equations are even higher, "harmful" multicollinearity does not appear to be present. The communication that follows is essentially an exercise in examples that this is the case.

The model used in the investigation involves three independent variables x, w, and z and an error term η,

$$
\begin{equation*}
. \mathrm{y}=\alpha+\beta \mathrm{x}+\gamma \mathrm{w}+\kappa z+\eta . \tag{1}
\end{equation*}
$$

The variables x and w are orthogonal to one another by construction, while z is created as

$$
\begin{equation*}
\mathrm{z}=\mathrm{x}+\mathrm{w}+\delta \mathrm{e} \tag{2}
\end{equation*}
$$

in one design and as

$$
\begin{equation*}
\mathrm{z}=\mathrm{x}+\delta \mathrm{e} \tag{3}
\end{equation*}
$$

in a second design. The first design investigates the effects of the "closeness" of z to the plane spanned by x and w , while the second design focuses on the effects of near co-linearity of z with x alone. The vector e represents realizations of a pseudo random variable generated from a $0-1$ uniform distribution, with δ a parameter that can be varied to give desired correlations between z , x , and $\mathrm{w} .{ }^{1}$ The orthogonal variables x and w are constructed as principal components of household consumption data from a BLS Consumer Expenditure Survey. ${ }^{2}$ The results are all based upon the model with assumed coefficients:

$$
\begin{equation*}
\mathrm{y}=10+\mathrm{x}+2 \mathrm{w}+2 \mathrm{z}+\Delta \varepsilon \tag{4}
\end{equation*}
$$

where ε is a vector of realizations of a pseudo unit-normal random variable and Δ is a parameter for adjusting the model's overall R^{2}. The sample size is 100 , with the same values for $\mathrm{x}, \mathrm{w}, \mathrm{e}$, and ε in all of the estimations.

The results for a variety of values of δ and for "high", "moderate", and "low" R^{2} s for the overall fit of the model are tabulated in Tables 1 and 2. The first two columns in these tables describe the degree of co-linearity in the independent variables, while the columns on the right show the effects of this co-linearity on the coefficient estimates. The information given includes the R^{2}

[^1]Table 1

Monte Carlo Multicollinearity Results

$$
\begin{aligned}
\mathrm{y}= & 10+\mathrm{x}+2 \mathrm{w}+2 \mathrm{z}+\Delta \varepsilon \\
& \mathrm{z}=\mathrm{x}+\mathrm{w}+\delta \mathrm{e}
\end{aligned}
$$

Co-linearity	
δ	R^{2}
10	0.9995
20	0.9981
30	0.9957
40	0.9924
50	0.9882
60	0.9832
70	0.9774
80	0.9708
90	0.9636
100	0.9556
200	0.8503
400	0.6117
800	0.3230
1600	0.1432

α	t-ratio	β	t-ratio	Y	t-ratio	K	t-ratio	R^{2}
19.72	1.13	2.73	0.88	3.86	1.24	0.27	0.09	0.9616
19.72	1.13	1.86	1.19	2.99	1.92	1.13	0.73	0.9617
19.72	1.13	1.57	1.51	2.70	2.59	1.42	1.38	0.9619
19.72	1.13	1.43	1.81	2.56	3.24	1.56	2.02	0.9620
19.72	1.13	1.34	2.12	2.47	3.87	1.65	2.67	0.9622
19.72	1.13	1.28	2.41	2.42	4.49	1.71	3.32	0.9624
19.72	1.13	1.24	2.71	2.37	5.09	1.75	3.96	0.9625
19.72	1.13	1.21	2.99	2.34	5.67	1.78	4.61	0.9627
19.72	1.13	1.28	3.27	2.31	6.22	1.81	5.25	0.9629
19.72	1.13	1.17	3.55	2.30	6.75	1.83	5.90	0.9632
19.72	1.13	1.08	5.89	2.21	10.77	1.91	12.36	0.9657
19.72	1.13	1.03	8.71	2.17	14.21	1.96	25.28	0.9722
19.72	1.13	1.02	10.74	2.15	15.87	1.98	51.13	0.9833
19.72	1.13	1.01	11.63	2.14	16.41	1.99	102.81	0.9932

Co-linearity	
z =	$w+\delta \mathrm{e}$
δ	R^{2}
10	0.9995
200	0.8503
300	0.7268
400	0.6117
800	0.3230
1600	0.1432

