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Abstract

This manuscript proposes using empirical Bayes techniques on estimated density values from
nonparametric kernels in attempts to exploit potential similarities among a set of unknown
densities. Our asymptotic theory and simulation results suggest that the empirical Bayes
nonparametric kernel estimator may be a viable alternative to the standard kernel estimator
when a set of possibly similar densities are being estimated. The strengths of the proposed
estimator are (i) it allows all types of kernel estimators; and (ii) it does not require specification

as to the degree or form of similarity.
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1 Introduction

It is often necessary to estimate a set of densities {f1, f2, ..., fo} that are thought to be of similar
structure rather than a single density. In a parametric framework, similarity is imposed by assuming
the set of densities belong to a single known parametric family. Although parametric approaches
may be relatively efficient given they achieve the Lo rate O(nfl/ 2) under the assumption that the
parametric family is correctly assumed, an incorrectly assumed parametric family will lead to incon-
sistent estimates which may result in significantly biased analyses and inferences. Unfortunately,
the true parametric family is generally not discernible from the available information. In response,
nonparametric density estimators have become mainstream in empirical applications despite slower
Ly rates of convergence O(n~2/5). Generally, any structural similarities among the densities tend to
be left unexploited using nonparametric methods. In special circumstances, a known or estimable
transformation may be invoked such that the set of densities collapses to a single density. In em-
pirical analyses, however, such a transformation tends to be unrecoverable since the form or extent
of the similarities is rarely known. We wish to construct an estimator that does not require any
conditions or specifications on the degree of similarity but rather only a vague notion that the
densities could possibly be of similar shape.

This manuscript proposes using empirical Bayes techniques on estimated density values from
kernel-type estimators in attempts to exploit any similarities among the set of densities when the
form or extent of the similarities is unknown. The estimator makes use of the pointwise limiting
distribution of kernel estimators to construct a hierarchical model in an empirical Bayes framework.
The proposed estimator lies in stark contrast to Bayesian nonparametric density estimation first
proposed in the seminal article of Ferguson (1973). This line of estimators employs Gaussian
mixtures and the Dirichlet process prior. With the introduction of Markov Chain Monte Carlo
(MCMC) algorithms, empirical applications of Ferguson’s method have started to appear. See, for
example, Diebolt and Robert (1994), Escobar and West (1995), and Roeder and Wasserman (1997).
Note, however, that this approach has only been used—although not necessarily—to recover a single
density and not a set of densities. The estimator proposed here differs in that kernel-type density
estimators rather than Gaussian mixtures are employed and empirical Bayes is performed on the
estimated density values as opposed to placing a prior on a given parameter space.

The main strengths of the proposed estimator are derived from the kernel estimator. First, since
empirical Bayes techniques are employed with the values from the kernel estimator, all the variations
of kernel estimators, including higher order kernels, variable kernel methods, and transformation-
kernel density estimators, may be employed. Second, in the case when the set of densities are
not identical, the empirical Bayes nonparametric kernel estimator converges in probability to the
kernel estimator at a rate quicker than the kernel estimator converges in probability to the unknown
density of interest. As a result, the asymptotic properties of the kernel estimator are passed along to

the empirical Bayes nonparametric kernel estimator. Third, the proposed estimator does not require



any prior knowledge about the degree or form of possible similarities among the set of densities of
interest. This is particularly beneficial because in empirical settings this is rarely (if ever) known.
The manuscript proceeds by outlining the estimator, proving some asymptotic properties, and

presenting our simulation results.

2 The Estimator

Consider estimating an unknown univariate density f based on a random sample X, ..., X,, from

f- The standard nonparametric kernel estimator of f at a support point x is defined as

o) = n_lhiK (a: —th>

k=1

where h = h(n) is the smoothing parameter and K is a second order kernel satisfying the usual
properties [ K(t)dt = 1, [tK(t)dt = 0, [t?K(t)dt = ko # 0. For a thorough review of kernel
density estimators, see either Wand and Jones (1995), Scott (1994) or Silverman (1986). The
asymptotic distribution of the kernel estimator is N(f(z) + B,,02) where 8, = Lh%f"(z)ks +
O(h*) and o2 = L f(z) [ K(t)*dt + o((nh)™!). Parzen (1962) showed that the optimal smoothing

parameter hoy for minimizing the approximate mean integrated squared error is

hopt = by 2/° ( / K(t)2dt>1/5 ( / f”(a:)da:) o n=1/s.

