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Abstract 
Blanket advice on optimal fertilizer application rates has failed to achieve potential yield 
gains for crop production in much of Sub-Saharan Africa. However, digital technology 
now makes it possible to deliver personalized extension services to farmers at a much 
lower cost. In this paper, we present results from a randomized control trial designed to 
evaluate the effectiveness of a mobile app that provides personalized advice on rice 
nutrient management. The experiment induced variation in both access to the app and 
access to an input grant for fertilizer. We find that households with access to the app have 
15 percent higher yields and 20 percent higher profits. We show that, on average, 
personalized advice increases yields without increasing the overall quantity of fertilizer 
used. Rather, some households increase their use of fertilizer while other households 
decrease their use of the input. We conclude that the scaling of personalized extension 
services could improve productivity and livelihoods in Sub-Saharan Africa without 
necessarily increasing the total amount of fertilizer in use. 
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Throughout Sub-Saharan Africa, efforts by governments and development organizations to spur 

agricultural intensification have been meet with continued low levels of adoption of improved inputs. The 

economics literature has proposed numerous potential solutions to the persistent puzzle of limited adoption 

of apparently profitable technologies. Examples include access to credit constraints (Karlan et al., 2014), 

insecure property rights (Burchardi et al., 2019), limited access to insurance (Casaburi and Willis, 2018), 

missing input markets (Byerlee and Deininger, 2013), missing output markets (Michler et al., 2019), and 

learning externalities (Conley and Udry, 2010). Even in regions where adoption has occurred, households 

frequently fail to realize the potential yield gains and subsequently dis-adopt the technology. 

One explanation for the empirical puzzle is that returns to improved inputs are highly 

heterogeneous. Suri (2011) ascribes the source of this heterogeneity to unobserved differences in farmer 

ability with the new technology, though Foster and Rosenzweig (2010) enumerate additional possibilities, 

including heterogeneity in soil quality. Historically, it was prohibitively expensive to account for 

heterogeneity in soil quality when producing recommendations on optimal input levels. This made blanket 

recommendations necessary, even if failure to formulate advice that was soil, crop, and climate specific 

resulted in inefficiencies, reducing yield and profit. In the past few years, however, mobile technology in 

the form of decision support tools (DSTs) have greatly reduced the cost of delivering personalized extension 

services (MacCarthy et al., 2017, Tjernström et al., 2019). Use of DSTs presumably reduces inefficiencies 

coming from overly general recommendations, thereby raising the productivity and profitability from 

adopting improved inputs, though there is little rigorous evidence to demonstrate this conjecture. 

In this paper, we assess the impact of personalized extension services delivered using a specific 

DST: RiceAdvice. RiceAdvice is an Android-based app that was developed by AfricaRice to provide 

personalized recommendations on nutrient management (type, quantity, and timing of fertilizer) in rice 

production. The app utilizes information and communication technologies that enable extension agents to 

provide farming households with specific crop, field, and seasonal advice regarding fertilizer application 

and agro-management practices (Saito et al., 2015a). 

To measure how households respond to personalized advice from the app compared to blanket 

advice from extension officers, we conduct a clustered randomized control trial (RCT) in Nigeria. We 

establish two simple treatment arms: rice production with personalized advice on nutrient management (T1) 

and rice production with personalized advice plus a grant to fully cover the cost of the recommended level 

of fertilizer (T2). T2 aims to assess the importance of liquidity constraints on adoption of improved inputs. 

In addition, a control group (C) received blanket advice provided by the official extension agency. We 

calculate impacts using OLS, along with Analysis of Covariance (ANCOVA) estimation, and ANCOVA 

with kernel weighted matching. Regardless of the estimation strategy, we find that households who were 

given personalized advice increase their yield by around 15 percent and increase their net income by around 
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20 percent. Interestingly, we find that RiceAdvice tends to have no effect on the average amount of fertilizer 

used by those in the treatment. Rather, in response to the recommendations provided by the app some 

households increase their use of fertilizer while other households decrease their use of the input. This 

suggests that scaling personalized extension services via DSTs could improve productivity and livelihoods 

in Sub-Saharan Africa without necessarily increasing the overall amount of chemical fertilizer used and the 

corresponding negative effects on the environment. 

Our study contributes to the extensive literature on technology adoption in several ways. First, we 

provide evidence that failure to account for heterogeneity in soil quality may be a limiting factor in the 

adoption of improved technology, at least among rice farmers in Nigeria. Numerous studies have 

documented a variety of reasons for why households in developing countries fail to adopt apparently 

profitable technologies (Foster and Rosenzweig, 2010; Jack, 2011, Magruder, 2018). Some of these reasons, 

such a missing input or output markets (Byerlee and Deininger, 2013; Michler et al., 2019), have long been 

commented on in the literature. More recently, Suri (2011) has suggested that unobserved heterogeneity 

may make the returns to any individual farmer unprofitable, even if average returns to the technology are 

positive. While Suri (2011) focuses on heterogeneity in farmer ability, we focus on heterogeneity in soil 

quality. We find that providing personalized advice on optimal input use that accounts for differences in 

soil quality results in higher yields and greater net income, when compared to blanket extension advice. 

This suggests that how farmers are taught to use the technology plays an important role in whether that 

technology is profitable or not. 

Second, we present new evidence regarding the effectiveness of information interventions. In 

general, information-only interventions have yielded null results. Bettinger et al. (2012) study the impact 

of providing aid eligibility information to low-income households, but find no effect. Ashraf et al. (2013) 

find that providing information about water purification fails to increase demand for pure water. Bryan et 

al. (2014) find no effect of information about migrant opportunities on the decision to migrate. One reason 

why studies of information-only interventions frequently find null results may be due to the overly broad 

nature of much of the information tested in these interventions. In the information-only arm of the RCT, 

we find positive and significant effects of personalized extension services on yield, net income, and 

technical efficiency. A study similar to ours, Tjernström et al. (2019), tests a mobile game designed to 

provide personalized information on input use for maize farmers in Kenya and finds similarly positive 

results. 

Third, we present some of the first experimental evidence regarding the use of DSTs and other 

mobile technologies to address barriers to adoption. Innovations in information and communication 

technology have greatly reduced the cost of delivering information that is targeted to individual users. While 

personalization is increasingly used to provide advertising content to internet users, the innovations are 
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rapidly being applied to a host of new purposes, including education (Walz and Detering, 2015). Recent 

studies have examined the use of DSTs in adapting to climate change (Watkiss et al., 2015), 

operationalizing ecosystem services (Grêt-Regamey et al., 2017), and improving agricultural production 

(Rose et al., 2016). However, most studies of DSTs are based on either observational data or on data 

collected from highly controlled laboratory-type settings. To our knowledge, this study, along with 

Tjernström et al. (2019), are the first RCTs to assess the economic impact of DSTs on agricultural 

production. 

 

1. Rice in Nigeria and the RiceAdvice App 

Rice now represents the staple food for more than 750 million people in Sub-Saharan Africa (USDA, 2018). 

Nigeria, a country with 170 million people, has a population growth rate of 2.5 percent per annum, while 

rice consumption has risen at approximately six percent per annum. This makes Nigeria the top consumer 

of rice in Sub-Saharan Africa. 

Rice production in Nigeria is concentrated in seven states in the northwest of the country (Kano, 

Kaduna, Jigawa, Sokoto, Zamfara, Kebbi, and Niger) where 72 percent of rice is produced. Although rice 

production is increasing, local production represents only 55 percent of consumption (Saito et al., 2015b). 

As a result, Nigeria imported nearly 2.6 million tons of milled rice at a cost over one billion U.S. dollars in 

2017 (USDA, 2018). The gap between production and consumption is partly due to yields that are well 

below their potential. Average yield is around two tons per hectare, while the potential yield for water-

unlimited lowland rice is up to 12 tons per hectare (van Oort et al., 2017). With rice yield gaps that range 

from 10 to 70 percent in Sub-Saharan Africa, Nigeria is among the countries with the largest difference 

between potential and actual yields (Saito et al., 2015b). 

To reduce its reliance on imported rice, the government of Nigeria has embarked on a program to 

increase production and productivity through intensifying rice cultivation. Among other actions, the 

government recently launched the Growth Enhancement Support Program, a major policy shift that 

transfers the supply system for farm inputs from the state to the private sector. However, the policy aims at 

increasing adoption of fertilizer by addressing only missing input or output markets. The effectiveness of 

such a policy may be limited unless it also seeks to address on-farm inefficiency in fertilizer use due to 

heterogeneity in soil quality. To help address this gap, AfricaRice, in conjunction with national partners, 

developed the RiceAdvice mobile app. 

The RiceAdvice app is an Android-based DST that extension agents can use to provide farming 

households with pre-season, field-specific management guidelines for rice production. The extension 

advice includes a nutrient management plan, a suggested crop calendar, and information regarding best 

practices for rice cultivation. To generate this advice, users provide information on the geographic location 
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of the plot, descriptive soil quality measures, local rice-growing conditions, seed variety, typical 

management practices, expected sowing date, availability of fertilizers, market prices for inputs, and 

expected production costs (Saito et al., 2015a). Figure 1.A provides examples of the data input screens for 

the app. As output, RiceAdvice gives farm-specific information on the chemical fertilizers required, a 

fertilizer application plan, fertilizer cost, and recommendations regarding cultivation practices, such as 

levelling, timely and uniform sowing, weeding, and anticipated harvest date. Figure 1.B provides examples 

of the personalized output from the app. RiceAdvice also offers the opportunity to provide post-harvest 

feedback on the advice received, allowing the app to assess the effectiveness of the recommendations and 

improve the calibration of the advice. 

 

Figure 1.A: Screenshot of RiceAdvice data inputs 
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Figure 1.B: Screenshot of RiceAdvice outputs 

 
 

2. Experimental design, sampling, and data 

To assess the impact of personalized advice provided by the DST on household decision making, we 

conducted a clustered RCT in the main rice producing state of Kano. In treatment one (T1), all households 

were offered personalized advice delivered by an extension agent using the RiceAdvice app. To remove the 

liquidity constraint that is commonly assumed to bind with smallholder farmers in developing countries, 

we established a second treatment arm (T2). The households in T2 were offered personalized advice as in 

treatment T1 but also received a 100 percent subsidy (grant) for the quantity of fertilizer recommended by 

the RiceAdvice app. The control group (C) received blanket advice provided by an extension agent. The 

blanket advice, which comes from the Federal Ministry of Agriculture and Rural Development, varies 

solely by crop and whether soil is classified by low, medium, or high fertility (Chude et al., 2012). Table 

A.1 in the appendix reproduces the government’s recommendations for fertilizing rice. 

 

2.1. Sampling, compliance, and attrition 

To select the study area and farming households in the sample, we used a multi-level stratified sampling 

approach. First, we selected Kano state because it is the major rice producing region in Nigeria. In Kano, 
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we identified the rice production Local Government Areas (LGAs), and randomly selected five from the 

eight major irrigated rice production LGAs (see Figure 2). Second, within each LGA, we randomly selected 

rice producing villages as the primary sampling units. The number of villages per LGA was proportional 

to the total number of rice-growing villages in the LGA. In total, 35 villages were selected and were 

randomly divided into two groups: 18 treated villages and 17 control (see Figure 3). In addition, the treated 

villages were divided into two treatment arms: treatment villages that received personalized information 

from RiceAdvice (T1) and villages that received personalized information from RiceAdvice plus a grant to 

purchase the recommended amount of fertilizer (T2). As secondary sampling units, 20 households in each 

village were selected from a census of all rice farming households. In total, 700 households were sampled 

in 35 villages, including 360 treated households and 340 control households. The treated households were 

divided into two groups: 260 treated households for T1 and 100 treated households for T2. 

 

Figure 2: Map of study area 

 

The sample size of each group was determined by our own power calculations and the 

administrative budget available to provide the fertilizer subsidy for household in T2.1 To increase the power 

                                                             
1 To calculate the sample size, we used rice production data from 200 households who participated in an on-farm trial 
in the survey area. With a minimum detectable effect size of 0.5t/ha (the yield control was estimated to be 4t/ha and 
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of the sampling, we selected treatment and control villages in each LGA using a matched pair randomization 

approach (Imai et al., 2009). However, implementation of our design was imperfect in that one control 

village was treated by an extension agent, which shifted the sample size to 380 and 320 for the treated and 

control groups, respectively. This represents a contamination rate of 2.8 percent but analysis shows that this 

has no effect on the impact of RiceAdvice on our outcomes.2 The rate of non-compliance was also low. 