			Modera $\alpha+\beta x$	$\begin{aligned} & \text { e } R^{2}(\Delta \\ & +\quad \gamma W+ \\ & \hline \end{aligned}$	$\begin{gathered} =400) \\ K Z+\triangle e \end{gathered}$			
α	t-ratio	β	t-ratio	r	t-ratio	K	t-ratio	R^{2}
48.89	0.70	7.91	0.64	9.44	0.76	-4.93	-0.40	0.6263
48.89	0.70	1.32	1.81	2.85	3.47	1.65	2.67	0.6488
48.89	0.70	1.21	2.17	2.74	4.07	1.77	4.29	0.6686
48.89	0.70	1.15	2.42	2.68	4.39	1.82	5.90	0.6916
48.89	0.70	1.06	2.81	2.59	4.79	1.91	12.36	0.7871
48.89	0.70	1.02	2.95	2.55	4.90	1.96	25.28	0.9025

Co-linearity	
z =	w +
δ	R^{2}
10	0.9995
400	0.6117
800	0.3230
1200	0.2017
1600	0.1432

α	t-ratio	β	t-ratio	Y	t-ratio	K	t-ratio	R^{2}
107.22	0.61	18.28	0.59	20.60	0.66	-15.33	-0.50	0.2370
107.22	0.61	1.38	1.16	3.71	2.42	1.57	2.02	0.2778
107.22	0.61	1.16	1.23	3.48	2.57	1.78	4.61	0.3751
107.22	0.61	1.09	1.23	3.41	2.59	1.86	7.19	0.4890
107.22	0.61	1.05	1.22	3.37	2.59	1.89	9.78	0.5927

Table 2

Monte Carlo Multicollinearity Results

$$
\begin{gathered}
y=10+x+2 w+2 z+\Delta \varepsilon \\
z=x+\delta e
\end{gathered}
$$

Co-linearity	
δ	R^{2}
10	0.9993
20	0.9973
30	0.9939
40	0.9893
50	0.9835
60	0.9766
70	0.9685
80	0.9595
90	0.9496
100	0.9389
200	0.8030
400	0.5334
800	0.2614
1600	0.1140

Co-linearity	
z	+ δ e
δ	R^{2}
10	0.9993
200	0.8030
300	0.6576
400	0.5334
800	0.2614
1600	0.1140

Co-linearity	
δ	R^{2}
10	0.9993
400	0.5334
800	0.2614
1200	0.1607
1600	0.1140

High $\mathrm{R}^{2}(\triangle=100)$								
α	t-ratio	β	t-ratio	Y	t-ratio	K	t-ratio	R^{2}
19.72	1.13	2.73	0.88	2.13	16.64	0.27	0.09	0.9445
19.72	1.13	1.86	1.19	2.13	16.64	1.13	0.73	0.9448
19.72	1.13	1.57	1.51	2.13	16.64	1.42	1.38	0.9450
19.72	1.13	1.43	1.81	2.13	16.64	1.56	2.02	0.9453
19.72	1.13	1.34	2.12	2.13	16.64	1.65	2.67	0.9456
19.72	1.13	1.28	2.41	2.13	16.64	1.71	3.32	0.9459
19.72	1.13	1.24	2.71	2.13	16.64	1.75	3.96	0.9463
19.72	1.13	1.21	2.99	2.13	16.64	1.78	4.61	0.9466
19.72	1.13	1.28	3.27	2.13	16.64	1.81	5.25	0.9470
19.72	1.13	1.17	3.55	2.13	16.64	1.83	5.90	0.9474
19.72	1.13	1.08	5.89	2.13	16.64	1.91	12.36	0.9523
19.72	1.13	1.03	8.71	2.13	16.64	1.96	25.28	0.9636
19.72	1.13	1.02	10.74	2.13	16.64	1.98	51.13	0.9805
19.72	1.13	1.01	11.63	2.13	16.64	1.99	102.81	0.9929

Moderate $\mathrm{R}^{2}(\triangle=400)$
$y=\alpha+\beta x+\gamma w+k Z+\Delta e$