Parzen (1962) also showed consistency of the kernel estimator if K is a bounded Borel function
satisfying [ |K(t)|dt < oo, [ K(t)dt = 1, and [tK(t)] — 0 as [t] — oo. It was necessarily assumed
that h — 0 and nh — oo as n — oo. For the purposes at hand, it is necessary to assume that f is
uniformly continuous (with respect to Lebesgue measure) over some compact set of interest, say S,
so that the evaluation of f at points in S is a mathematically well-defined operation.

Recall, we wish to consider not only a single density but a set of densities, for example,
one for each experimental unit of interest. Suppose we have () experimental units with densi-
ties {f1,..., fo} and we observe random samples X;1,...,X;,, from f; for i = 1,...,Q where
n;/n; — 1. For notational convenience we will assume n; = n; = n throughout. Denote the kernel
estimate at x for experimental unit 4 as fz(x) For notational convenience we will suppress the sup-
port point z as is commonly done. Based on the limiting distribution of kernel density estimators,

the following hierarchical model is proposed:
filwi  ~ N{pi,o?)
pi ~ N(p,7%)
where p; = fi + B;, fi is the unknown density value for experimental unit ¢ at x, §; is the bias for

fi at z, o7 is the variance of ﬁ at x, p is the mean of the u;’s at x, and 72 is the variance of the

wi’s at x.



The intuition behind the hierarchical model is that even though the p;’s are mutually inde-
pendent for a given z, they are tied together in that there exists a squared error loss function
for estimating the () densities at support point z. Thus, in flavor similar to Stein’s paradox, an
estimator (the posterior mean, median, or mode) which is a function of the {fi,..., fQ} can be

constructed which may be preferable to the kernel estimate. Given the above hierarchical model,

3 r T2 0'.2
h=i(w5a) o (55)

where the unknowns (u,72,07) must be estimated. The asymptotic variance or a bootstrapped

the posterior mean is

estimator of the variance may be used to estimate o?. Estimators of the mean and variance across
experimental units are obtained using the following method of moments estimators: i = é Z?:l f,
and 7 = 8 — 5 Y9, 62 where §2 = oot Y9, (fi — 2)%. Alternatively, one could use the biased
marginal maximum likelihood estimator 32 = é 2?21 (fi — )2. Also note that it is necessary to use
% 2?21 62 since it is not assumed that o; = o4, V i # k as is commonly done. Thus, the empirical

Bayes nonparametric kernel density estimator at support « for experimental unit 4 is

N N
f’_f’<%2+&§ Ty )

The resulting posterior mean or empirical Bayes nonparametric kernel estimator f; is very intuitive.
As the estimated variance of the kernel estimates across experimental units increases (72 1), the
posterior mean f; will shrink less towards the overall mean f1. Conversely, the larger the estimated
variance of the kernel estimate for a given experimental unit (67 1), the posterior mean fi will
shrink more towards the overall mean fi. Not surprisingly, as with many shrinkage or Stein type es-
timators, the greater the estimated variance within the experimental units relative to the estimated
variance across the experimental units, the greater the shrinkage and the greater the potential
improvements in efficiency. Hence, it might be expected that the empirical Bayes nonparametric
kernel estimator may offer the largest improvements in small samples where the estimated variance
within experimental units tends to be relatively high as compared to the variance across experi-
mental units. Note that, as usual in empirical Bayes estimators, estimation of a single experimental

unit “borrows” information from all experimental units.