Only 12 households out of 700 did not use the personalized advice, which represents a rate of 1.7 percent. 

This non-compliance rate is much lower than those experienced in other information interventions. For 

instance, Fafchamps and Minten (2012) report a non-compliance rate of 27 percent in their SMS-based 

information intervention. The main reason given for non-compliance in our sample was uncertainty about 

the riskiness of applying fertilizer at a rate different from a household’s historic application rate. 

 

Figure 3: Experiment design 

 

We use three rounds of a household-level panel survey data in our analysis. First, a baseline survey 

was conducted in early 2016 in order to collect information on farm production before the treatment. We 

then conducted our intervention ahead of the rice growing season. A second survey was conducted 

immediately after the 2016 rice harvest was completed. Finally, we conducted a follow-up survey one year 

later, at the end of the 2017 rice season in order to analyze the behavior of rice farmers during the second 

                                                             
4.5t/ha for the treatment groups), a standard deviation of 1.64 t/ha and a power of 0.8, we required sample sizes of 
340 (C) and 340 (T1+T2) to detect effects at standard levels of confidence. 
2 The impact on outcomes did not change when the contaminated households are dropped from the analysis. The 
results are not shown here but can be obtained from the authors. 
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year following the intervention. While we were able to follow-up with all households in every year, not 

every household chose to produce rice in every year. Thus, while there was no attrition between the baseline 

and the two follow-up surveys, sample size does vary slightly from year-to-year. Table A.2 in the Appendix 

reports these differences in sample size. 

 

2.2. Measurement 

In order to reduce both noise and bias in the measurement of our outcome variables, we relied as much as 

possible on objective instead of self-reported information. To determine yields, rice plots were traced using 

hand-held GPS devices. At harvest, we implemented one-meter squared crop cutting and took crop cuts 

from two locations in each plot. The quantity of fertilizer input was measured on a scale for those receiving 

the fertilizer grant but was self-reported for treatment 1 and control households. Rice income is calculated 

by multiplying the yield (in tons per hectare) by the unit price of paddy rice (in US$ per ton). Net income 

is simply the difference between rice income and the sum of all rice production costs, except labor and 

equipment, for which unit prices are notoriously difficult to calculate. Technical efficiency is estimated 

using a Cobb-Douglas frontier production function (see Table A.3 in the Appendix). 

Socio-economic data was collected through interviews using CAPI software. Measurement of age 

and household size are straightforward. Education is recorded as a dummy variable equal to one if the 

farmer had received formal education for at least six years (completed primary school). The household’s 

Table 1: Baseline characteristics and balance between the treated and control groups 
 Control group 

(ℎ = 320) 
Difference 

with Treated 
(ℎ = 380) 

Difference 
with T1 

(ℎ = 280) 

Difference 
with T2 

(ℎ = 100) 
 (1) (2) (3) (4) 
Household characteristics         
Age of rice farmer (year) 37.36 (11.17) -1.375 -2.081** 0.604 
Household size (n) 11.71 (7.720) -0.196 -0.346 0.224 
Formal education (=1) 0.256 (0.437) -0.006 0.008 -0.046 
Farming is main activity (=1) 0.875 (0.331) 0.004 -0.004 0.025 
Number of agricultural training days (n) 0.622 (2.449) 0.323 0.135 0.848** 
Access to credit (=1) 0.138 (0.345) 0.026 0.030 0.012 
     
Production values     
Quantity of NPK (kg/ha) 181.6 (87.40) 1.524 0.829 3.470 
Quantity of urea (kg/ha) 159.7 (86.56) 18.06** 17.26** 20.32* 
Rice area (ha) 0.773 (0.509) 0.186** 0.163** 0.250*** 
Rice yield (t/ha) 3.420 (1.777) -0.043 0.030 -0.248 
Rice income (US$/ha) 1,644 (854.4) -20.69 14.48 -119.2 
Profit (US$/ha) 1,330 (807.8) -22.38 10.98 -115.8 
Technical efficiency 0.671 (0.177) 0.000 0.010 -0.026 
Note: Coefficients in columns (2) - (4) are calculated by implementing an OLS that controls for LGA with a sampling 
weight and clustering at the village level. (*** p < 0.01, ** p < 0.05, * p < 0.1). 



10 
 

main activity is measured by a dummy variable equal to one if crop production is the main occupation of 

the household head. In cases where farming is not the main activity, the household head is typically engaged 

in trade or transportation, with other household members responsible for the farm. The number of 

agricultural training days is measured as the number of days the farmer participated in agricultural training 

over the previous twelve-month period. Access to credit is a dummy variable equal to one if the household 

received credit to cover the cost of any farm production practice, not just rice, over the last twelve months. 

 

2.3. Baseline balance checks 

Table 1 presents the pre-treatment balance of the baseline randomization.3 Column (1) reports the mean 

value of each variable for the control group and its standard deviation, while columns (2) - (4) report the 

coefficients from OLS regressions comparing treated households with the control. We regress the variable 

of interest (row) on an indicator of treatment status (column) along with LGA fixed-effects and standard 

errors clustered at the village level. Column (2) shows the pre-treatment difference in the means between 

the treated (T, i.e., T1+T2) and control (C) groups. Column (3) shows the difference between the T1 

treatment (those who received personalized extension advice) and the control. The pre-treatment difference 

between the T2 treatment (those who received personalized extensions advice and fertilizer) and the control 

is in column (4). 

The coefficients suggest a good balance for most household characteristics. The two exceptions are 

age of household head, where those in the control are older by two years compared to those in treatment 

T1, and the number of days spent receiving agricultural training, where those in treatment T2 had one more 

day of training than those in the control. Among the variables related to farm production, there is balance 

on all the outcome variables but significant differences exist between the treatment and control for the 

quantity of urea fertilizer used and the area under rice cultivation. At baseline, households in each of the 

treatment groups used more urea fertilizer compared to those in the control group. On average, the 

difference is estimated to be 18 kg/ha, or about 10 percent more than the control. There is also a difference 

in the rice area, where treatment households cultivated 0.19 more hectares, or about 24 percent more area, 

than the control. We account for these differences in baseline characteristics in several of our econometric 

specifications. 

 

 

 

                                                             
3 We also check for balance based on the original, pre-contaminated, random assignment (see Table A.4 in the 
Appendix). As is to be expected if the contamination occurred by chance, the balance between treatment and control 
in the two samples (pre- and post-contamination) is virtually identical. 
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3. Causal pathway and outcomes 

Before outlining our empirical strategy, it is useful to formulate the assumptions underlying the causal 

pathway from the provision of personalized extension advice via DST to measured outcomes. First, we 

assume that households are aware that nutrient management (type of fertilizer, quantity of fertilizer, and 

application timing) has a direct effect on rice yield and profitability. Second, we assume that households 

believe that personalized advice from DSTs such as RiceAdvice will recommend levels of input use that 

differ from their current level of input use. Third, we assume that treated households believe that the use of 

personalized advice will increase the productivity of rice compared to blanket advice. Finally, we assume 

that the treated and non-treated households sell rice at the same price and that the value of the increase in 

yield will be greater than the change in the production cost related to the use of the personalized advice. 

These assumptions are supported by anecdotal evidence in both Saito et al. (2015a) and MacCarthy et al. 

(2017). 

Based on these assumptions, the causal pathway is straightforward. RiceAdvice will generate 

personalized advice that differs from the household’s current practice and thus will result in a change in the 

quantity, type, and timing of fertilizer. This change in nutrient management will affect land productivity, 

leading to changes in production. Ultimately, the changes in production will have a positive impact on 

income. 

Given the causal pathway, our main outcomes of interest are yield, net income, and technical 

efficiency. However, we also report on secondary outcomes in order to elucidate the causal chain. In the 

results, we explicitly distinguish between the expected main outcomes and secondary outcomes (the 

quantity and type of fertilizer and application timing). All primary outcomes are estimated for two years 

(2016 and 2017) using a balanced panel. 

 

4. Empirical strategy 

We focus on the estimation of the impact of personalized advice regarding nutrient management on rice 

yield, net income, and technical efficiency. To estimate these impacts, we compare the outcomes of the 

treated households with the outcomes in the absence of the treatment. Because we have the benefit of 

observing each household in our sample before and after treatment, we employ three different methods to 

calculate the intent-to-treat (ITT) effects, which measure the effect of living in a village randomly assigned 

to T1 or T2, irrespective of actual treatment participation. These methods are i) a simple mean difference 

estimate via OLS that uses only the post-intervention data, ii) an ANCOVA estimate that uses the baseline 

and post-intervention data, and iii) a kernel propensity-score matching ANCOVA estimate that matches the 

treated and non-treated households. 
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4.1. Intent-to-treat (ITT) estimation 

For the simple mean difference, we estimate the ITT effect (𝜌𝜌𝑂𝑂𝑂𝑂𝑂𝑂) for household ℎ in village 𝑣𝑣 and LGA 𝑔𝑔 

as: 

 

𝑆𝑆ℎ𝑣𝑣𝑣𝑣 = 𝛼𝛼 + 𝜌𝜌𝑂𝑂𝑂𝑂𝑂𝑂𝑇𝑇ℎ + 𝜎𝜎𝑔𝑔 + 𝜀𝜀ℎ𝑣𝑣𝑣𝑣 (1) 

where 𝑆𝑆ℎ𝑣𝑣𝑣𝑣 is the observed outcome variable and 𝑇𝑇ℎ  is a household-level indicator that equals one if the 

household was randomly offered the treatment (T1 or T2) and is zero otherwise (C). Additionally, 𝜎𝜎𝑔𝑔 is a 

region fixed-effect that accounts for variation across the LGAs and 𝜀𝜀ℎ𝑣𝑣𝑣𝑣 is an idiosyncratic error term that 

is orthogonal to the ITT effect because of the randomization. In order to account for the imbalance in some 

of the baseline characteristics, we specify a second OLS regression that adds a vector of household 

covariates. These covariates include age of the household head, household size, the number of days the 

farmer participated in agricultural training, and indicators if the household head has any formal education, 

if crop production is the main household occupation, and if the household had access to credit over the last 

twelve months. 

Our second estimator is an Analysis of Covariance (ANCOVA) estimate of the treatment effect: 

𝑆𝑆ℎ𝑣𝑣𝑣𝑣,𝑡𝑡 = 𝛼𝛼 + 𝜌𝜌𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇ℎ,𝑡𝑡 + 𝜇𝜇𝑆𝑆ℎ𝑣𝑣𝑣𝑣,𝑃𝑃𝑃𝑃𝑃𝑃 + 𝛿𝛿𝑡𝑡 + 𝜎𝜎𝑔𝑔 + 𝜀𝜀ℎ𝑣𝑣𝑣𝑣,𝑡𝑡 . (2) 

Here 𝑆𝑆ℎ𝑣𝑣𝑣𝑣,𝑃𝑃𝑃𝑃𝑃𝑃  is the value of the outcome variable from the pre-treatment growing season and 𝜌𝜌𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is 

the coefficient on the ANCOVA estimate of the ITT effect. The equation also includes time fixed effects 

(δt) in addition to the LGA fixed effects. The ANCOVA estimator has more power than the typical 

difference-in-difference estimator, especially when there are multiple rounds of post-treatment data 

(McKenzie, 2012), which we have in our sample. Similar to the OLS estimates, we also estimate ANCOVA 

with and without covariates. 

Finally, since a comparison in the region of common support increases the efficiency in the 

ANCOVA estimator, we incorporate kernel propensity-score weights into the ITT estimates. We use the 

observed baseline characteristics to estimate the propensity score (the likelihood of being treated) and 

calculate the kernel weights following Heckman et al. (1998). After matching the treated and control 

households according to their propensity score, we estimate the kernel ANCOVA with and without 

covariates. Although randomization means that the OLS estimator provides unbiased estimates of the ITT, 

the ANCOVA and kernel-matched ANCOVA estimators are preferred because they take advantage of the 

pre-treatment data as well as our multiple follow-up rounds. 
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4.2. Sampling weights, clustering, and multiple hypothesis testing 

Because we used a multi-level stratified sampling approach, different households have different 

probabilities of being sampled. As a result, assuming equal probability could lead to biased estimates of the 

population effects (Ksoll et al., 2016). Therefore, we use sampling weights calculated as the inverse 

probability of being selected in any given village for each observation. We use the weighted data in all the 

regression throughout the paper, though our results are robust to using the raw data. 