α	t-ratio	β	t-ratio	Y	t-ratio	K	t-ratio	R^{2}
48.89	0.70	7.91	0.64	2.51	4.90	-4.93	-0.40	0.5272
48.89	0.70	1.32	1.81	2.51	4.90	1.65	2.67	0.5602
48.89	0.70	1.21	2.17	2.51	4.90	1.77	4.29	0.5897
48.89	0.70	1.15	2.42	2.51	4.90	1.82	5.90	0.6234
48.89	0.70	1.06	2.81	2.51	4.90	1.91	12.36	0.7551
48.89	0.70	1.02	2.95	2.51	4.90	1.96	25.28	0.8924

Low $R^{2}(\triangle=1000)$
$y=\alpha+\beta x+\gamma w+k z+\Delta \varepsilon$

α	t-ratio	β	t-ratio	Y	t-ratio	K	t-ratio	R^{2}
107.22	0.61	18.28	0.59	3.26	2.56	-15.33	-0.50	0.1680
107.22	0.61	1.38	1.16	3.26	2.56	1.57	2.02	0.2137
107.22	0.61	1.16	1.23	3.26	2.56	1.78	4.61	0.3257
107.22	0.61	1.09	1.23	3.26	2.56	1.86	7.19	0.4553
107.22	0.61	1.05	1.22	3.26	2.56	1.89	9.78	0.5708

for the regression of z on x and $\mathrm{w}(0.9995$ for $\delta=10$ in Table 1) and estimated coefficients, t-ratios, and R^{2} for the model in expression (4). Table 1 shows results for z constructed according to expression (2) and Table 2 for z constructed according to expression (3).

The key features in Table 1 are as follows:
(1). When z lies very close to plane spanned by x and w (see the $\delta=10$ lines in Table 1), regression coefficients are estimated with little precision. Note, however, that degradation is much greater in the moderate and low R^{2} cases than when the R^{2} is high. While both results are to be expected, it will be seen below that, even with z nearly lying in the $\mathrm{x}-\mathrm{w}$ plane (per the R^{2} of 0.9995), degradation can be "trumped" by the dependent variable lying even closer to its regression plane (i.e., by a model R^{2} that is of the same order.
(2). Again, as is to be expected, precision of the estimates increases as z moves away from the $\mathrm{x}-\mathrm{w}$ plane. Taking a t-ratio of 2 as a benchmark, this is reached for all three coefficients at $\delta=50$ and $\delta=300$ in the high and moderate R^{2} cases and at $\delta=400$ for the coefficients of w and z in the low R^{2} case. However, the surprising thing is that, in all three cases, the $\mathrm{R}^{2} \mathrm{~s}$ of z on the $\mathrm{x}-\mathrm{w}$ plane are greater than for the models overall: 0.9924 vs. $0.9620,0.7268$ vs. 0.6686 , and 0.6117 vs. 0.2788 , respectively. ${ }^{3}$

The only difference between the design underlying the results in Table 2 and the design underlying Table 1 is that the co-linearity of z is now in relation to x alone rather than with respect to the x -w plane. The data are otherwise all identical. As seen in the table, the effect of this change is to confine the ill-effects of multicollinearity to estimates of the coefficients for x and z. Since w is orthogonal to both x and e , and therefore to z , the estimates of the coefficient for w have large t ratios and are invariant (for an R^{2} regime) across realizations. This is simply a consequence of OLS estimation and orthogonality. That the estimated coefficients for x are identical for the two designs may seem strange, but this, too, is a straightforward consequence of OLS estimation in light of the orthogonality of x with both e and w . The final thing to note in Table 2 is that the apparent "harmful" effects co-linearity of z with x dissipate (using a t-ratio of 2 as a benchmark) at the same values of δ as in Table 1, which is to say, that the ill-effects of multicollinearity are independent of the form the co-linearity takes. What matters is the degree, not the form.

Next on the agenda is to investigate the effect of co-linearity when the $R^{2} s$ of z and y with their respective regression planes (i.e., z on x and w, and y on x, w, and z) are both extremely close to 1 . The design for this case has been to hold δ constant at 10 in the construction of $z=x+w+$ δe and then to vary Δ in the generation of $y=10+x+2 w+2 z+\Delta \varepsilon$. The results are presented in Table
${ }^{3}$ The invariance of the intercept and its t-ratio across different values of δ reflects the fact that the means of z and the dependent variable always change by the same amount.