2.1 Finite-Sample Distribution of Kernel Estimators

The proposed estimator is based on the limiting distribution of kernel estimators being Gaussian.
A practical question dealing with implementation of the estimator is, loosely speaking, how quickly
the distribution of kernel estimators becomes approximately Gaussian. Note that the pointwise
kernel estimator is simply the sum of individual kernels, one for each realization. Also note those
realizations are independent. As a result, one might initially expect the distribution would be

approximately Gaussian for relatively small samples. However, one cannot invoke the standard



central limit theorem. Consider a kernel function K that vanishes outside some compact set, say
A. Generally, as n 1, h |, and £(A) | where £ is the Lebesgue measure. As a result, when
n increases, the number of elements over which the sum is taken does not necessarily increase.
However, recognizing that the sum may be couched as a U-statistic, arguments from degenerate
Martingale theory can be used to prove asymptotic normality (Hall, 1984). Intuitively though,
A will influence the rate at which the distribution of the kernel estimator approaches normality
because it will directly impact the number of terms in the sum. However, choosing a kernel such as
the Gaussian, where A = R, will result in the distribution of the estimator approaching normality
relatively quickly as all realizations will be included in the sum even as n grows. Hence, it may not be
a substantial abuse to assume the distribution of the kernel estimator is Gaussian in many empirical
applications even with moderate sized samples. A final note on the distribution of kernel estimators
in relation to the empirical Bayes nonparametric kernel density estimator: if the pointwise estimates
are approximately Gaussian and independent across experimental units, then their sum, and hence
their mean, is also approximately Gaussian. Thus, it is only necessary that n — oo rather than

both n — 0o and @ — oo to justify the use of the hierarchical model.

2.2 Bias Reduction Methods

A second point regarding the proposed estimator is the bias of kernel estimators. In a similar type
estimator in a nonparametric regression context, Altman and Casella (1995) were able to explicitly
recognize the bias in their hierarchical model because they were able to recover an unbiased estimator
of the regression curve. Unfortunately, there does not exist a nonparametric unbiased estimator of
the density.

Recently, however, there has been a great deal of literature on improving the bias of kernel
estimators from O(h?) to O(h*) (assuming that f has 4 continuous derivatives) while keeping
the variance O((nh)~!). Examples include higher order kernels and generalized jackknifing (e.g.
Bartlett, 1963; Gajek, 1986; Jones and Foster, 1993; Schucany and Sommers, 1977), variable kernel
methods (e.g. Abramson, 1982; Jones, 1990; Samiuddin and el-Sayyad, 1990), transformations (e.g.
Ruppert and Cline, 1994), and multiplicative bias-correction approaches (e.g. Jones et al., 1995).
One might at first suggest that the use of bias reducing kernel methods in the proposed estimator
could result in improvements. However, these estimators, while reducing bias, are accompanied by
increases in variance for finite samples. In fact, despite these methods having a lower asymptotic
mean integrated squared error, for small to moderate sample sizes, improvements in mean integrated
squared error may or may not be realized (Jones and Signorini, 1997). Hence, very little, if any, gain
may result in empirical applications with common sample sizes by using the bias reduced kernel
estimators within the empirical Bayes nonparametric kernel density estimator. Although the model
ignores the bias as is customarily done with kernel estimators, we note that the empirical Bayes

nonparametric kernel estimator is a convex combination of two biased estimators and thus bias does



not necessarily increase.

Altman and Casella (1995) pointed out that the bias of the nonparametric estimators did not
allow them to recover an empirical Bayes estimator which dominates the standard nonparametric
estimator. Instead, they provided a succinct and heuristic argument as to why shrinkage may
generally be preferable. One problem with such a statement is the practical determination of when
shrinkage is preferable to no shrinkage. Their simulation results suggest that if the variance across
curves is low relative to the variance within curves, shrinkage is preferable. Rather than re-iterate a
similar heuristic argument, the next section considers some asymptotic properties of the empirical

Bayes nonparametric kernel density estimator.