Because the ultimate sampling units (households) are clustered within our unit of randomization 

(village), we cannot rule out serial correlation within a village. Although the intra-cluster correlation 

coefficient (ICC) is relatively low (see Table A.5 in the Appendix), ignoring the clustered design will lead 

to standard errors that are too small and 𝑡𝑡-values that are too large. Even when individual behaviour may 

generate homoscedastic regression functions within a cluster, there is heterogeneity between villages, and 

there will be heteroscedasticity in the overall regression (Cameron and Miller, 2015). Therefore, we use 

heteroscedasticity robust-standard errors clustered at the village level for all inference. 

Because we are making inference on a large number of hypotheses, it is possible that significant 

results emerge from our analysis due to chance rather than actual treatment effects. While the problem of 

multiple inference is well known, there is as yet no consensus regarding the best way to correct for multiple 

hypothesis testing. We follow Arouna et al. (2019) and adjust the 𝑝𝑝-values in a number of different ways. 

We calculate sharpened 𝑞𝑞-values as in Anderson (2008) along with Bonferroni- and Holm-adjusted 𝑝𝑝-

values as suggested by List et al. (2019). In the Appendix, Table A.6 through Table A.9 present the results 

of these corrections along with the unadjusted 𝑝𝑝-values from standard errors clustered at the village level. 

Our findings are generally robust to the correction for multiple hypothesis testing and we highlight were 

differences exist. 

 

5. Results for primary outcomes 

All our analysis is conducted in terms of ITT, that is, the treated households were offered personalized 

advice using the RiceAdvice app, whether or not they applied it. We first present the results of the primary 

outcomes (rice yield, net income, and technical efficiency) and in the next section examine whether the 

intervention also changed input management behaviors and practices. 

For each outcome we begin by presenting ANCOVA results for the full sample. These regressions 

include the pretreatment outcome (2015) as an independent variable and data from both post-treatment 

rounds (2016 and 2017) as the dependent variable. As discussed, we calculate several ITT estimates for 

each outcome. For tables relying on the full set of data, columns (1) and (2) present the ANCOVA estimates 

while columns (3) and (4) present the kernel propensity-score matching ANCOVA estimates. The odd 

numbered columns are without covariates while the even numbered columns include covariates. Because 
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they rely on the full sample of data, these are our preferred estimates. We then estimate effects for each 

year individually, using OLS and ANCOVA, in order to gain a better sense of how outcomes changed over 

time. 

 

5.1. Treatment effect on yield 

Table 2 presents the ITT effects of personalized advice from the RiceAdvice DST on rice yield. Panel 1 

compares all treated (T) households with control households (C). Panel 2 compares households that only 

received advice (T1) with control households. Panel 3 compares households that received both advice and 

fertilizer (T2) with control households. Finally, panel 4 compares T2 households with T1 households. 

We find consistent evidence that personalized advice increases rice yield subsequent to the 

treatment. For the unmatched sample, yields increase by about 450 kg/ha, which represents an increase of 

12 percent compared to the control. When we use the matched sample, the magnitude of the impact 

increases slightly. Treatment households increase yields by 549 kg/ha compared to their matched control 

Table 2: Treatment effects on rice yield 
 (1) (2) (3) (4) 

Treatment effect (T-C) 0.458*** 0.450*** 0.549*** 0.549*** 
(0.127) (0.119) (0.116) (0.110) 

Mean dependent variable in control 3.672 
Household covariates No Yes No Yes 
Observation 1,353 1,353  1,353 1,353 
R-squared 0.204 0.210 0.176 0.182 

Treatment effect (T1-C) 0.331** 0.341*** 0.373*** 0.367*** 
(0.121) (0.115) (0.109) (0.111) 

Mean dependent variable in control 3.672 
Household covariates No Yes No Yes 
Observation 1,154 1,154  1,154 1,154 
R-squared 0.226 0.235 0.199 0.206 

Treatment effect (T2-C) 0.857*** 0.830*** 0.882*** 0.871*** 
(0.100) (0.109) (0.110) (0.093) 

Mean dependent variable in control 3.672 
Household covariates No Yes No Yes 
Observation 799 799 799 799 
R-squared 0.212 0.215 0.140 0.148 

Treatment effect (T2-T1) 0.467*** 0.457*** 0.354*** 0.385*** 
(0.111) (0.097) (0.070) (0.094) 

Mean dependent variable in T1 4.310 
Household covariates No Yes No Yes 
Observation 753 753 753 753 
R-squared 0.218 0.225 0.200 0.210 
Note: Coefficient estimates are only reported for the treatment effect. All regressions include year and LGA 
fixed effects. Odd numbered columns are from regressions without covariates while even numbered 
columns include covariates. Household covariates include household size, age of household head, number 
of days in agricultural training, and indicators for if the household head has formal education, if farming is 
the household’s main activity, and if they have access to credit. Columns (1) and (2) present ANCOVA 
estimates  while columns (3) and (4) present the kernel matching ANCOVA estimates. Robust standard 
errors, clustered at the village level, are shown in parentheses. (*** 𝑝𝑝 < 0.01, ** 𝑝𝑝 < 0.05, * 𝑝𝑝 < 0.1). 
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households, an increase of 15 percent. The similarity between estimates with and without controls suggests 

that the small differences in baseline characteristics are uncorrelated with treatment. 

Focusing on the impact of the information-only intervention, we find that households in T1 increase 

yields by about 350 kg/ha, which is equivalent to a 10 percent gain. When households were given a grant 

of the recommended amount of fertilizer, yields increase by about 850 kg/ha, which represents a 24 percent 

gain over yields for control households. Not only is the effect size of T2 larger than T1, when we compare 

outcomes between these two treatment arms, we find that this difference is statistically significant. While 

there are some differences between estimates on the matched and unmatched samples, these tend to be 

small in magnitude. The largest difference, between columns (1) and (3) when comparing T2 to T1, is a 

difference of only three percentage points (an 11 percent increase instead of an eight percent increase). 

While we give preference to the ANCOVA results using all three years of data, it is useful to 

understand how outcomes change over time. To do this, we present results that rely only on outcomes in 

2016, the harvest immediately following the intervention. Table 3 presents results from simple OLS 

estimates of the mean difference between post-intervention treatment and control in columns (1) and (2). 

Table 3: Treatment effects on rice yield in 2016 
 (1) (2) (3) (4) (5) (6) 

Treatment effect (T-C) 0.385*** 0.369*** 0.408*** 0.391*** 0.406*** 0.379*** 
(0.122) (0.123) (0.133) (0.133) (0.120) (0.121) 

Mean dependent variable in control 3.734 
Household covariates No Yes No Yes No Yes 
Observation 694 694 686 686 686 686 
R-squared 0.216 0.222 0.224 0.229 0.214 0.220 

Treatment effect (T1-C) 0.303** 0.296** 0.316** 0.312** 0.345** 0.303**  
(0.120) (0.120) (0.127) (0.129) (0.131) (0.128) 

Mean dependent variable in control 3.734 
Household covariates No Yes No Yes No Yes 
Observation 594 594 586 586 586 586 
R-squared 0.259 0.268 0.257 0.267 0.250 0.260 

Treatment effect (T2-C) 0.647*** 0.616*** 0.674*** 0.641*** 0.591*** 0.531**  
(0.141) (0.159) (0.162) (0.178) (0.180) (0.190) 

Mean dependent variable in control 3.734 
Household covariates No Yes No Yes No Yes 
Observation 414 414 406 406 406 406 
R-squared 0.219 0.231 0.244 0.254 0.223 0.231 

Treatment effect (T2-T1) 0.365*** 0.380*** 0.345*** 0.358*** 0.374*** 0.401*** 
(0.078) (0.081) (0.067) (0.070) (0.066) (0.089) 

Mean dependent variable in treated T1 4.193 
Household covariates No Yes No Yes No Yes 
Observation 380 380 380 380 380 380 
R-squared 0.206 0.220 0.220 0.232 0.216 0.235 
Note: Coefficient estimates are only reported for the treatment effect. All regressions include year and LGA fixed effects. Odd 
numbered columns are from regressions without covariates while even numbered columns include covariates. Household 
covariates include household size, age of household head, number of days in agricultural training, and indicators for if the 
household head has formal education, if farming is the household’s main activity, and if they have access to credit. Columns (1) 
and (2) present OLS estimates, columns (3) and (4) present ANCOVA estimates, while columns (5) and (6) present kernel 
matching ANCOVA estimates. Robust standard errors, clustered at the village level, are shown in parentheses. (*** 𝑝𝑝 < 0.01, 
** 𝑝𝑝 < 0.05, * 𝑝𝑝 < 0.1). 
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Columns (3) – (6) are ANCOVA estimates similar to those in Table 2. Across all regressions we find effect 

sizes in 2016 that are smaller than the estimated effect sizes using all rounds of data. While the differences 

in magnitudes are not substantial, only being one or two percentage points different, it is informative that 

the estimates are always smaller. This suggests some element of learning-by-doing, as impacts in the initial 

year appear to be smaller than overall impacts. 

To better assess this conjecture, we estimate the ITT using yield data from one year after the 

intervention (2017). Given that soil characteristics change very slowly over time, the advice provided as 

part of the study should still be valid a year later. Thus, if there are no learning effects, we would expect 

impacts to be of a similar size regardless of whether we use the 2016 or 2017 yield data. Instead, Table 4 

shows that treatment effects not only remain positive but increase in magnitude. This is despite yields in 

the control group declining slightly between 2016 and 2017. Comparing T, T1, and T2 to the control group, 

percentage increases were roughly double in 2017 what they had been in 2016. Focusing just on column 

(6), in 2016 households in the treatment increase their yields by 10 percent compared to the control while 

Table 4: Treatment effects on rice yield in 2017 
 (1) (2) (3) (4) (5) (6) 

Treatment effect (T-C) 0.520*** 0.515*** 0.507*** 0.506*** 0.695*** 0.730*** 
(0.175) (0.161) (0.177) (0.165) (0.170) (0.182) 

Mean dependent variable in control 3.608 
Household covariates No Yes No Yes No Yes 
Observation 674 674 667 667 667 667 
R-squared 0.309 0.329 0.309 0.328 0.288 0.302 

Treatment effect (T1-C) 0.350** 0.371** 0.343* 0.366** 0.556*** 0.591*** 
(0.171) (0.163) (0.172) (0.167) (0.175) (0.184) 

Mean dependent variable in control 3.608 
Household covariates No Yes No Yes No Yes 
Observation 575 575 568 568 568 568 
R-squared 0.342 0.363 0.343 0.363 0.316 0.328 

Treatment effect (T2-C) 1.048*** 1.017*** 1.027*** 1.002*** 0.978*** 0.956*** 
(0.076) (0.085) (0.081) (0.090) (0.109) (0.126) 

Mean dependent variable in control 3.608 
Household covariates No Yes No Yes No Yes 
Observation 400 400 393 393 393 393 
R-squared 0.335 0.340 0.338 0.341 0.266 0.280 

Treatment effect (T2-T1) 0.585** 0.549*** 0.588** 0.552*** 0.442*** 0.424*** 
(0.218) (0.190) (0.218) (0.191) (0.142) (0.143) 

Mean dependent variable in treated T1 4.431 
Household covariates No Yes No Yes No Yes 
Observation 373 373 373 373 373 373 
R-squared 0.322 0.343 0.322 0.343 0.274 0.304 
Note: Coefficient estimates are only reported for the treatment effect. All regressions include year and LGA fixed effects. Odd 
numbered columns are from regressions without covariates while even numbered columns include covariates. Household 
covariates include household size, age of household head, number of days in agricultural training, and indicators for if the 
household head has formal education, if farming is the household’s main activity, and if they have access to credit. Columns (1) 
and (2) present OLS estimates, columns (3) and (4) present ANCOVA estimates, while columns (5) and (6) present kernel 
matching ANCOVA estimates. Robust standard errors, clustered at the village level, are shown in parentheses. (*** 𝑝𝑝 < 0.01, 
** 𝑝𝑝 < 0.05, * 𝑝𝑝 < 0.1). 
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in 2017 yields are 20 percent larger than the control. Similarly, in the information-only treatment arm, yields 

in 2016 are eight percent higher than the control while yields in 2017 are 16 percent higher than the control. 

For households that received the RiceAdvice plus fertilizer subsidy treatment, yields in 2016 are 14 percent 

higher than the control group while in 2017 yields are slightly less than double: 26 percent higher. 

These results imply that knowledge, and not liquidity, is the binding constraint in the study area. If 

liquidity were the binding constraint, then the information-only treatment would have no discernable effect. 