Table 3
Monte Carlo Multicollinearity Results

$$
y=10+x+2 w+2 z+\Delta e
$$

$z=x+w+10 e$
$R^{2}=0.9995$

\triangle	β	t-ratio	V	t-ratio	K	t-ratio	R^{2}
5	1.09	6.99	2.09	13.48	1.91	12.36	0.9999
10	1.17	3.78	2.19	7.04	1.83	5.90	0.9996
20	1.36	2.17	2.37	3.82	1.65	2.67	0.9984
30	1.52	1.63	2.56	2.75	1.48	1.59	0.9964
40	1.69	1.36	2.74	2.21	1.31	1.06	0.9936
50	1.86	1.20	2.93	1.89	1.13	0.73	0.9900
100	2.73	0.88	3.86	1.24	0.27	0.09	0.9616

3. ${ }^{4}$ The results are interesting in that they show, in line with the thesis of this communication, that multicollinearity, and whether it is harmful, is not an absolute concept, but depends upon the relationship between the largest R^{2} amongst the regressors (where each predictor is regressed on all of the others) and the R^{2} of the model. Table 3 shows this very clearly, where, despite an R^{2} of 0.9995 in the regression of z on x and w, an R^{2} for the model of the same (or even slightly lower) magnitude, estimated coefficients are seen to remain stable with t-ratios comfortably greater than 2.

As a check on the results presented in Tables 1-3, results from a from a second set of realizations for the vectors e and ε (keeping x and w the same) are presented in Tables $4-6 .{ }^{5}$ While the results are obviously not the same, they clearly support the thesis that ill-effects of multicollinearity depend upon the highest R^{2} amongst the independent variable in relation to the R^{2} of the overall model.

III. CONCLUSION

Most earlier analyses of "harmful" multicollinearity in linear regression involving multiple predictors have focused on the structure of the $\mathrm{X}^{\prime} \mathrm{X}$ matrix without regard to the strength of the relationship between the dependent variable and the independent variables. The thesis in this communication has been that the ill-effcts of co-linearity (as reflected in unstable and imprecise

[^2]
Table 4

Monte Carlo Multicollinearity Results

Second Set of Error Vectors e and e

$$
\begin{aligned}
y= & 10+x+2 w+2 z+\Delta e \\
& z=x+w+\delta e
\end{aligned}
$$

Co-linearity$z=x+w+\delta e$	
δ	R^{2}
10	0.9995
20	0.9981
30	0.9957
40	0.9924
50	0.9881
60	0.9830
70	0.9769
80	0.9700
90	0.9622
100	0.9536
200	0.8336
400	0.5431
800	0.2106
1600	0.0501

α	t-ratio	β	t-ratio	Y	t-ratio	K	t-ratio	R^{2}
27.20	1.34	5.09	1.49	6.33	1.85	-2.14	-0.63	0.9547
27.20	1.34	1.86	1.19	3.02	1.76	-0.07	-0.04	0.9546
27.20	1.34	2.33	2.04	3.57	3.11	0.62	0.54	0.9545
27.20	1.34	1.98	2.31	3.22	3.73	0.96	1.13	0.9545
27.20	1.34	1.76	2.58	3.01	4.34	1.17	1.71	0.9545
27.20	1.34	1.64	2.85	2.88	4.93	1.31	2.29	0.9544
27.20	1.34	1.54	3.12	2.78	5.51	1.41	2.88	0.9544
27.20	1.34	1.46	3.38	2.70	6.06	1.48	3.46	0.9545
27.20	1.34	1.41	3.64	2.64	6.60	1.54	4.04	0.9545
27.20	1.34	1.36	3.89	2.60	7.12	1.59	4.63	0.9545
27.20	1.34	1.15	6.09	2.39	11.03	1.79	10.47	0.9558
27.20	1.34	1.05	8.72	2.29	14.23	1.90	22.14	0.9615
27.20	1.34	1.00	10.32	2.24	15.52	1.95	45.49	0.9757
27.20	1.34	0.97	10.77	2.21	15.797	1.99	92.19	0.9906

Co-linearity	
z =	+ w + δ e
δ	R^{2}
10	0.9995
200	0.8336
300	0.6845
400	0.5431
800	0.2106
1600	0.0501