3 Some Asymptotic Properties

Recall that the empirical Bayes nonparametric kernel density estimator for experimental unit ¢ is

defined as - Y
A S N B A
fi=Fi (%2+&§>+’“‘(%2+&3>‘

Deriving the exact form of bias and variance and thus the mean integrated squared error (MISE)
of the estimator is not trivial as it is the sum of multiples of different estimators.! However, it is

possible to consider the asymptotic behavior of the estimator in the following two scenarios: (i)

i = fu Vi, k and (ii) f; # fi fori # k.
Lemma 1. 72 is O,(n=%/%) in scenario (i) and O,(1) in scenario (7).

Proof. After some algebra, we can show that

ISR
Q i=1 Q i=1 '
Q Q 1 Q
Q—<Z 2+Z,u fz _22 fz ,u fz)) QZOA)
i=1 i=1 =1
where o
> (i f) Q2Z( B+ Y )
i=1 k#i
and o
S (= 5~ ) = Qz( (- 1)+ S (e - 1) ).
i=1 k#i

1'We suspect that viewing the estimator as a function of fi,ﬂ, #2, and &1-2 and applying a Taylor expansion around

fism, 72, and 0? gives a linear form which can be more manageable.
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Under (i), X2, (i — fi)? = Op(n~*/%) and =L, (fi — fi) (it — fs) = Op(n=*/%) 50 72 = O, (n~*/%).
Under (ii),

Q Q Q
(- £)?= Z(Z —R+Y - 1)
i=1 i=1 =1 k#i
which is Op(1) and
Q R 1 Q ) Q )
o= = 1) = g DU = ) (Ui = 10+ YUk~ 1)
i=1 i=1 i=1 ki
which is O, (n=2/%). So #2 = 0,(1). O

Thus, given lemma 1, \; = O p(1) in

If we define \; = #2/(#2 + 62) then f; = fid; + p(1 — \y).
) Ai — ¢ = 0,(n~*/3) where ¢ < 1. Thus,

both (i) and (ii). In (i) A; — 1 = O, (n~*/3), whereas in (i

we have the following theorem.

Theorem 1. The empirical Bayes nonparametric kernel density estimator converges to the standard

kernel estimator at a rate of Op(n=*/%) in scenario (ii).

Proof.
72 R 62 N

YR (&

=i (%2 +&§) Tz +&§)
(&

- -1 (5753)

= Op(l)op(n_4/5)

= Op(”74/5)

O

The intuition is straightforward since 72 is O, (1) and 62 is O,(n~%/%). Recall that the empirical
Bayes nonparametric kernel density estimator is the convex combination of the kernel estimator
and the mean of all kernel estimators. Note, however, that both the weight on the kernel estimator
goes to one and the weight on the overall mean goes to zero at exactly the same rate as 67 goes
to zero. As a result, the empirical Bayes nonparametric kernel density estimator converges to the
standard kernel estimator at O,(n~%/%). Thus, in case (ii), the empirical Bayes nonparametric kernel
density estimator inherits, asymptotically, the properties of the kernel estimator and converges
to the unknown density at the optimal rate of O,(n~2/%) since fi — fi = fi— fi+ fi— fi =
0, (n=*3) + 0,(n=%/%) = 0,(n=%/%). The empirical Bayes nonparametric kernel density estimator
converges in probability at a quicker rate to the kernel estimator than the kernel estimator converges
in probability to the unknown density. As a result, the empirical Bayes nonparametric kernel density

estimator converges to the unknown density at the same rate as the kernel estimator.