This is not to say that credit markets operate perfectly in the region. If they did, then there would be no 

difference in outcomes between T2 and T1. Rather, our results demonstrate that while liquidity is an issue, 

households are still able to take advantage of extension advice if it has been adapted to their context. This 

result is surprising, because the agricultural development literature frequently argues for the importance of 

liquidity constraints and finds little evidence for the effectiveness of information-only interventions 

(Holden and Lunduka, 2013; Jones and Kondylis, 2018). Two important factors should be considered when 

comparing our results to those in the literature. First, Nigeria is among the countries in Africa with the 

Table 5: Treatment effects on net income 
 (1) (2) (3) (4) 

Treatment effect (T-C) 
195.7*** 199.3*** 231.8*** 226.9*** 
(49.14) (45.29) (45.97) (45.21) 

Mean dependent variable in control 1,147 
Household covariates No Yes No Yes 
Observation 1,353 1,353 1,353 1,353 
R-squared 0.322 0.325 0.281 0.283 

Treatment effect (T1-C) 
150.2*** 161.3*** 179.5*** 182.8*** 
(47.74) (44.94) (43.59) (45.60) 

Mean dependent variable in control 1,147 
Household covariates No Yes No Yes 
Observation 1,154 1,154 1,154 1,154 
R-squared 0.354 0.361 0.304 0.310 

Treatment effect (T2-C) 332.0*** 316.8*** 345.7*** 345.1*** 
(37.68) (44.60) (47.14) (43.99) 

Mean dependent variable in control 1,147 
Household covariates No Yes No Yes 
Observation 799 799 799 799 
R-squared 0.307 0.313 0.253 0.260 

Treatment effect (T2-T1) 
156.7*** 160.2*** 123.7*** 138.3*** 
(42.75) (42.86) (27.44) (38.30) 

Mean dependent variable in T1 1,407 
Household covariates No Yes No Yes 
Observation 753 753 753 753 
R-squared 0.321 0.325 0.287 0.293 
Note: Coefficient estimates are only reported for the treatment effect. All regressions include year and 
LGA fixed effects. Odd numbered columns are from regressions without covariates while even numbered 
columns include covariates. Household covariates include household size, age of household head, number 
of days in agricultural training, and indicators for if the household head has formal education, if farming 
is the household’s main activity, and if they have access to credit. Columns (1) and (2) present ANCOVA 
estimates  while columns (3) and (4) present the kernel matching ANCOVA estimates. Robust standard 
errors, clustered at the village level, are shown in parentheses. (*** 𝑝𝑝 < 0.01, ** 𝑝𝑝 < 0.05, * 𝑝𝑝 < 0.1). 
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highest levels of fertilizer use and fertilizer use is relatively common in Kano (Liverpool-Tasie, 2014). 

Second, previous studies of information-only interventions focus on the delivery of broad or general advice. 

The information provided by the DST in our study is tailored to each treated household. Thus, while the 

absence of evidence regarding a binding credit constraint may lack external validity, the impact of digitally 

delivered personalized extension advice is likely to be generalizable to other settings. 

 

5.2. Treatment effect on net income 

From an economic point of view, the positive impact of personalized advice from the app on yield cannot 

alone justify its promotion for scaling. Accordingly, in this section we focus on the income effect of the 

treatment. Table 5 presents the ITT effects of RiceAdvice on net income per hectare in the full set of data 

(both 2016 and 2017 outcomes). Table 6 presents results from the initial year while Table 7 presents results 

from the follow-up year. 

Table 6: Treatment effects on net income in 2016 
 (1) (2) (3) (4) (5) (6) 

Treatment effect (T-C) 212.7*** 211.3*** 224.5*** 222.6*** 218.1*** 206.1*** 
(57.59) (59.48) (62.40) (63.76) (57.5) (56.28) 

Mean dependent variable in control 1,397 
Household covariates No Yes No Yes No Yes 
Observation 694 694 686 686 686 686 
R-squared 0.180 0.192 0.183 0.195 0.179 0.188 

Treatment effect (T1-C) 187.8*** 189.1*** 193.9*** 198.4*** 215.2*** 204.8*** 
(57.53) (60.05) (61.54) (63.78) (59.87) (58.49) 

Mean dependent variable in control 1,397 
Household covariates No Yes No Yes No Yes 
Observation 594 594 586 586 586 586 
R-squared 0.212 0.212 0.212 0.212 0.212 0.212 

Treatment effect (T2-C) 
284.8*** 284.8*** 284.8*** 284.8*** 284.8*** 284.8*** 
(66.38) (66.38) (66.38) (66.38) (66.38) (66.38) 

Mean dependent variable in control 1,397 
Household covariates No Yes No Yes No Yes 
Observation 414 414 406 406 406 406 
R-squared 0.180 0.196 0.207 0.219 0.190 0.201 

Treatment effect (T2-T1) 103.7** 120.3** 98.31** 114.2** 87.61** 104.2** 
(47.94) (49.67) (44.80) (45.80) (37.90) (44.63) 

Mean dependent variable in treated T1 1,669 
Household covariates No Yes No Yes No Yes 
Observation 380 380 380 380 380 380 
R-squared 0.156 0.178 0.163 0.184 0.174 0.199 
Note: Coefficient estimates are only reported for the treatment effect. All regressions include year and LGA fixed effects. Odd 
numbered columns are from regressions without covariates while even numbered columns include covariates. Household 
covariates include household size, age of household head, number of days in agricultural training, and indicators for if the 
household head has formal education, if farming is the household’s main activity, and if they have access to credit. Columns (1) 
and (2) present OLS estimates, columns (3) and (4) present ANCOVA estimates, while columns (5) and (6) present kernel 
matching ANCOVA estimates. Robust standard errors, clustered at the village level, are shown in parentheses. (*** 𝑝𝑝 < 0.01, 
** 𝑝𝑝 < 0.05, * 𝑝𝑝 < 0.1). 
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We find clear evidence that personalized advice on nutrient management increase net income for 

rice producers. As with yields, the differences between matched and unmatched samples, as well as the 

differences with and without covariates are minor, so we focus on the results in column (4) of Table 5, 

which uses the matched data and includes covariates. Households randomly given personalized advice via 

the RiceAdvice app increase their income by about $227, or 20 percent over control households. Again, we 

find that this increase is not due solely to the provisioning of fully subsidized fertilizer to households in T2. 

The information-only treatment increases net income by about $183, a 16 percent gain over the control. 

Gains were substantially larger for households that received the fertilizer grant, as they were likely able to 

reallocate funds to other productive activities. Households in T2 saw income rise by $345 or 30 percent 

compared to control households. As with the results for yields, there are significant differences between 

outcomes for those in T2 compared to T1. What is interesting, though, is that the fertilizer subsidy is not a 

necessary condition for households to make use of the recommendations from RiceAdvice. 

Table 7: Treatment effects on net income in 2017 
 (1) (2) (3) (4) (5) (6) 

Treatment effect (T-C) 173.2*** 180.9*** 167.6*** 175.7*** 228.4*** 244.7*** 
(59.46) (52.46) (60.52) (54.22) (58.29) (63.50) 

Mean dependent variable in control 887.4 
Household covariates No Yes No Yes No Yes 
Observation 674 674 667 667 667 667 
R-squared 0.262 0.282 0.261 0.281 0.230 0.241 

Treatment effect (T1-C) 110.9* 127.9** 106.4* 123.3** 166.9** 188.4*** 
(54.46) (50.56) (55.17) (52.53) (60.87) (63.50) 

Mean dependent variable in control 887.4 
Household covariates No Yes No Yes No Yes 
Observation 575 575 568 568 568 568 
R-squared 0.310 0.333 0.310 0.332 0.272 0.282 

Treatment effect (T2-C) 368.4*** 355.1*** 361.5*** 348.6*** 329.2*** 333.8*** 
(26.24) (29.35) (28.15) (30.48) (35.57) (44.12) 

Mean dependent variable in control 887.4 
Household covariates No Yes No Yes No Yes 
Observation 400 400 393 393 393 393 
R-squared 0.288 0.295 0.289 0.297 0.196 0.215 

Treatment effect (T2-T1) 213.4*** 202.9*** 214.7*** 204.9*** 207.9*** 199.1*** 
(73.38) (67.60) (74.44) (69.05) (51.65) (55.52) 

Mean dependent variable in treated T1 1,138 
Household covariates No Yes No Yes No Yes 
Observation 373 373 373 373 373 373 
R-squared 0.274 0.296 0.275 0.297 0.229 0.258 
Note: Coefficient estimates are only reported for the treatment effect. All regressions include year and LGA fixed effects. Odd 
numbered columns are from regressions without covariates while even numbered columns include covariates. Household 
covariates include household size, age of household head, number of days in agricultural training, and indicators for if the 
household head has formal education, if farming is the household’s main activity, and if they have access to credit. Columns 
(1) and (2) present OLS estimates, columns (3) and (4) present ANCOVA estimates, while columns (5) and (6) present kernel 
matching ANCOVA estimates. Robust standard errors, clustered at the village level, are shown in parentheses. (*** 𝑝𝑝 < 0.01, 
** 𝑝𝑝 < 0.05, * 𝑝𝑝 < 0.1). 
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To understand the effects of the intervention over time, we again estimate the ITT for each year 

separately. Net income for treated households is significantly higher than the control in each year. Unlike 

our comparison of yields from year-to-year, we do not find consistent evidence that net income in 2017 is 

higher than in 2016. While the overall effect (T-C) is larger in 2017 than in 2016, this is partly driven by a 

large increase in 2017 net income for households in the second treatment arm. The relative size of the 

income gains for T2 is also driven by a decline in net income for control and T1 households. On average, 

households who received the information-only treatment increased their net income by 15 percent in 2016 

and 21 percent in 2017. By comparison, households who received the fertilizer grant in addition to 

RiceAdvice increased their net income by 20 percent in 2016 and 38 percent in 2017. Thus, while yields 

doubled for nearly everyone in the treated from 2016 to 2017, changes in net income were not uniform.  

These findings imply that additional production costs related to the personalized advice is less than 

the gain in yield. While the size of the gains is subject to year-to-year variation in input and output prices, 

the gains are always positive. Again, our results contrast with much of the existing literature on the impact 

Table 8: Treatment effects on technical efficiency 
 (1) (2) (3) (4) 

Treatment effect (T-C) 0.044*** 0.042*** 0.051*** 0.050*** 
(0.014) (0.013) (0.013) (0.012) 

Mean dependent variable in control 0.701 
Household covariates No Yes No Yes 
Observation 1,353 1,353 1,353 1,353 
R-squared 0.222 0.228 0.196 0.202 

Treatment effect (T1-C) 0.033** 0.033** 0.036*** 0.036*** 
(0.014) (0.013) (0.013) (0.012) 

Mean dependent variable in control 0.701 
Household covariates No Yes No Yes 
Observation 1,154 1,154 1,154 1,154 
R-squared 0.245 0.253 0.213 0.221 

Treatment effect (T2-C) 0.076*** 0.074*** 0.079*** 0.081*** 
(0.010) (0.011) (0.012) (0.010) 

Mean dependent variable in control 0.701 
Household covariates No Yes No Yes 
Observation 799 799 799 799 
R-squared 0.214 0.220 0.168 0.175 

Treatment effect (T2-T1) 0.036** 0.035*** 0.027*** 0.029*** 
(0.014) (0.012) (0.008) (0.010) 

Mean dependent variable in T1 0.763 
Household covariates No Yes No Yes 
Observation 753 753 753 753 
R-squared 0.227 0.233 0.211 0.222 
Note: Coefficient estimates are only reported for the treatment effect. All regressions include year and LGA 
fixed effects. Odd numbered columns are from regressions without covariates while even numbered 
columns include covariates. Household covariates include household size, age of household head, number 
of days in agricultural training, and indicators for if the household head has formal education, if farming is 
the household’s main activity, and if they have access to credit. Columns (1) and (2) present ANCOVA 
estimates  while columns (3) and (4) present the kernel matching ANCOVA estimates. Robust standard 
errors, clustered at the village level, are shown in parentheses. (*** 𝑝𝑝 < 0.01, ** 𝑝𝑝 < 0.05, * 𝑝𝑝 < 0.1). 
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of information treatments. Indicative of this literature is Duflo et al. (2008), who find that blanket fertilizer 

advice from an official extension agency in Kenya has no effect on farm profits. We believe that such 

information-only interventions are ineffective because the information provided is too general and fails to 

account for heterogeneity at the farm-level. By contrast, our intervention relies on a mobile DST that 

provides nutrient management advice adapted to the needs of the specific household. 