Moderate $\mathrm{R}^{2}(\triangle=400)$$\alpha+\beta x+\gamma w+k z+\Delta \underline{e}$								
α	t-ratio	β	t-ratio	Y	t-ratio	K	t-ratio	R^{2}
78.80	0.97	17.36	1.27	19.31	1.41	-14.58	-1.06	0.5885
78.80	0.97	1.61	2.13	3.57	4.11	1.17	1.71	0.5852
78.80	0.97	1.34	2.37	3.29	4.65	1.45	3.17	0.5944
78.80	0.97	1.20	2.49	3.15	4.90	1.59	4.63	0.6100
78.80	0.97	0.99	2.56	2.95	5.11	1.79	10.47	0.7063
78.80	0.97	0.89	2.46	2.84	5.08	1.90	22.14	0.8616

Co-linearity	
δ	R^{2}
10	0.9995
400	0.5491
800	0.2106
1200	0.0956
1600	0.0501

Table 5

Monte Carlo Multicollinearity Results
 Second Set of Error Vectors e and e

$$
\begin{gathered}
y=10+x+2 w+2 z+\Delta e \\
z=x+\delta e
\end{gathered}
$$

$\begin{gathered} \text { Co-linearity } \\ z=x+\delta e \end{gathered}$	
δ	R^{2}
10	0.9993
20	0.9973
30	0.9940
40	0.9893
50	0.9834
60	0.9761
70	0.9677
80	0.9582
90	0.9475
100	0.9359
200	0.7308
400	0.4590
800	0.1613
1600	0.038

$\begin{gathered} \text { Co-l } \\ \text { z }= \\ \hline \end{gathered}$	$\begin{aligned} & \text { earity } \\ & +\quad \delta \mathrm{e} \\ & \hline \end{aligned}$
δ	R^{2}
10	0.9993
200	0.7808
300	0.6071
400	0.4190
800	0.2106
1600	0.0380

Co-linearity

$z=x+\delta e$	
δ	$\frac{R^{2}}{\delta}$
10	0.9993
400	0.4190
800	0.2106
1200	0.0719
1600	0.0380

High $\mathrm{R}^{2}(\triangle=100)$

α	t-ratio	β	t-ratio	r	t-ratio	K	t-ratio	R^{2}
27.20	1.34	5.09	1.49	2.18	15.71	-2.14	-0.63	0.9340
27.20	1.34	1.86	1.19	2.18	15.71	-0.07	-0.04	0.9339
27.20	1.34	2.33	2.04	2.18	15.71	0.62	0.54	0.9338
27.20	1.34	1.98	2.31	2.18	15.71	0.96	1.13	0.9337
27.20	1.34	1.76	2.58	2.18	15.71	1.17	1.71	0.9337
27.20	1.34	1.64	2.85	2.18	15.71	1.31	2.29	0.9337
27.20	1.34	1.54	3.12	2.18	15.71	1.41	2.88	0.9337
27.20	1.34	1.46	3.38	2.18	15.71	1.48	3.46	0.9337
27.20	1.34	1.41	3.64	2.18	15.71	1.54	4.04	0.9338
27.20	1.34	1.36	3.89	2.18	15.71	1.59	4.63	0.9340
27.20	1.34	1.15	6.09	2.18	15.71	1.79	10.47	0.9367
27.20	1.34	1.05	8.72	2.18	15.71	1.90	22.14	0.9481
27.20	1.34	1.00	10.32	2.18	15.71	1.95	45.49	0.9712
27.20	1.34	0.97	10.77	2.18	15.71	1.99	92.19	0.9900

α	t-ratio	β	t-ratio	Y	t-ratio	K	t-ratio	R^{2}
78.80	0.97	17.36	1.27	2.74	4.92	-14.58	-1.06	0.4796
78.80	0.97	1.61	2.13	2.74	4.92	1.17	1.71	0.4763
78.80	0.97	1.34	2.37	2.74	4.92	1.45	3.17	0.4918
78.80	0.97	1.20	2.49	2.74	4.92	1.59	4.63	0.5170
78.80	0.97	0.99	2.56	2.74	4.92	1.79	10.47	0.6583
78.80	0.97	0.89	2.46	2.74	4.92	1.90	22.14	0.8534