4 Simulation Results

In order to determine the appropriateness of our proposed estimator in empirical settings, we
conducted twelve simulations. These simulations imposed three levels of similarity among the
underlying densities and four different sample sizes {25,50,100,500}. The first set we term “Low-
Similarity” as we attempt to draw realizations from densities which are completely dissimilar. To
this end, we use the first nine test densities of Marron and Wand (1992). These densities are
Gaussian mixtures and exhibit a wide range of data generating processes; in fact, these densities
are often used to evaluate the finite-sample performance of new density estimators. As a result, we
feel this aptly represents a “worst-case scenario.” The second set of simulations we term “Identical”
as the densities are identical, i.e., perfectly similar. To this end, we assume the nine densities are
all standard Gaussian—the first of the test densities in Marron and Wand (1992). Obviously
this is congruent to the first set in that this represents a “best-case scenario.” The third set of
simulations, which we term “Moderate-Similarity,” attempt to draw realizations from densities
that are somewhat similar. To this end, we draw realizations from the following five densities: (1)
N(0,1), (2) 0.95-N(0,1) + 0.05-N(-2,0.5), (3) 0.9-N(0,1) + 0.1-N(-2,0.5), (4) 0.85-N(0,1) + 0.15-N(-
2,0.5), and (5) 0.8-N(0,1) + 0.2-N(-2,0.5). Note that in this last set we are systematically increasing
the mass of the secondary distribution in the mixture.

For each set, the number of simulations is 500. In each simulation we calculate the smoothing
parameter h by minimizing the ISE as is customary. In all tables, f is the nonparametric kernel
density estimator and f is the empirical Bayes nonparametric kernel density estimator. We use
the standard Gaussian density as our kernel function. For o7, we use the bootstrapped estimator
and for 72, we use the positive part estimator. Table 1 contains the average MISE results over
the nine densities (five for the moderate case). Table 2 contains the results for individual densities
in the low-similarity case whereas table 3 contains the results in the moderate-similarity case. In
table 1, Nis A averaged over the grid points at which the densities are evaluated and then over the
simulations and finally over the set of densities. In tables 2 and 3, Xis N averaged only over the
grid points at which the densities are evaluated and the simulations. One can loosely interpret X as
an average measure of the weight in the empirical Bayes estimator placed on the standard kernel

estimator f .

Table 1: MISEx1000 and \

Low-Similarity =~ Moderate-Similarity Identical

A f ) A f f A f f
n=25 040 245 2.06 0.10 064 068 0.02 0.47 0.59
n=>50 048 157 136 0.10 038 043 0.04 0.28 0.39
n=100 0.55 094 0.85 0.11 023 027 0.06 0.17 0.25
n=>500 0.76 028 0.27 0.20 0.08 0.09 0.10 0.05 0.08




Table 2: MISE%1000 and A — Low-Similarity
A f f
n =25 densityl 041 0.65 0.75
density2 0.41 0.94 0.92
densityd 0.40 6.29 5.06
densityd 0.35 4.97 4.23
densityd 0.44 2.71 2.09
density6 0.40 0.95 0.98
density?7 0.42 3.34 2.26
density8 0.40 1.02 1.04
density9 0.40 1.20 1.17
n = 50 densityl 0.48 0.38 0.44
density2 0.47 0.53 0.54
density3 0.48 4.32 3.51
density4d 0.42 3.02 2.76
density5 0.50 1.66 1.35
density6 0.48 0.64 0.67
density? 0.53 2.02 1.42
density8 0.47 0.73 0.74
density9 0.48 0.83 0.81
n =100 densityl 0.55 0.21 0.25
density2 0.53 0.31 0.31
density3 0.56 2.54 2.16
density4 0.48 1.80 1.74
density5 0.54 0.99 0.87
density6 0.58 0.40 0.42
density?7 0.62 1.12 0.86
density8 0.55 0.51 0.52
density9 0.58 0.56 0.55
n =500 densityl 0.78 0.07 0.08
density2 0.73 0.10 0.10
densityd 0.74 0.76 0.70
density4 0.65 0.53 0.53
density5 0.63 0.25 0.26
density6 0.82 0.13 0.13
density7 0.83 0.30 0.26
density8 0.79 0.17 0.17
density9 0.82 0.18 0.18

The best-case (identical) results are as expected; since all the densities are the same, the empir-
ical Bayes estimator “borrows” information from the same data generating processes and performs
quite favorably against the standard kernel estimator. Recall that the empirical Bayes estimator
does not converge to the standard kernel estimator in the best-case scenario (see lemma 1 case (i)).