 

5.3. Treatment effect on technical efficiency 

We also assess the impact of personalized advice on the technical efficiency of the households. As discussed 

in Section 3, we hypothesize that personalized advice will change the input use not only of fertilizer but of 

other inputs, such as labor. To test this, we first estimate technical efficiency using a Cobb-Douglas frontier 

production function (see Table A.3 in the Appendix). We then use the estimated efficiency score to assess 

the effects of personalized advice on technical efficiency for the full sample (Table 8). Table 9 presents 

results from the initial year while Table 10 presents results from the follow-up year. 

Table 9: Treatment effects on technical efficiency in 2016 
 (1) (2) (3) (4) (5) (6) 

Treatment effect (T-C) 0.040*** 0.037** 0.042*** 0.039** 0.039*** 0.035**  
(0.014) (0.014) (0.014) (0.015) (0.014) (0.014) 

Mean dependent variable in control 0.739 
Household covariates No Yes No Yes No Yes 
Observation 694 694 686 686 686 686 
R-squared 0.233 0.239 0.236 0.242 0.236 0.243 

Treatment effect (T1-C) 0.032** 0.030** 0.034** 0.032** 0.038** 0.033** 
(0.014) (0.014) (0.014) (0.015) (0.015) (0.014) 

Mean dependent variable in control 0.739 
Household covariates No Yes No Yes No Yes 
Observation 594 594 586 586 586 586 
R-squared 0.267 0.276 0.265 0.274 0.267 0.278 

Treatment effect (T2-C) 0.060*** 0.057*** 0.062*** 0.059*** 0.056** 0.051** 
(0.015) (0.016) (0.017) (0.017) (0.020) (0.020) 

Mean dependent variable in control 0.739 
Household covariates No Yes No Yes No Yes 
Observation 414 414 406 406 406 406 
R-squared 0.239 0.249 0.248 0.256 0.262 0.272 

Treatment effect (T2-T1) 0.029** 0.029** 0.027** 0.028*** 0.025*** 0.027*** 
(0.011) (0.011) (0.010) (0.009) (0.007) (0.009) 

Mean dependent variable in treated T1 0.788 
Household covariates No Yes No Yes No Yes 
Observation 380 380 380 380 380 380 
R-squared 0.211 0.227 0.222 0.236 0.233 0.255 
Note: Coefficient estimates are only reported for the treatment effect. All regressions include year and LGA fixed effects. Odd 
numbered columns are from regressions without covariates while even numbered columns include covariates. Household 
covariates include household size, age of household head, number of days in agricultural training, and indicators for if the 
household head has formal education, if farming is the household’s main activity, and if they have access to credit. Columns (1) 
and (2) present OLS estimates, columns (3) and (4) present ANCOVA estimates, while columns (5) and (6) present kernel 
matching ANCOVA estimates. Robust standard errors, clustered at the village level, are shown in parentheses. (*** 𝑝𝑝 < 0.01, 
** 𝑝𝑝 < 0.05, * 𝑝𝑝 < 0.1). 
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We find that technical efficiency is significantly higher for treatment households compared to 

control households. On average, the technical efficiency of households in the treatment is 0.05 higher than 

the control group, an increase of seven percent. The effect sizes are similar when we consider the impact 

of the information-only intervention.4 The treatment effect with the grant is larger, resulting in an increase 

of 12 percent relative to the control. Differences between the information-only and information-plus-grant 

treatments are significant, though the magnitude is small – a four percent difference between T2 and T1. 

When examining results from the year immediately following the intervention, we find a positive 

and significant increase in technical efficiency across all treatment groups and all specifications. Focusing 

on the kernel matched ANCOVA results with covariates in column (6), treated households increase their 

technical efficiency by between three and seven percent over the relevant comparison group. As with yields, 

there is a consistent increase in technical efficiency over time. In 2016 households in the treatment are five 

                                                             
4 The OLS estimate without covariates for the treatment effect of T1 compared to the control becomes insignificant 
only when we use the Bonferroni adjustment to correct for multiple hypothesis test. See Table A.7 in the Appendix. 

Table 10: Treatment effects on technical efficiency in 2017 
 (1) (2) (3) (4) (5) (6) 

Treatment effect (T-C) 0.045** 0.045** 0.045** 0.045** 0.064*** 0.069*** 
(0.020) (0.018) (0.020) (0.018) (0.019) (0.020) 

Mean dependent variable in control 0.662 
Household covariates No Yes No Yes No Yes 
Observation 674 674 667 667 667 667 
R-squared 0.304 0.325 0.309 0.329 0.294 0.306 

Treatment effect (T1-C) 0.031 0.034* 0.031 0.034* 0.049** 0.054** 
(0.021) (0.019) (0.020) (0.019) (0.021) (0.021) 

Mean dependent variable in control 0.662 
Household covariates No Yes No Yes No Yes 
Observation 575 575 568 568 568 568 
R-squared 0.334 0.357 0.340 0.362 0.320 0.332 

Treatment effect (T2-C) 0.089*** 0.087*** 0.087*** 0.086*** 0.081*** 0.080*** 
(0.009) (0.011) (0.010) (0.011) (0.012) (0.014) 

Mean dependent variable in control 0.662 
Household covariates No Yes No Yes No Yes 
Observation 400 400 393 393 393 393 
R-squared 0.308 0.314 0.312 0.317 0.284 0.294 

Treatment effect (T2-T1) 0.045* 0.043* 0.044* 0.042* 0.036** 0.035** 
(0.025) (0.022) (0.023) (0.021) (0.015) (0.015) 

Mean dependent variable in treated T1 0.739 
Household covariates No Yes No Yes No Yes 
Observation 373 373 373 373 373 373 
R-squared 0.320 0.344 0.325 0.348 0.284 0.319 
Note: Coefficient estimates are only reported for the treatment effect. All regressions include year and LGA fixed effects. Odd 
numbered columns are from regressions without covariates while even numbered columns include covariates. Household 
covariates include household size, age of household head, number of days in agricultural training, and indicators for if the 
household head has formal education, if farming is the household’s main activity, and if they have access to credit. Columns 
(1) and (2) present OLS estimates, columns (3) and (4) present ANCOVA estimates, while columns (5) and (6) present kernel 
matching ANCOVA estimates. Robust standard errors, clustered at the village level, are shown in parentheses. (*** 𝑝𝑝 < 0.01, 
** 𝑝𝑝 < 0.05, * 𝑝𝑝 < 0.1). 
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percent more efficient compared to the control while in 2017 they are 10 percent more efficient than the 

control. Similarly, in the information-only treatment arm, efficiency in 2016 is four percent higher than the 

control while efficiency in 2017 is eight percent higher than the control. For households that received the 

RiceAdvice plus fertilizer subsidy treatment, efficiency in 2016 is seven percent higher than the control 

group while in 2017 efficiency is 12 percent higher. As with yields, households in the treatment groups 

roughly doubled their gains in technical efficiency over the comparison groups. 

 Our results provide encouraging evidence regarding household behavior and on-farm decision-

making. Similar to Tjernström et al. (2019), we find that households learn and adapt when provided with 

extension advice customized to their circumstances and setting. Households increase yields and net income 

not simply by adding more fertilizer and getting more rice. Rather, they are more efficient in the overall 

production process. This is despite the fact that the DST app focuses on fertilizer requirements and general 

best practices, with no advice for the application and allocation of other inputs. A future version of the 

RiceAdvice app that produces personalized advice for the timing and spacing of seed, the application of 

Table 11: Treatment effects on total fertilizer used 
 (1) (2) (3) (4) 

Treatment effect (T-C) -14.09 -15.32 -8.497 -8.664 
(10.76) (9.642) (9.843) (9.272) 

Mean dependent variable in control 367.4 
Household covariates No Yes No Yes 
Observation 1,353 1,353 1,353 1,353 
R-squared 0.099 0.109 0.118 0.123 

Treatment effect (T1-C) -9.481 -12.27 -5.971 -7.683 
(11.87) (10.43) (10.38) (11.41) 

Mean dependent variable in control 367.4 
Household covariates No Yes No Yes 
Observation 1,154 1,154 1,154 1,154 
R-squared 0.099 0.110 0.121 0.125 

Treatment effect (T2-C) -25.41*** -18.11* -22.25 -23.72 
(8.575) (9.968) (16.74) (19.48) 

Mean dependent variable in control 367.4 
Household covariates No Yes No Yes 
Observation 799 799 799 799 
R-squared 0.151 0.171 0.159 0.166 

Treatment effect (T2-T1) -22.44* -23.59** -11.71 -8.866 
(11.03) (9.823) (10.02) (12.53) 

Mean dependent variable in T1 359.1 
Household covariates No Yes No Yes 
Observation 753 753 753 753 
R-squared 0.082 0.094 0.068 0.079 
Note: Coefficient estimates are only reported for the treatment effect. All regressions include year and 
LGA fixed effects. Odd numbered columns are from regressions without covariates while even numbered 
columns include covariates. Household covariates include household size, age of household head, number 
of days in agricultural training, and indicators for if the household head has formal education, if farming 
is the household’s main activity, and if they have access to credit. Columns (1) and (2) present ANCOVA 
estimates  while columns (3) and (4) present the kernel matching ANCOVA estimates. Robust standard 
errors, clustered at the village level, are shown in parentheses. (*** 𝑝𝑝 < 0.01, ** 𝑝𝑝 < 0.05, * 𝑝𝑝 < 0.1). 
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herbicides and pesticides, and the allocation of labor time, could result in larger improvements to farm 

efficiency. 

 

6. Results for secondary outcomes 

To investigate possible causal channels through which the adoption of personalized advice may influence 

yield, we test the treatment effect on two intermediate outcomes: the quantity of fertilizer and the timing of 

fertilizer application. We focus the analysis on the full sample, restricting our results to just the ANCOVA 

estimates of post-treatment outcomes. 

 

6.1. Treatment effect on fertilizer quantity 

The provision of personalized advice to farming households may increase or decrease the quantity of 

fertilizer depending on the initial distance of production to the efficiency frontier. Table 11 presents results 

from estimations of the ITT effect on the quantity of fertilizer used. Contrary to our priors, we find no 

Table 12: Treatment effect on the quantity of NPK fertilizer 
 (1) (2) (3) (4) 

Treatment effect (T-C) -18.58*** -18.34*** -16.31** -13.28** 
(6.001) (5.660) (6.596) (6.272) 

Mean dependent variable in control 176.7 
Household covariates No Yes No Yes 
Observation 1,353 1,353 1,353 1,353 
R-squared 0.086 0.099 0.107 0.116 

Treatment effect (T1-C) -17.22*** -18.03*** -15.21** -14.79** 
(6.241) (5.961) (5.952) (6.274) 

Mean dependent variable in control 176.7 
Household covariates No Yes No Yes 
Observation 1,154 1,154 1,154 1,154 
R-squared 0.125 0.130 0.117 0.122 

Treatment effect (T2-C) -20.45*** -15.37** -21.39* -20.27* 
(5.594) (5.880) (11.29) (10.97) 

Mean dependent variable in control 176.7 
Household covariates No Yes No Yes 
Observation 799 799 799 799 
R-squared 0.164 0.184 0.135 0.146 

Treatment effect (T2-T1) -7.211 -7.558 -4.383 -2.992 
(5.745) (5.519) (4.604) (6.301) 

Mean dependent variable in T1 169.0 
Household covariates No Yes No Yes 
Observation 753 753 753 753 
R-squared 0.127 0.133 0.134 0.139 
Note: Coefficient estimates are only reported for the treatment effect. All regressions include year and 
LGA fixed effects. Odd numbered columns are from regressions without covariates while even numbered 
columns include covariates. Household covariates include household size, age of household head, number 
of days in agricultural training, and indicators for if the household head has formal education, if farming 
is the household’s main activity, and if they have access to credit. Columns (1) and (2) present ANCOVA 
estimates  while columns (3) and (4) present the kernel matching ANCOVA estimates. Robust standard 
errors, clustered at the village level, are shown in parentheses. (*** p < 0.01, ** p < 0.05, * p < 0.1). 
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evidence that personalized advice on nutrient management has any effect on the quantity of fertilizer. Only 

the unmatched ANCOVA estimates of the difference between T2 and C and T2 and T1 are significant. 

These marginally significant results become statistically insignificant once we account for multiple 

hypotheses testing (See Table A.8 and Table A.9 in the Appendix). None of the matched ANCOVA 

estimates are significant. 