Low $R^{2}(\triangle=1000)$

α	t-ratio	β	t-ratio	Y	t-ratio	(K	t-ratio	R^{2}
182.01	0.90	41.90	1.22	3.85	2.77	-39.44	-1.15	0.1525
182.01	0.90	1.50	1.24	3.85	2.77	0.96	1.13	0.1443
182.01	0.90	0.98	1.01	3.85	2.77	1.48	3.46	0.2124
182.01	0.90	0.81	0.88	3.85	2.77	1.65	5.80	0.3264
182.01	0.90	0.72	0.80	3.85	2.77	1.74	8.13	0.4486

Table 6

$\begin{gathered} z=x+w+10 e \\ R^{2}=0.9995 \end{gathered}$					
$\begin{array}{r} \mathrm{y}= \\ \text { t-ratio } \end{array}$	$\begin{gathered} \alpha+\beta x \\ \quad \gamma \\ \hline \end{gathered}$	$\begin{aligned} & \text { Yw }+k z \\ & \text { t-ratio } \\ & \hline \end{aligned}$	$\begin{gathered} \Delta e \\ \mathrm{~K} \\ \hline \end{gathered}$	t-ratio	R^{2}
7.04	2.22	12.95	1.79	10.47	0.9999
4.12	2.43	7.10	1.59	4.63	0.9995
2.66	2.87	4.18	1.17	1.71	0.9981
2.17	3.30	3.21	0.76	0.74	0.9957
1.93	3.73	2.72	0.34	0.25	0.9924
1.78	4.16	2.43	-0.07	-0.04	0.9881
1.49	6.33	1.85	-2.14	-0.63	0.9547

regression coefficient estimates) become apparent only when one of the regressor vectors lies closer to its fellows than does the dependent vector in relation to the full set of regressors. This thesis has been investigated in a Monte Carlo study involving an OLS regression model with three independent variables, in which two of the predictors are orthogonal to one another while the third is constructed as the sum of these plus an uncorrelated component. Taking t-ratios of 2 as a benchmark, the Monte Carlo results are clear in showing that, no matter how close the third variable may lie to the plane defined by the two orthogonal variables, multicollinearity is "harmful" only when the R^{2} for that relationship is stronger than the R^{2} for the model overall. Thus, a useful procedure for testing for possible ill-effects of multicollinearity in a linear regression model is to regress each of the independent variables on its fellows and then compare the resulting $R^{2} s$ with the R^{2} for the model overall. If the model R^{2} is higher than any of these auxiliary $R^{2} s$, then, whatever problems the model might have, it can be concluded that "harmful" multicollinearity is not one of them.

It is important to note that this conclusion is empirically based, and does not, at least at this point, have a rigorous mathematical basis. While one can almost certainly say that the rule provides a sufficient condition (using a benchmark of a t-ratio of 2) for multicollinearity not to be harmful, it does not appear to be necessary. However, since the Monte Carlo results presented are pretty unequivocal, it seems likely (at least to me) that somewhere in the mathematics connecting the matrix ($\mathrm{y}, \mathrm{X})^{\prime}(\mathrm{y}, \mathrm{X})$ to its "sub-matrix" X'X lurks a theorem that can lead to a fully rigorous definition of harmful multicollinearity.

REFERENCES

Belsley, D. A., Kuh, E., and Welsch, R. E. (1980), Regression Diagnostics: Identifying Influential Data and The Sources of Collinearity, Wiley Interscience.

Farrar, D. E. and Glauber, R. R. (1967), "Multicollinearity in Regression Analysis: The Problem Revisited," The Review of Economics \& Statistics, Vol. 49, No. 1, February 1967, pp. 92 107.

[^0]: * I am grateful to Timothy Tardiff for comment and criticism.

[^1]: ${ }^{1} \mathrm{R}^{2} \mathrm{~s}$ between the vectors e and x and e and w employed in the realizations are 0.0136 and 0.0025 , respectively, and 0.0002 and 0.0096 for ε and x and ε and w .
 ${ }^{2}$ The data set used consists of expenditures for 14 exhaustive categories of consumption for 100 households from the fourth-quarter BLS survey of 1999. All calculations are done in SAS.

[^2]: ${ }^{4}$ Since the intercept is of little interest at this point, it is not included in this table.
 ${ }^{5}$ The $R^{2} s$ between e and x and w are 0.0012 and 0.0021 , respectively. The $R^{2} s$ between ε and x and ε and w are 0.0030 and 0.0018 , respectively.