In the worst-case scenario, A converges to one and does so quite fast since in this case the

denominator approaches the numerator at a rate of O, (n=%/) (see lemma 1 case (ii)). The standard



Table 3: MISE%1000 and A — Moderate-Similarity
A f f
n =25 densityl 0.09 0.64 0.68
density2 0.09 0.66 0.69
densityd 0.10 0.67 0.71
density4 0.10 0.63 0.65
density5 0.10 0.59 0.69
n=>50 densityl 0.10 0.38 0.41
density2 0.10 0.39 0.43
densityd 0.10 0.38 0.42
density4 0.10 0.37 0.42
density5 0.11 0.38 0.48
n =100 densityl 0.11 0.23 0.25
density2 0.11 0.24 0.26
densityd 0.11 0.24 0.27
density4 0.11 0.23 0.28
densityd 0.12 0.23 0.28
n =500 densityl 0.18 0.08 0.08
density2 0.19 0.08 0.09
density3 0.20 0.08 0.09
density4 0.21 0.08 0.09
density5 0.20 0.08 0.09

kernel estimator in the worst-case outperforms the empirical Bayes estimator as expected. Recall,
we purposely chose the set of densities to be very dissimilar. However, when working with real
data, even though the true data generating processes are unknown, one commonly would have a
rough idea about similarity. The extent of dissimilarity that these test densities exhibit would and
should not lead someone to use the proposed estimator. Despite this, the empirical Bayes estimator
performs quite competitively and, as expected from theorem 1, converges at a faster rate to the
standard kernel than does the standard kernel estimator to the true density. This is evident in the
simulation results. When n = 25, the MISE of the empirical Bayes estimator is 19% higher than
the standard kernel estimator whereas when n = 500 the MISE is only 4% higher. For each of the
nine densities, the difference between the MISE for the standard kernel estimator and the empirical
Bayes estimator shrinks as n increases since \ increases with n. It is interesting that the empirical
Bayes estimator outperforms the standard kernel estimator for some of the nine densities. As a
reviewer pointed out, the greatest improvement with the empirical Bayes estimator is for densities
closest to the mean of all nine densities and the improvement declines as the density departs from
the mean.

The somewhat similar (moderate-similarity) simulation shows how the proposed estimator can
perform quite favorably in a compromise situation. The MISE of the empirical Bayes estimator is

smaller than or equal to the standard kernel estimator for all five test densities at all four sample

10



sizes. As expected, ) falls between the ) in the best-case scenario and the ) in the worst-case
scenario. Also as expected, X increases with n indicating that as n increases more weight is given
to the standard kernel estimate and less to 1. Again, the closer the density is to the mean of the

five densities, the greater the efficiency gain with the empirical Bayes estimator.

5 Conclusions

This manuscript proposed using empirical Bayes techniques on estimated density values from non-
parametric kernels in attempts to exploit potential similarities among the set of densities. This is
in contrast to Bayesian nonparametric density estimation which employs Gaussian mixtures and
the Dirichlet process prior. Our asymptotic and simulation results suggest that the empirical Bayes
nonparametric kernel estimator may be a viable alternative to the standard kernel estimator when
a set of densities are being estimated. The empirical Bayes nonparametric kernel estimator is
forwarded only as an alternative estimator to the standard kernel estimator.

The strengths of the empirical Bayes nonparametric kernel estimator are derived from the kernel
estimator. Since the empirical Bayes techniques are employed with the fitted values of the kernel
estimators, all the variations of kernel estimators including higher order kernels, variable kernel
methods, and transformation-kernel density estimators may be employed. In the worst-case scenario
when the data generating processes are all different, the empirical Bayes nonparametric kernel
estimator converges in probability to the standard kernel estimator at a rate quicker than the
standard kernel estimator converges in probability to the unknown density of interest, and thus the
asymptotic properties of the standard kernel are passed along to the empirical Bayes nonparametric
kernel estimator. One of the proposed estimator’s major strengths is that knowledge about the
form or the degree of similarity among the set of densities is not required. Although not discussed,
the extension to higher dimensions is trivial in that although the kernel estimator changes, the

hierarchical model does not.
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