There are two possible explanations for the null results. First, it may be that some households 

increase their fertilizer quantity while other households decrease it, which would lead to a null effect on 

average. To investigate this explanation, we use a quantile regression, similar to Hossain et al. (2019), in 

order to estimate the slope and shape of the conditional distribution. We estimate the ITT effect of 

personalized extension advice on fertilizer quantity for three quartiles: the lower quartile (25th percentile), 

the median quartile (50th percentile), and the upper quartile (75th percentile). We do not find substantial 

variation between quartiles in any of the treatment groups (see Table A.10 in the Appendix). 

Second, rice farmers in the survey areas primarily use two types of fertilizer: NPK 15-15-15 and 

urea 46-0-0. The blanket extension advice provided by the Ministry of Agriculture and Rural Development 

Table 13: Treatment effect on the quantity of urea fertilizer 
 (1) (2) (3) (4) 

Treatment effect (T-C) 11.42** 10.17** 12.93** 10.84* 
(5.099) (4.833) (5.124) (5.436) 

Mean dependent variable in control 137.5 
Household covariates No Yes No Yes 
Observation 1,353 1,353 1,353 1,353 
R-squared 0.086 0.099 0.107 0.116 

Treatment effect (T1-C) 15.05*** 13.57*** 15.32*** 13.08* 
(5.197) (4.779) (5.526) (6.759) 

Mean dependent variable in control 137.5 
Household covariates No Yes No Yes 
Observation 1,154 1,154 1,154 1,154 
R-squared 0.087 0.103 0.110 0.120 

Treatment effect (T2-C) -0.064 1.703 1.890 0.642 
(5.361) (5.720) (8.311) (10.55) 

Mean dependent variable in control 137.5 
Household covariates No Yes No Yes 
Observation 799 799 799 799 
R-squared 0.144 0.175 0.159 0.179 

Treatment effect (T2-T1) -16.23*** -17.40*** -11.35** -10.56* 
(4.794) (3.472) (5.082) (5.893) 

Mean dependent variable in T1 165.6 
Household covariates No Yes No Yes 
Observation 753 753 753 753 
R-squared 0.080 0.096 0.066 0.079 
Note: Coefficient estimates are only reported for the treatment effect. All regressions include year and 
LGA fixed effects. Odd numbered columns are from regressions without covariates while even numbered 
columns include covariates. Household covariates include household size, age of household head, number 
of days in agricultural training, and indicators for if the household head has formal education, if farming 
is the household’s main activity, and if they have access to credit. Columns (1) and (2) present ANCOVA 
estimates  while columns (3) and (4) present the kernel matching ANCOVA estimates. Robust standard 
errors, clustered at the village level, are shown in parentheses. (*** p < 0.01, ** p < 0.05, * p < 0.1). 
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breaks down fertilizer by deficiency in either nitrogen (N), phosphorous (P), and potassium (K). So, for 

both blanket advice and RiceAdvice, recommendations are for a specific compound fertilizer. Thus, the 

adoption of personalized extension advice may increase the quantity of one type of fertilizer while 

decreasing the quantity of the other type of fertilizer, which would result in a null effect on average. To 

investigate this second possible explanation, we model the treatment effect on NPK and urea quantities 

separately (see Table 12 and Table 13).5 

Our results show that personalized advice does have an effect on both the type and quantity of 

fertilizer in use – a result masked by a focus on average effects. Households who received personalized 

advice tend to reduce the amount of NPK and increase the amount of urea, though the decrease in NPK (13-

20 kg/ha) are larger than the increase in urea (10-13 kg/ha). We also find differences in NPK and urea use 

based on treatment arm. For NPK, the decrease in the amount of fertilizer used is similar for those in both 

the information-only and information-plus-grant treatments. When we directly compare T2 to T1, we find 

the differences in NPK use are not significant. For urea, the increase in quantity is completely driven by 

households in the information-only treatment. Households who received personalized advice plus the 

fertilizer subsidy apply the same amount of urea as households in the control.6 

The NPK and ure regressions demonstrate that while the average amount of fertilizer used by the 

treatment group was unaffected by the treatment, households did change their amount of fertilizer, just in 

offsetting ways. These results support Suri’s (2011) conjecture that a focus on average effects masks highly 

heterogeneous returns to agricultural technologies. The blanket advice offered by extension agents may be 

correct for the average household, but no single household is exactly average. Relying on blanket 

recommendations, some households end up over-using one type of fertilizer while other households under-

use a different type of fertilizer. Households provided with personalized extension advice adjust their 

application rates up or down, as needed. The result is a null effect on average, though households in each 

quartile make adjustments to the quantity of each type of fertilizer they use. 

 

6.2. Treatment effect on the application timing of fertilizer 

In addition to the size of the fertilizer dose, application timing is vital to productive crop growth. In general, 

it is recommended to apply fertilizer four times during the rice growing season: basal (at transplanting or 

16-20 days after sowing for direct seeding), tilling (36-40 days after sowing), panicle initiation (53-57 days 

                                                             
5 As with total fertilizer, we also estimate quantiles for each type of fertilizer (NPK and urea). We fail to find any 
substantial evidence of heterogeneity across the quantiles. See Table A.11 and Table A.12 in the Appendix. 
6 Estimates of treatment effects on NPK and urea use are generally robust to our adjustment for multiple hypothesis 
testing. The exception is when the Bonferroni adjustment is used, which effects 10 estimates. But even then, 22 of 
32 Bonferroni-adjusted 𝑝𝑝-values remain significant. See Table A.6 through Table A.9 in the Appendix. 
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after sowing), and booting (78-82 days after sowing). In Table 14 and Table 15, we assess the effect of 

personalized advice from RiceAdvice on the application timing of NPK and urea, respectively. 

We find evidence of a negative effect on the application period (number of days after sowing) of 

NPK. 7 Treated households applied NPK about two days earlier than control households. As one would 

expect, there is no difference in application timing between the two treatment arms, since the only difference 

between T1 and T2 is the fertilizer grant. We find no evidence that the treatment had any effect on the 

application period of urea fertilizer, meaning that the treated and control households applied urea at 

approximately the same time after the sowing date.8 The differences between the treatment’s effect on NPK 

and urea timing may be due to differences in familiarity with the type of fertilizer. Alternatively, it could 

be due to the different application period of each fertilizer, with NPK typically being applied at 

                                                             
7 Only one application of each type of fertilizer is common among farmers. So the application time used is the number 
of days after sowing for the first application of fertilizer. 
8 The only treatment effects on first application of urea that are significant become insignificant when we apply any 
of the three adjustments for multiple hypothesis testing. See Table A.8 and Table A.9 in the Appendix. 

Table 14: Treatment effects on the first application of NPK fertilizer 
 (1) (2) (3) (4) 

Treatment effect (T-C) -1.891*** -1.892*** -2.199*** -2.135*** 
(0.407) (0.415) (0.439) (0.441) 

Mean dependent variable in control 15.72 
Household covariates No Yes No Yes 
Observation 1,353 1,353 1,353 1,353 
R-squared 0.214 0.224 0.178 0.187 

Treatment effect (T1-C) -2.088*** -2.079*** -2.273*** -2.105*** 
(0.426) (0.450) (0.477) (0.493) 

Mean dependent variable in control 15.72 
Household covariates No Yes No Yes 
Observation 1,154 1,154 1,154 1,154 
R-squared 0.231 0.248 0.181 0.195 

Treatment effect (T2-C) -1.393*** -1.436*** -1.229** -1.201*** 
(0.433) (0.333) (0.500) (0.403) 

Mean dependent variable in control 15.72 
Household covariates No Yes No Yes 
Observation 799 799 799 799 
R-squared 0.192 0.193 0.171 0.175 

Treatment effect (T2-T1) 0.369 0.326 0.212 0.003 
(0.599) (0.559) (0.470) (0.474) 

Mean dependent variable in T1 15.95 
Household covariates No Yes No Yes 
Observation 753 753 753 753 
R-squared 0.205 0.218 0.189 0.204 
Note: Coefficient estimates are only reported for the treatment effect. All regressions include year and 
LGA fixed effects. Odd numbered columns are from regressions without covariates while even numbered 
columns include covariates. Household covariates include household size, age of household head, number 
of days in agricultural training, and indicators for if the household head has formal education, if farming 
is the household’s main activity, and if they have access to credit. Columns (1) and (2) present ANCOVA 
estimates  while columns (3) and (4) present the kernel matching ANCOVA estimates. Robust standard 
errors, clustered at the village level, are shown in parentheses. (*** 𝑝𝑝 < 0.01, ** 𝑝𝑝 < 0.05, * 𝑝𝑝 < 0.1). 
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transplanting and urea typically being applied at tilling. However, even where differences are significant, 

the size of the effect is only one to two days, which may not be meaningful in an agronomic sense, since 

the application windows are five days in length. 

 

7. Conclusion 

A persistent empirical puzzle in developing country agriculture is the low adoption rates of improved inputs. 

One potential solution to the puzzle is that high returns on average mask a great deal of heterogeneity at the 

individual level. Thus, while on average the recommended amount of fertilizer may substantially increase 

yields, for any given household the recommended amount may be too much or too little for a particular 

plot. Until recently, the cost of adapting extension advice to heterogeneity in soil quality was prohibitively 

expensive. But, with advances in mobile technology, decision support tools (DSTs) can be developed and 

disseminated at greatly reduced cost. By using DSTs, farmers and extension agents can fine-tune their 

management practices by taking into account variations in local environmental and economic conditions, 

reduce their inefficiencies, and shorten the learning process. 

Table 15: Treatment effects on the first application of urea fertilizer 
 (1) (2) (3) (4) 

Treatment effect (T-C) -0.872 -0.956 -1.443 -1.503 
(0.708) (0.762) (1.029) (1.045) 

Mean dependent variable in control 33.32 
Household covariates No Yes No Yes 
Observation 1,353 1,353 1,353 1,353 
R-squared 0.114 0.124 0.105 0.115 

Treatment effect (T1-C) -0.715 -1.093 -1.137 -0.782 
(0.743) (0.806) (1.238) (1.218) 

Mean dependent variable in control 33.32 
Household covariates No Yes No Yes 
Observation 1,154 1,154 1,154 1,154 
R-squared 0.108 0.126 0.110 0.122 

Treatment effect (T2-C) -0.932 -0.753 -1.614** -1.167 
(0.759) (0.894) (0.685) (0.868) 

Mean dependent variable in control 33.32 
Household covariates No Yes No Yes 
Observation 799 799 799 799 
R-squared 0.105 0.131 0.100 0.125 

Treatment effect (T2-T1) 0.403 0.382 1.057* 0.842 
(0.481) (0.551) (0.568) (0.626) 

Mean dependent variable in T1 31.27 
Household covariates No Yes No Yes 
Observation 753 753 753 753 
R-squared 0.125 0.134 0.114 0.121 
Note: Coefficient estimates are only reported for the treatment effect. All regressions include year and 
LGA fixed effects. Odd numbered columns are from regressions without covariates while even numbered 
columns include covariates. Household covariates include household size, age of household head, number 
of days in agricultural training, and indicators for if the household head has formal education, if farming 
is the household’s main activity, and if they have access to credit. Columns (1) and (2) present ANCOVA 
estimates  while columns (3) and (4) present the kernel matching ANCOVA estimates. Robust standard 
errors, clustered at the village level, are shown in parentheses. (*** 𝑝𝑝 < 0.01, ** 𝑝𝑝 < 0.05, * 𝑝𝑝 < 0.1). 
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In this paper, we explore the potential for an Android-based DST called RiceAdvice. The mobile 

app allows households to provide information to extension agents about their local growing conditions, 

production costs, and market information. The extension agent can then use the app to provide 

recommendations for a nutrient management plan designed to increase both yields and profits. Using a 

randomized control trial, we find that households with access to RiceAdvice increase their yields and 

profits, while also increasing their technical efficiency. We also find that households are able to take 

advantage of the personalized extension information within their current credit constraints. Households in 

the information-only treatment arm are still able to significantly improve their outcomes, though not by as 

much as households who receive a grant to covers the full cost of the recommended fertilizer amount. 

These outcomes are not driven by an overall increase in the use of fertilizer. On average there is no 

significant difference between fertilizer application rates for treatment and control households. Rather, the 

personalized extension advice allows households that previously over-used fertilizer to reduce their 

application rate and households who previously under-used fertilizer to increase their application rate. The 

study resulted in households increasing their yields and income while have a net zero effect on the amount 

of fertilizer. This suggests that improvements to productivity and livelihoods need not come at the cost of 

increased overall chemical fertilizer use and the corresponding negative effects on the environment. 

While our results are specific to a particular DST, they add to a nascent body of literature suggesting 

that the null results typical of information-only interventions may be due to the overly broad information 

provided in the studies. In the case of technology adoption, how individuals are taught to use the technology 

plays an important role in whether that technology is beneficial or not. For farming households looking to 

take advantage of new seeds and other improved inputs, the revolution in mobile technology allows for a 

move away from the old one-size-fits-all advice and towards the delivery of personalized and profitable 

recommendations. 
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Online Appendix 
 

Table A.1: Fertility recommendations for rice in Nigeria  
Nutrient Fertility Class Upland Rice Lowland Rice  

N 
Low 

Medium 
High 

80kg N 
60kg N 
40kg N 

100kg N 
80kg N 
40kg N 

P 
Low 

Medium 
High 

30 - 40kg P205 
30kg P205 

NIL 

40 - 50kg P205 
40kg P205 

NIL 

K 
Low 

Medium 
High 

30 - 40kg K20 
30kg K20 

NIL 

30 - 40kg K20 

30kg K20 
NIL 

Note: The table reproduces Table 2.9 in Chude et al. (2019). It is the official 
recommendations for fertilizer application for rice made by the Federal Ministry 
of Agriculture and Rural Development. This is the information provided as blanket 
advice to the control group. 

 
Table A.2: Non-rice producing households in each year 
Treatment 2015 2016 2017 
C 9 6 19 
T1 0 0 6 
T2 0 0 1 
Total 9 6 26 
Table presents the number of households in the sample that did not 
produce rice in each year. 

 
Table A.3: Stochastic frontier models for the production function 
Log of production Coefficient Standard Error 
log of area -0.151*** 0.028 
log of total labor 0.005 0.015 
log of total fertilizer 0.026*** 0.008 
Technical inefficiency   

Age of rice farmer (year) 0.008 0.007 
Gender (=1 if rice farmer is man) 0.689 0.874 
Married (=1) 0.755*** 0.212 
Household size (n) -0.042** 0.019 
Household members working age (n) 0.081** 0.033 
Formal education (=1) 0.356** 0.139 
Crop production is main activity (=1) -0.589*** 0.177 
Member of a farmer group (=1) -0.397*** 0.125 
Constance -2.994*** 0.903 
Observation 694  
Log likelihood 8.832  
Note: Table presents results from a stochastic frontier model in which the technology is 
Cobb-Douglas. (*** 𝑝𝑝 < 0.01, ** 𝑝𝑝 < 0.05, * 𝑝𝑝 < 0.1). 
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Table A.4: Baseline characteristics and balance pre-contamination 
 Control group 

(ℎ = 340) 
Difference 

with Treated 
(ℎ = 360) 

Difference 
with T1 

(ℎ = 260) 

Difference 
with T2 

(ℎ = 100) 
 (1) (2) (3) (4) 
Household characteristics         
Age of household head (year) 37.47 (11.27) -1.662* -2.492*** 0.495 
Household size (n) 11.52 (7.670) 0.166 0.070 0.415 
Formal education (=1) 0.256 (0.437) -0.006 0.010 -0.046 
Farming is main activity (=1) 0.879 (0.326) -0.004 -0.014 0.021 
Number of agricultural training days (n) 0.653 (2.404) 0.280 0.074 0.817** 
Access to credit (=1) 0.144 (0.352) 0.014 0.017 0.006 
     
Production values     
Quantity of NPK (kg/ha) 184.0 (87.71) -2.970 -4.529 1.084 
Quantity of urea (kg/ha) 164.0 (88.91) 10.804 8.800 16.02 
Rice area (ha) 0.760 (0.500) 0.221*** 0.205*** 0.263*** 
Rice yield (t/ha) 3.484 (1.759) -0.168 -0.113 -0.312 
Rice income (US$/ha) 1,675 (845.9) -80.83 -54.27 -149.9 
Profit (US$/ha) 1,357 (797.6) -75.36 -49.44 -142.7 
Technical efficiency 0.677 (0.174) -0.011 -0.003 -0.032 
Note: Coefficients in columns (2) - (4) are calculated by implementing an OLS that controls for LGA with a sampling 
weight and clustering at the village level. (*** 𝑝𝑝 < 0.01, ** 𝑝𝑝 < 0.05, * 𝑝𝑝 < 0.1). 

 
 

Table A.5: Intra-cluster correlation coefficients for the 
outcomes variables 

 ICC SE 
Yield (t/ha) 0.216 0.049 
Net income (US$/ha) 0.202 0.048 
Technical efficiency 0.228 0.051 
Total quantity of fertilizer (kg/ha) 0.111 0.034 
Quantity of NPK (kg/ha) 0.053 0.023 
Quantity of urea (kg/ha) 0.131 0.037 
First application of NPK (days) 0.105 0.034 
First application of urea (days) 0.128 0.038 
Notes: An ICC value of zero means that there is no difference between the 
variation within clusters (village) and the variation between clusters. When the 
ICC is closer to 1, the observations (20 households) within each village lack 
more variation (which implies no power gain or efficiency from having a 
larger sample). However, an ICC value closer to zero indicates a larger 
variation in the within sample, which is beneficial in terms of efficiency or 
power gain. 
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Table A.6: Multiple hypothesis testing (T-C) 
 (1) (2) (3) (4) 
Panel A: Rice yield (t/ha)     

Unadjusted p-value 0.001 0.001 0.000 0.000 
Bonferroni adjusted p-value 0.004 0.002 0.000 0.000 
Holm adjusted p-value 0.001 0.002 0.000 0.000 
Sharpened q-value 0.001 0.001 0.001 0.001 

Panel B: Net income (USD/ha)     
Unadjusted p-value 0.000 0.000 0.000 0.000 
Bonferroni adjusted p-value 0.001 0.000 0.000 0.000 
Holm adjusted p-value 0.000 0.000 0.000 0.000 
Sharpened q-value 0.001 0.001 0.001 0.001 

Panel C: Technical efficiency (%)     
Unadjusted p-value 0.003 0.003 0.000 0.000 
Bonferroni adjusted p-value 0.014 0.011 0.002 0.001 
Holm adjusted p-value 0.003 0.006 0.000 0.000 
Sharpened q-value 0.002 0.002 0.001 0.001 

Panel D: Total quantity of fertilizer (kg/ha)     
Unadjusted p-value 0.199 0.121 0.394 0.357 
Bonferroni adjusted p-value 0.797 0.485 1.000 1.000 
Holm adjusted p-value 0.796 0.484 1.000 1.000 
Sharpened q-value 0.651 0.651 0.651 0.651 

Panel E: Quantity of NPK (kg/ha)     
Unadjusted p-value 0.004 0.003 0.019 0.042 
Bonferroni adjusted p-value 0.016 0.011 0.074 0.166 
Holm adjusted p-value 0.012 0.012 0.038 0.042 
Sharpened q-value 0.008 0.008 0.013 0.022 

Panel F: Quantity of urea (kg/ha)     
Unadjusted p-value 0.032 0.043 0.016 0.054 
Bonferroni adjusted p-value 0.127 0.171 0.066 0.217 
Holm adjusted p-value 0.096 0.086 0.064 0.054 
Sharpened q-value 0.058 0.058 0.058 0.058 

Panel G: First application of NPK (days)     
Unadjusted p-value 0.000 0.000 0.000 0.000 
Bonferroni adjusted p-value 0.000 0.000 0.000 0.000 
Holm adjusted p-value 0.000 0.000 0.000 0.000 
Sharpened q-value 0.001 0.001 0.001 0.001 

Panel H: First application of urea (days)     
Unadjusted p-value 0.227 0.218 0.173 0.159 
Bonferroni adjusted p-value 0.906 0.873 0.691 0.638 
Holm adjusted p-value 0.908 0.872 0.692 0.636 
Sharpened q-value 0.293 0.293 0.293 0.293 

Note: Each cell contains p- or q-values for the multiple regressions presented in the paper. Columns 
(1) and (2) present ANCOVA estimates, while columns (3) and (4) present kernel matching ANCOVA 
estimates. Bonferroni and Holm adjusted p-values are calculated following List et al. (2019). The 
sharpened q-values are calcualted using the Stata code from Anderson (2008). 
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Table A.7: Multiple hypothesis testing (T1-C) 
 (1) (2) (3) (4) 
Panel A: Rice yield (t/ha)     

Unadjusted p-value 0.011 0.006 0.002 0.003 
Bonferroni adjusted p-value 0.042 0.024 0.007 0.010 
Holm adjusted p-value 0.011 0.012 0.008 0.009 
Sharpened q-value 0.006 0.006 0.006 0.006 

Panel B: Net income (USD/ha)     
Unadjusted p-value 0.004 0.001 0.000 0.000 
Bonferroni adjusted p-value 0.015 0.005 0.001 0.002 
Holm adjusted p-value 0.004 0.002 0.000 0.000 
Sharpened q-value 0.002 0.001 0.001 0.001 

Panel C: Technical efficiency (%)     
Unadjusted p-value 0.025 0.017 0.010 0.005 
Bonferroni adjusted p-value 0.100 0.067 0.039 0.022 
Holm adjusted p-value 0.025 0.034 0.030 0.020 
Sharpened q-value 0.020 0.020 0.020 0.020 

Panel D: Total quantity of fertilizer (kg/ha)     
Unadjusted p-value 0.431 0.249 0.570 0.506 
Bonferroni adjusted p-value 1.000 0.996 1.000 1.000 
Holm adjusted p-value 1.000 0.996 1.000 1.000 
Sharpened q-value 1.000 1.000 1.000 1.000 

Panel E: Quantity of NPK (kg/ha)     
Unadjusted p-value 0.010 0.005 0.016 0.025 
Bonferroni adjusted p-value 0.040 0.021 0.064 0.101 
Holm adjusted p-value 0.030 0.020 0.032 0.025 
Sharpened q-value 0.021 0.021 0.021 0.021 

Panel F: Quantity of urea (kg/ha)     
Unadjusted p-value 0.007 0.008 0.010 0.063 
Bonferroni adjusted p-value 0.028 0.033 0.038 0.251 
Holm adjusted p-value 0.028 0.024 0.020 0.063 
Sharpened q-value 0.013 0.013 0.013 0.016 

Panel G: First application of NPK (days)     
Unadjusted p-value 0.000 0.000 0.000 0.000 
Bonferroni adjusted p-value 0.000 0.000 0.000 0.001 
Holm adjusted p-value 0.000 0.000 0.000 0.000 
Sharpened q-value 0.001 0.001 0.001 0.001 

Panel H: First application of urea (days)     
Unadjusted p-value 0.344 0.186 0.366 0.526 
Bonferroni adjusted p-value 1.000 0.742 1.000 1.000 
Holm adjusted p-value 1.000 0.744 1.000 1.000 
Sharpened q-value 0.954 0.954 0.954 0.954 

Note: Each cell contains p- or q-values for the multiple regressions presented in the paper. Columns 
(1) and (2) present ANCOVA estimates, while columns (3) and (4) present kernel matching ANCOVA 
estimates. Bonferroni and Holm adjusted p-values are calculated following List et al. (2019). The 
sharpened q-values are calcualted using the Stata code from Anderson (2008). 
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Table A.8: Multiple hypothesis testing (T2-C) 
 (1) (2) (3) (4) 
Panel A: Rice yield (t/ha)     

Unadjusted p-value 0.000 0.000 0.000 0.000 
Bonferroni adjusted p-value 0.000 0.000 0.000 0.000 
Holm adjusted p-value 0.000 0.000 0.000 0.000 
Sharpened q-value 0.001 0.001 0.001 0.001 

Panel B: Net income (USD/ha)     
Unadjusted p-value 0.000 0.000 0.000 0.000 
Bonferroni adjusted p-value 0.000 0.000 0.000 0.000 
Holm adjusted p-value 0.000 0.000 0.000 0.000 
Sharpened q-value 0.001 0.001 0.001 0.001 

Panel C: Technical efficiency (%)     
Unadjusted p-value 0.000 0.000 0.000 0.000 
Bonferroni adjusted p-value 0.000 0.000 0.000 0.000 
Holm adjusted p-value 0.000 0.000 0.000 0.000 
Sharpened q-value 0.001 0.001 0.001 0.001 

Panel D: Total quantity of fertilizer (kg/ha)     
Unadjusted p-value 0.007 0.084 0.198 0.237 
Bonferroni adjusted p-value 0.030 0.334 0.792 0.947 
Holm adjusted p-value 0.028 0.252 0.594 0.711 
Sharpened q-value 0.031 0.144 0.201 0.201 

Panel E: Quantity of NPK (kg/ha)     
Unadjusted p-value 0.001 0.016 0.072 0.079 
Bonferroni adjusted p-value 0.006 0.065 0.288 0.315 
Holm adjusted p-value 0.004 0.048 0.144 0.158 
Sharpened q-value 0.006 0.025 0.042 0.042 

Panel F: Quantity of urea (kg/ha)     
Unadjusted p-value 0.991 0.769 0.822 0.952 
Bonferroni adjusted p-value 1.000 1.000 1.000 1.000 
Holm adjusted p-value 1.000 1.000 1.000 1.000 
Sharpened q-value 1.000 1.000 1.000 1.000 

Panel G: First application of NPK (days)     
Unadjusted p-value 0.004 0.000 0.023 0.007 
Bonferroni adjusted p-value 0.017 0.001 0.091 0.029 
Holm adjusted p-value 0.012 0.000 0.023 0.014 
Sharpened q-value 0.007 0.002 0.010 0.008 

Panel H: First application of urea (days)     
Unadjusted p-value 0.233 0.409 0.028 0.193 
Bonferroni adjusted p-value 0.932 1.000 0.113 0.773 
Holm adjusted p-value 0.932 1.000 0.112 0.772 
Sharpened q-value 0.304 0.443 0.128 0.304 

Note: Each cell contains p- or q-values for the multiple regressions presented in the paper. Columns 
(1) and (2) present ANCOVA estimates, while columns (3) and (4) present kernel matching ANCOVA 
estimates. Bonferroni and Holm adjusted p-values are calculated following List et al. (2019). The 
sharpened q-values are calcualted using the Stata code from Anderson (2008). 
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Table A.9: Multiple hypothesis testing (T2-T1) 
 (1) (2) (3) (4) 
Panel A: Rice yield (t/ha)     

Unadjusted p-value 0.001 0.000 0.000 0.001 
Bonferroni adjusted p-value 0.002 0.001 0.000 0.003 
Holm adjusted p-value 0.002 0.000 0.000 0.001 
Sharpened q-value 0.001 0.001 0.001 0.001 

Panel B: Net income (USD/ha)     
Unadjusted p-value 0.002 0.002 0.000 0.002 
Bonferroni adjusted p-value 0.008 0.007 0.001 0.009 
Holm adjusted p-value 0.004 0.006 0.000 0.002 
Sharpened q-value 0.002 0.002 0.002 0.002 

Panel C: Technical efficiency (%)     
Unadjusted p-value 0.020 0.010 0.004 0.010 
Bonferroni adjusted p-value 0.079 0.038 0.014 0.040 
Holm adjusted p-value 0.020 0.030 0.016 0.020 
Sharpened q-value 0.057 0.057 0.057 0.057 

Panel D: Total quantity of fertilizer (kg/ha)     
Unadjusted p-value 0.058 0.028 0.259 0.489 
Bonferroni adjusted p-value 0.231 0.112 1.000 1.000 
Holm adjusted p-value 0.232 0.112 1.000 1.000 
Sharpened q-value 0.127 0.127 0.209 0.324 

Panel E: Quantity of NPK (kg/ha)     
Unadjusted p-value 0.226 0.189 0.354 0.641 
Bonferroni adjusted p-value 0.906 0.755 1.000 1.000 
Holm adjusted p-value 0.904 0.756 1.000 1.000 
Sharpened q-value 0.828 0.828 0.828 0.828 

Panel F: Quantity of urea (kg/ha)     
Unadjusted p-value 0.004 0.000 0.039 0.091 
Bonferroni adjusted p-value 0.014 0.000 0.157 0.363 
Holm adjusted p-value 0.012 0.000 0.078 0.091 
Sharpened q-value 0.006 0.001 0.027 0.048 

Panel G: First application of NPK (days)     
Unadjusted p-value 0.546 0.567 0.658 0.995 
Bonferroni adjusted p-value 1.000 1.000 1.000 1.000 
Holm adjusted p-value 1.000 1.000 1.000 1.000 
Sharpened q-value 1.000 1.000 1.000 1.000 

Panel H: First application of urea (days)     
Unadjusted p-value 0.414 0.497 0.080 0.331 
Bonferroni adjusted p-value 1.000 1.000 0.321 1.000 
Holm adjusted p-value 1.000 1.000 0.320 1.000 
Sharpened q-value 0.596 0.596 0.472 0.596 

Note: Each cell contains p- or q-values for the multiple regressions presented in the paper. Columns 
(1) and (2) present ANCOVA estimates, while columns (3) and (4) present kernel matching ANCOVA 
estimates. Bonferroni and Holm adjusted p-values are calculated following List et al. (2019). The 
sharpened q-values are calcualted using the Stata code from Anderson (2008). 
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Table A.10: Treatment effects on the quantity of fertilizer 
 (1) (2) (3) (4) 
Treatment effect (T-C)    
Mean dependent variable in control 367.4 
Quartile: 0.25 -1.524 -1.524 -1.524 -1.524 
 (15.91) (15.91) (15.91) (15.91) 
Quartile: 0.5 4.209 4.209 4.209 4.209 
 (8.121) (8.121) (8.121) (8.121) 
Quartile: 0.75 4.742 4.742 4.742 4.742 
 (19.70) (19.70) (19.70) (19.70) 
Treatment effect (T1-C)    
Mean dependent variable in control 367.4 
Quartile: 0.25 6.857 6.857 6.857 6.857 
 (10.74) (10.74) (10.74) (10.74) 
Quartile: 0.5 13.21 13.21 13.21 13.21 
 (8.941) (8.941) (8.941) (8.941) 
Quartile: 0.75 12.60 12.60 12.60 12.60 
 (12.94) (12.94) (12.94) (12.94) 
Treatment effect (T2-C)    
Mean dependent variable in control 367.4 
Quartile: 0.25 -13.90 -13.90 -13.90 -13.90 
 (18.65) (18.65) (18.65) (18.65) 
Quartile: 0.5 -18.39 -18.39 -18.39 -18.39 
 (20.55) (20.55) (20.55) (20.55) 
Quartile: 0.75 -26.91 -26.91 -26.91 -26.91 
 (18.57) (18.57) (18.57) (18.57) 
Treatment effect (T2-T1)     
Mean dependent variable in T1 359.1 
Quartile: 0.25 -42.65* -42.65* -42.65* -42.65* 
 (22.43) (22.43) (22.43) (22.43) 
Quartile: 0.5 -21.00 -21.00 -21.00 -21.00 
 (20.28) (20.28) (20.28) (20.28) 
Quartile: 0.75 -38.00 -38.00 -38.00 -38.00 
 (26.93) (26.93) (26.93) (26.93) 
Note: Coefficient estimates are only reported for the treatment effect. All regressions include year and 
LGA fixed effects. Odd numbered columns are from regressions without covariates while even numbered 
columns include covariates. Household covariates include household size, age of household head, number 
of days in agricultural training, and indicators for if the household head has formal education, if farming 
is the household’s main activity, and if they have access to credit. Columns (1) and (2) present ANCOVA 
estimates while columns (3) and (4) present the kernel matching ANCOVA estimates. Robust standard 
errors, clustered at the village level, are shown in parentheses. (*** p < 0.01, ** p < 0.05, * p < 0.1). 
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Table A.11: Treatment effects on the quantity of NPK fertilizer 
 (1) (2) (3) (4) 
Treatment effect (T-C)    
Mean dependent variable in control 176.7 
Quartile: 0.25 5.333 10.03 -17.40*** -16.08*** 
 (8.080) (7.416) (5.342) (5.162) 
Quartile: 0.5 -3.808 -5.380 -16.70*** -15.34*** 
 (4.665) (6.497) (5.371) (5.254) 
Quartile: 0.75 -7.000 -14.70 -16.82*** -15.42*** 
 (14.06) (14.01) (5.358) (5.235) 
Treatment effect (T1-C)    
Mean dependent variable in control 176.7 
Quartile: 0.25 16.67* 13.92* -16.16** -15.18**  
 (10.10) (7.755) (5.893) (5.673) 
Quartile: 0.5 -2.000 -2.000 -16.04** -15.11**  
 (4.866) (3.557) (5.898) (5.731) 
Quartile: 0.75 -8.333 -19.45* -16.03** -15.11**  
 (12.57) (10.11) (5.890) (5.710) 
Treatment effect (T2-C)    
Mean dependent variable in control 176.7 
Quartile: 0.25 1.588 7.569 -21.85*** -17.56*** 
 (6.846) (9.708) (6.239) (6.007) 
Quartile: 0.5 -23.88*** -21.11** -21.75*** -17.40*** 
 (6.066) (10.66) (6.235) (6.025) 
Quartile: 0.75 -10.13 -15.69 -21.80*** -17.52*** 
 (16.37) (18.69) (6.202) (5.986)  
Treatment effect (T2-T1)     
Mean dependent variable in T1 169.0 
Quartile: 0.25 -18.85** -18.67** -1.636 -3.243 
 (8.960) (8.794) (4.793) (6.634) 
Quartile: 0.5 -17.00** -17.00** -2.835 -1.556 
 (6.584) (8.392) (5.625) (5.974) 
Quartile: 0.75 0.000 4.197 -3.509 -2.479 
 (17.38) (12.62) (4.556) (5.864) 
Note: Coefficient estimates are only reported for the treatment effect. All regressions include year and 
LGA fixed effects. Odd numbered columns are from regressions without covariates while even numbered 
columns include covariates. Household covariates include household size, age of household head, number 
of days in agricultural training, and indicators for if the household head has formal education, if farming 
is the household’s main activity, and if they have access to credit. Columns (1) and (2) present ANCOVA 
estimates while columns (3) and (4) present the kernel matching ANCOVA estimates. Robust standard 
errors, clustered at the village level, are shown in parentheses. (*** p < 0.01, ** p < 0.05, * p < 0.1). 
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Table A.12: Treatment effects on the quantity of urea fertilizer 
 (1) (2) (3) (4) 
Treatment effect (T-C)    
Mean dependent variable in control 137.5 
Quartile: 0.25 16.05** 15.51* 14.28*** 11.34* 
 (6.524) (8.774) (5.206) (5.634) 
Quartile: 0.5 19.17*** 17.19*** 13.69** 10.88* 
 (4.530) (6.608) (5.262) (5.731) 
Quartile: 0.75 -0.000 0.000 13.68** 10.87* 
 (10.59) (9.876) (5.261) (5.729) 
Treatment effect (T1-C)    
Mean dependent variable in control 137.5 
Quartile: 0.25 20.00*** 18.78** 18.08*** 15.64*** 
 (7.187) (7.979) (5.014) (5.611) 
Quartile: 0.5 26.61*** 25.02*** 18.40*** 15.71** 
 (6.700) (6.183) (5.060) (5.703) 
Quartile: 0.75 0.000 2.321 18.54*** 15.87*** 
 (15.95) (10.52) (5.045) (5.720) 
Treatment effect (T2-C)    
Mean dependent variable in control 137.5 
Quartile: 0.25 -0.952 -3.055 1.384 1.239 
 (7.494) (5.967) (6.853) (8.283) 
Quartile: 0.5 0.000 6.080 1.358 1.245 
 (9.723) (8.094) (6.842) (8.286) 
Quartile: 0.75 0.000 0.322 1.393 1.239 
 (2.681) (6.573) (6.856) (8.281) 
Treatment effect (T2-T1)     
Mean dependent variable in T1 165.6 
Quartile: 0.25 -25.00*** -26.34** -16.15*** -15.86*** 
 (9.135) (10.493) (4.062) (4.705) 
Quartile: 0.5 -19.34* -20.53*** -16.04*** -15.69*** 
 (10.02) (6.935) (4.114) (4.711) 
Quartile: 0.75 0.000 -4.912 -16.06*** -15.71*** 
 (10.48) (12.86) (4.110) (4.714) 
Note: Coefficient estimates are only reported for the treatment effect. All regressions include year and 
LGA fixed effects. Odd numbered columns are from regressions without covariates while even numbered 
columns include covariates. Household covariates include household size, age of household head, number 
of days in agricultural training, and indicators for if the household head has formal education, if farming 
is the household’s main activity, and if they have access to credit. Columns (1) and (2) present ANCOVA 
estimates while columns (3) and (4) present the kernel matching ANCOVA estimates. Robust standard 
errors, clustered at the village level, are shown in parentheses. (*** p < 0.01, ** p < 0.05, * p < 0.1). 
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